
Two-view geometry 
(cont’d)



Multi-view geometry



(i) Correspondence geometry: Given an image point x in the 
first view, how does this constrain the position of the 
corresponding point x’ in the second image? 

(ii) Camera geometry (motion): Given a set of corresponding 
image points {xi ↔x’i}, i=1,…,n, what are the cameras P and 
P’ for the two views? 

(iii) Scene geometry (structure): Given corresponding image 
points xi ↔x’i  and cameras P, P’, what is the position of (their 
pre-image) X in space? 

Three questions:



Outline

• 2-view geometry 

• essential matrix, fundamental matrix 

• properties 

• estimation



Mathematical formulation

Goal: given point in left image, we want to compute the equation of the line on the right image



Definitions

Epipolar plane: plane defined by 2 camera centers & candidate 3D point (green)

Epipolar lines: intersection of epipolar plane and image planes (red)

Epipoles: projection of camera center 1 in camera 2 (& vice versa) (orange)

(also defined by 2 camera centers any 1 points in either image plane)

(set of all epipolar lines intersect at the epipoles)

How do epipolar lines change when we double distance between two cameras?



11.1 Epipolar geometry 539

(a) (b)

(c) (d)

Figure 11.4 The multi-stage stereo rectification algorithm of Loop and Zhang (1999) c
�

1999 IEEE. (a) Original image pair overlaid with several epipolar lines; (b) images trans-
formed so that epipolar lines are parallel; (c) images rectified so that epipolar lines are hori-
zontal and in vertial correspondence; (d) final rectification that minimizes horizontal distor-
tions.

perpendicular to the camera center line. This ensures that corresponding epipolar lines are
horizontal and that the disparity for points at infinity is 0. Finally, re-scale the images, if nec-
essary, to account for different focal lengths, magnifying the smaller image to avoid aliasing.
(The full details of this procedure can be found in Fusiello, Trucco, and Verri (2000) and Ex-
ercise 11.1.) Note that in general, it is not possible to rectify an arbitrary collection of images
simultaneously unless their optical centers are collinear, although rotating the cameras so that
they all point in the same direction reduces the inter-camera pixel movements to scalings and
translations.

The resulting standard rectified geometry is employed in a lot of stereo camera setups and
stereo algorithms, and leads to a very simple inverse relationship between 3D depths Z and
disparities d,

d = f
B

Z
, (11.1)

where f is the focal length (measured in pixels), B is the baseline, and

x0 = x + d(x, y), y0 = y (11.2)

describes the relationship between corresponding pixel coordinates in the left and right im-
ages (Bolles, Baker, and Marimont 1987; Okutomi and Kanade 1993; Scharstein and Szeliski
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Stereo Pair Rectified Stereo Pair

Epipolar geometry is purely determined by camera extrinsics and camera instrinics

Special case

Rectify a stero pair with a homograpy transformation



Projecting from camera coordinate 
system to image coordinates
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Projecting from camera coordinate 
system to normalized image coordinates
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If K is known, work with warped image  

�x0 = X

To simplify notation, we’ll use x instead of x’



Recall
Dot product:

Cross product:

a · b = ||a|| ||b||cos✓

Cross product matrix:

Important property (skew symmetric):
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Recall
Dot product:

Cross product:

a · b = ||a|| ||b||cos✓

Cross product matrix: a⇥ b = âb =
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• We will not handle the case of the conic being underdetermined (n <

5).

From the SVD we take the “right singular vector” (a column from V )
which corresponds to the smallest singular value, �6. This is the solution,
c, which contains the coe�cients of the conic that best fits the points. We
reshape this into the matrix C, and form the equation x

>
Cx = 0.

To recap, note that although the expression for a conic looks nonlinear,
it is only the known variables (the coordinates of the xi’s) that appear non-
linearly; we were able to write the problem in homogeneous least squares
form since the coe�cients appear linearly.

3.3. Two View Geometry

We now consider the geometry of two calibrated cameras viewing a scene.
We assume that the cameras are related by a rigid body motion (R,T ).
(Figure from MaSKS Ch. 5.)

Since the cameras are calibrated, we have K1 = K2 = I. The cameras are
centered at o1 and o2, respectively. The vectors e1 and e2 are the epipoles,
and can be intuitively thought of as any of the following:

• The points where the baseline pierces the image planes
• The projection of the other camera’s optical center onto each image
plane

• The translation vector T (up to a scale factor)
• The direction of travel (focus of expansion)

LECTURE 3. TWO VIEW GEOMETRY 5

The lines l1 and l2 are the epipolar lines. The plane spanned by o1, o2 and
p is called the epipolar plane, and the epipolar lines are the intersections of
the epipolar plane with the image planes.

3.3.1. Special Case: Rectified Stereo

Rectified stereo is the simplest case of two-view geometry in which we have
two cameras that are aimed straight forward and translated horizontally
w.r.t. each other, as if your eyes were looking straight ahead at something
infinitely far away. In this case, the epipolar lines are horizontal, and points
in one image plane map to the horizontal scan line with the same y coordinate
on the other image plane.

If the cameras are not rectified in this way, how can we find corresponding
points in the second image? It turns out we will still have a one-dimensional
search, it just won’t be as simple as being on corresponding horizontal scan
lines.

3.3.2. General Two View Geometry

We specify the pose of the two cameras, g1 and g2 as follows:

g1 = (I,0)

g2 = (R,T ) 2 SE(3)

Without loss of generality for g1, we let its rotation and translation be the
identity matrix and zero vector, respectively. For g2, R is any rotation matrix
and T is the translation vector.

A 3D point p will have coordinates X1 and X2 when viewed from g1

and g2 respectively. The following equation relates coordinate systems from
camera 1 and camera 2.

(3.7) X2 = RX1 + T

3.3.3. The Epipolar Constraint and the Essential Matrix

We now want to find a relation between a point on one image and its possible
locations on the other image. We begin by converting the image points into
homogeneous coordinates.

For some depths �i we have

X1 = �1x1, X2 = �2x2

which means
�2x2 = R�1x1 + T

but �1,�2 are unknown. To solve this problem, Longuet-Higgins eliminated
these depths algebraically as follows.
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Calibrated 2-view geometry
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Take (left) dot product of both sides with x2

Take (left) cross product of both sides with T
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Take the cross product of both sides with T ,

�2
b
Tx2 = b

TR�1x1 + b
TT|{z}
=0

and take the inner product with x2,

�2x
>
2
b
Tx2| {z }
=0

= x

>
2
b
TR�1x1

x

>
2
b
TRx1 = 0

(3.8) x

>
2 Ex1 = 0

Here we have used the facts that (a) any vector crossed with itself returns the
zero vector and (b) a triple product a

>
b⇥ c returns zero if any two vectors

are repeated. Equation 3.8 is a bilinear form and is called the essential

constraint or epipolar constraint. It gives us a line in the image plane of
camera 2 for a point in the image plane of camera 1, and vice versa.

The essential matrix E = b
TR 2 R3⇥3 compactly encodes the relative

camera pose g = (R,T ). (How to get back T and R from E is another story,
which we’ll address next lecture.)

Thus to map a point in one image to a line in the other using the essential
matrix, we apply the following equations:

l2 ⇠ Ex1

(3.9) x

>
2 l2 = 0

Alternatively, you can go the other way:

l1 ⇠ E

>
x2

(3.10) x

>
1 l1 = 0

where l1, l2 are epipolar lines (specified in homogeneous coordinates).

3.3.4. Extracting the Epipoles From the Essential Matrix

Note that all epipolar lines in an image plane intersect at the epipole.
Equivalently, the epipole has a distance of zero from every epipolar line:
e

>
2 l2 = 0, 8x1, and similarly e

>
1 l1 = 0, 8x2.

For this to hold true, e>
2 E and Ee1 must be zero vectors, i.e.,

e

>
2 E = 0, Ee1 = 0

Thus e1 and e2 are vectors in the right and left null space of E, re-
spectively, i.e., the left and right singular vectors of E with singular value
0.
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Epipolar geometry



Geometric derivation
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• We will not handle the case of the conic being underdetermined (n <

5).

From the SVD we take the “right singular vector” (a column from V )
which corresponds to the smallest singular value, �6. This is the solution,
c, which contains the coe�cients of the conic that best fits the points. We
reshape this into the matrix C, and form the equation x

>
Cx = 0.

To recap, note that although the expression for a conic looks nonlinear,
it is only the known variables (the coordinates of the xi’s) that appear non-
linearly; we were able to write the problem in homogeneous least squares
form since the coe�cients appear linearly.

3.3. Two View Geometry

We now consider the geometry of two calibrated cameras viewing a scene.
We assume that the cameras are related by a rigid body motion (R,T ).
(Figure from MaSKS Ch. 5.)

Since the cameras are calibrated, we have K1 = K2 = I. The cameras are
centered at o1 and o2, respectively. The vectors e1 and e2 are the epipoles,
and can be intuitively thought of as any of the following:

• The points where the baseline pierces the image planes
• The projection of the other camera’s optical center onto each image
plane

• The translation vector T (up to a scale factor)
• The direction of travel (focus of expansion)

Simply the coplanar constraint applied to 3 vectors from camera 2’s coordinate system

x2 · (T⇥Rx1) = 0
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are repeated. Equation 3.8 is a bilinear form and is called the essential

constraint or epipolar constraint. It gives us a line in the image plane of
camera 2 for a point in the image plane of camera 1, and vice versa.

The essential matrix E = b
TR 2 R3⇥3 compactly encodes the relative

camera pose g = (R,T ). (How to get back T and R from E is another story,
which we’ll address next lecture.)
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matrix, we apply the following equations:
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Alternatively, you can go the other way:
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(3.10) x
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where l1, l2 are epipolar lines (specified in homogeneous coordinates).

3.3.4. Extracting the Epipoles From the Essential Matrix

Note that all epipolar lines in an image plane intersect at the epipole.
Equivalently, the epipole has a distance of zero from every epipolar line:
e

>
2 l2 = 0, 8x1, and similarly e

>
1 l1 = 0, 8x2.

For this to hold true, e>
2 E and Ee1 must be zero vectors, i.e.,

e

>
2 E = 0, Ee1 = 0

Thus e1 and e2 are vectors in the right and left null space of E, re-
spectively, i.e., the left and right singular vectors of E with singular value
0.

E is known as the essential matrix 

Epipolar geometry



Fundamental matrix

E = T̂R

F = K2
�TEK�1

1

(Faugeras and Luong, 1992) 

�x = KX

In uncalibrated case, we need to account for camera intrinsics:
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e

>
2 l2 = 0, 8x1, and similarly e

>
1 l1 = 0, 8x2.

For this to hold true, e>
2 E and Ee1 must be zero vectors, i.e.,

e

>
2 E = 0, Ee1 = 0

Thus e1 and e2 are vectors in the right and left null space of E, re-
spectively, i.e., the left and right singular vectors of E with singular value
0.

Essential matrix

Maps a (x1,y1) point from left image to line in right image (and vice versa)

2

4
a

b

c

3

5 = E

2

4
x1

y1

1

3

5

ax2 + by2 + c = 0

But how is this different from a Homography (also a 3X3 matrix)?



Epipoles
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Take the cross product of both sides with T ,

�2
b
Tx2 = b

TR�1x1 + b
TT|{z}
=0

and take the inner product with x2,

�2x
>
2
b
Tx2| {z }
=0

= x

>
2
b
TR�1x1

x

>
2
b
TRx1 = 0

(3.8) x

>
2 Ex1 = 0

Here we have used the facts that (a) any vector crossed with itself returns the
zero vector and (b) a triple product a

>
b⇥ c returns zero if any two vectors

are repeated. Equation 3.8 is a bilinear form and is called the essential

constraint or epipolar constraint. It gives us a line in the image plane of
camera 2 for a point in the image plane of camera 1, and vice versa.

The essential matrix E = b
TR 2 R3⇥3 compactly encodes the relative

camera pose g = (R,T ). (How to get back T and R from E is another story,
which we’ll address next lecture.)

Thus to map a point in one image to a line in the other using the essential
matrix, we apply the following equations:

l2 ⇠ Ex1

(3.9) x

>
2 l2 = 0

Alternatively, you can go the other way:

l1 ⇠ E

>
x2

(3.10) x

>
1 l1 = 0

where l1, l2 are epipolar lines (specified in homogeneous coordinates).

3.3.4. Extracting the Epipoles From the Essential Matrix

Note that all epipolar lines in an image plane intersect at the epipole.
Equivalently, the epipole has a distance of zero from every epipolar line:
e

>
2 l2 = 0, 8x1, and similarly e

>
1 l1 = 0, 8x2.

For this to hold true, e>
2 E and Ee1 must be zero vectors, i.e.,

e

>
2 E = 0, Ee1 = 0

Thus e1 and e2 are vectors in the right and left null space of E, re-
spectively, i.e., the left and right singular vectors of E with singular value
0.

We’ll write epipolar lines as 3-vectors:
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l2 = Ex1



Outline

• 2-view geometry 

• essential matrix, fundamental matrix 

• properties 

• estimation



Overview
x2

TK2
�T T̂RK�1

1 x1 = 0

x2
TFx1 = 0

8 DOFs because of scale ambiguity 
Rank 2

Fundamental matrices:

Essential matrices:
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where l1, l2 are epipolar lines (specified in homogeneous coordinates).
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Note that all epipolar lines in an image plane intersect at the epipole.
Equivalently, the epipole has a distance of zero from every epipolar line:
e

>
2 l2 = 0, 8x1, and similarly e
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More-or-less behaves like a cross-product (skew symmetric matrix)



Properties (essential matrix)
https://en.wikipedia.org/wiki/Essential_matrix#Properties_of_the_essential_matrix

Q. Can any 3x3 matrix be an essential matrix? 

E is the product of a rotation and skew-symmetric matrix
Singular values of E = (sigma,sigma,0)

[rotations do not effect singular values]

No…

Q. Given E, can we uniquely recover R,t? 
 Almost. It is unique up to easy-to-deal with symmetries

Q. How many DOFs are needed to specify an essential matrix? 

3 (rotations) + 2 (translation direction)

https://en.wikipedia.org/wiki/Essential_matrix#Properties_of_the_essential_matrix




Background: SVDs of 
skew symmetric matrics

Any skew-symmetric matrice (A = -AT) can be thought of as a cross-product

a⇥ b =

2

4
a2b3 � a3b2
a3b1 � a1b3
a1b2 � a2b1

3

5 =

2

4
0 �a3 a2
a3 0 �a1
�a2 a1 0

3

5

2

4
b1
b2
b3

3

5 ⌘ âb

SVD of a skew-symmetric matrix:

â =
⇥
�e2 e1 e3

⇤
2

4
||a|| 0 0
0 ||a|| 0
0 0 0

3

5

2

4
eT1
eT2
eT3

3

5 where e3 = a / ||a||

One singular value is 0 and the other two = ||a||

â =
⇥
e1 e2 e3

⇤
2

4
||a|| 0 0
0 ||a|| 0
0 0 0

3

5

2

4
0 �1 0
1 0 0
0 0 1

3

5

2

4
eT1
eT2
eT3

3

5



Recovering T,R from E

1. Universal scale ambiguity

Doubling T results in same epipolar lines

Let’s fix ||T|| = 1 

Numerous methods for recovering t,R from E exist: 
SVD, Louget-Higgen’s alg, etc.

[notation switch]
t̂unit-vector:

skew-symmetric matrix: t̂⇥



Recovering T from E
SVD-based approach for noise-free E (Szeliski Chap 7.2)

Take (left-handside) cross product of E = [t]xR  with t

350 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

In his paper, Hartley (1997a) compares the improvement due to his re-normalization strategy
to alternative distance measures proposed by others such as Zhang (1998a,b) and concludes
that his simple re-normalization in most cases is as effective as (or better than) alternative
techniques. Torr and Fitzgibbon (2004) recommend a variant on this algorithm where the
norm of the upper 2⇥ 2 sub-matrix of E is set to 1 and show that it has even better stability
with respect to 2D coordinate transformations.

Once an estimate for the essential matrix E has been recovered, the direction of the trans-
lation vector t can be estimated. Note that the absolute distance between the two cameras can
never be recovered from pure image measurements alone, regardless of how many cameras
or points are used. Knowledge about absolute camera and point positions or distances, of-
ten called ground control points in photogrammetry, is always required to establish the final
scale, position, and orientation.

To estimate this direction ˆt, observe that under ideal noise-free conditions, the essential
matrix E is singular, i.e., ˆt

T
E = 0. This singularity shows up as a singular value of 0 when

an SVD of E is performed,

E = [ˆt]⇥R = U⌃V T =
h

u0 u1 ˆt
i
2

64
1

1
0

3

75

2

64
vT

0

vT
1

vT
2

3

75 (7.18)

When E is computed from noisy measurements, the singular vector associated with the small-
est singular value gives us ˆt. (The other two singular values should be similar but are not, in
general, equal to 1 because E is only computed up to an unknown scale.)

Because E is rank-deficient, it turns out that we actually only need seven correspondences
of the form of Equation (7.14) instead of eight to estimate this matrix (Hartley 1994a; Torr and
Murray 1997; Hartley and Zisserman 2004). (The advantage of using fewer correspondences
inside a RANSAC robust fitting stage is that fewer random samples need to be generated.)
From this set of seven homogeneous equations (which we can stack into a 7 ⇥ 9 matrix for
SVD analysis), we can find two independent vectors, say f0 and f1 such that zi · f j = 0.
These two vectors can be converted back into 3 ⇥ 3 matrices E0 and E1, which span the
solution space for

E = ↵E0 + (1� ↵)E1. (7.19)

To find the correct value of ↵, we observe that E has a zero determinant, since it is rank
deficient, and hence

det |↵E0 + (1� ↵)E1| = 0. (7.20)

This gives us a cubic equation in ↵, which has either one or three solutions (roots). Substitut-
ing these values into (7.19) to obtain E, we can test this essential matrix against other unused
feature correspondences to select the correct one.

Implies that translation vector = epipole in right image (in homogenous coordinates) 
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Here we have used the facts that (a) any vector crossed with itself returns the
zero vector and (b) a triple product a

>
b⇥ c returns zero if any two vectors

are repeated. Equation 3.8 is a bilinear form and is called the essential

constraint or epipolar constraint. It gives us a line in the image plane of
camera 2 for a point in the image plane of camera 1, and vice versa.

The essential matrix E = b
TR 2 R3⇥3 compactly encodes the relative

camera pose g = (R,T ). (How to get back T and R from E is another story,
which we’ll address next lecture.)

Thus to map a point in one image to a line in the other using the essential
matrix, we apply the following equations:

l2 ⇠ Ex1

(3.9) x

>
2 l2 = 0

Alternatively, you can go the other way:

l1 ⇠ E

>
x2

(3.10) x

>
1 l1 = 0

where l1, l2 are epipolar lines (specified in homogeneous coordinates).

3.3.4. Extracting the Epipoles From the Essential Matrix

Note that all epipolar lines in an image plane intersect at the epipole.
Equivalently, the epipole has a distance of zero from every epipolar line:
e

>
2 l2 = 0, 8x1, and similarly e

>
1 l1 = 0, 8x2.

For this to hold true, e>
2 E and Ee1 must be zero vectors, i.e.,

e

>
2 E = 0, Ee1 = 0

Thus e1 and e2 are vectors in the right and left null space of E, re-
spectively, i.e., the left and right singular vectors of E with singular value
0.



Recovering T from E
SVD-based approach for noise-free E (Szeliski Chap 7.2)

Set translation direction = smallest left singular vector of E

But we can’t distinguish E from -E, so we only know direction up to a sign

350 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

In his paper, Hartley (1997a) compares the improvement due to his re-normalization strategy
to alternative distance measures proposed by others such as Zhang (1998a,b) and concludes
that his simple re-normalization in most cases is as effective as (or better than) alternative
techniques. Torr and Fitzgibbon (2004) recommend a variant on this algorithm where the
norm of the upper 2⇥ 2 sub-matrix of E is set to 1 and show that it has even better stability
with respect to 2D coordinate transformations.

Once an estimate for the essential matrix E has been recovered, the direction of the trans-
lation vector t can be estimated. Note that the absolute distance between the two cameras can
never be recovered from pure image measurements alone, regardless of how many cameras
or points are used. Knowledge about absolute camera and point positions or distances, of-
ten called ground control points in photogrammetry, is always required to establish the final
scale, position, and orientation.

To estimate this direction ˆt, observe that under ideal noise-free conditions, the essential
matrix E is singular, i.e., ˆt
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When E is computed from noisy measurements, the singular vector associated with the small-
est singular value gives us ˆt. (The other two singular values should be similar but are not, in
general, equal to 1 because E is only computed up to an unknown scale.)

Because E is rank-deficient, it turns out that we actually only need seven correspondences
of the form of Equation (7.14) instead of eight to estimate this matrix (Hartley 1994a; Torr and
Murray 1997; Hartley and Zisserman 2004). (The advantage of using fewer correspondences
inside a RANSAC robust fitting stage is that fewer random samples need to be generated.)
From this set of seven homogeneous equations (which we can stack into a 7 ⇥ 9 matrix for
SVD analysis), we can find two independent vectors, say f0 and f1 such that zi · f j = 0.
These two vectors can be converted back into 3 ⇥ 3 matrices E0 and E1, which span the
solution space for

E = ↵E0 + (1� ↵)E1. (7.19)

To find the correct value of ↵, we observe that E has a zero determinant, since it is rank
deficient, and hence

det |↵E0 + (1� ↵)E1| = 0. (7.20)

This gives us a cubic equation in ↵, which has either one or three solutions (roots). Substitut-
ing these values into (7.19) to obtain E, we can test this essential matrix against other unused
feature correspondences to select the correct one.

Aside: v2 = epipole in left image



Recovering R from E
SVD-based approach (Szeliski Chap 7.2)

7.2 Two-frame structure from motion 351

Once ˆt has been recovered, how can we estimate the corresponding rotation matrix R?
Recall that the cross-product operator [ˆt]⇥ (2.32) projects a vector onto a set of orthogonal
basis vectors that include ˆt, zeros out the ˆt component, and rotates the other two by 90�,

[ˆt]⇥ = SZR90�S
T =

h
s0 s1 ˆt

i
2

64
1

1
0

3

75

2

64
0 �1
1 0

1

3

75

2

64
sT
0

sT
1

ˆt
T

3

75 , (7.21)

where ˆt = s0 ⇥ s1. From Equations (7.18 and 7.21), we get

E = [ˆt]⇥R = SZR90�S
T R = U⌃V T , (7.22)

from which we can conclude that S = U . Recall that for a noise-free essential matrix,
(⌃ = Z), and hence

R90�U
T R = V T (7.23)

and
R = URT

90�V
T . (7.24)

Unfortunately, we only know both E and ˆt up to a sign. Furthermore, the matrices U and V

are not guaranteed to be rotations (you can flip both their signs and still get a valid SVD). For
this reason, we have to generate all four possible rotation matrices

R = ±URT
±90�V

T (7.25)

and keep the two whose determinant |R| = 1. To disambiguate between the remaining pair
of potential rotations, which form a twisted pair (Hartley and Zisserman 2004, p. 240), we
need to pair them with both possible signs of the translation direction ±

ˆt and select the
combination for which the largest number of points is seen in front of both cameras.4

The property that points must lie in front of the camera, i.e., at a positive distance along
the viewing rays emanating from the camera, is known as chirality (Hartley 1998). In addition
to determining the signs of the rotation and translation, as described above, the chirality (sign
of the distances) of the points in a reconstruction can be used inside a RANSAC procedure
(along with the reprojection errors) to distinguish between likely and unlikely configurations.5

Chirality can also be used to transform projective reconstructions (Sections 7.2.1 and 7.2.2)
into quasi-affine reconstructions (Hartley 1998).

The normalized “eight-point algorithm” (Hartley 1997a) described above is not the only
way to estimate the camera motion from correspondences. Variants include using seven points

4 In the noise-free case, a single point suffices. It is safer, however, to test all or a sufficient subset of points,
downweighting the ones that lie close to the plane at infinity, for which it is easy to get depth reversals.

5 Note that as points get further away from a camera, i.e., closer toward the plane at infinity, errors in chirality
become more likely.

Recall skew-symmetric decomposition (for unit-norm vector)
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need to pair them with both possible signs of the translation direction ±
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The property that points must lie in front of the camera, i.e., at a positive distance along
the viewing rays emanating from the camera, is known as chirality (Hartley 1998). In addition
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Chirality can also be used to transform projective reconstructions (Sections 7.2.1 and 7.2.2)
into quasi-affine reconstructions (Hartley 1998).

The normalized “eight-point algorithm” (Hartley 1997a) described above is not the only
way to estimate the camera motion from correspondences. Variants include using seven points

4 In the noise-free case, a single point suffices. It is safer, however, to test all or a sufficient subset of points,
downweighting the ones that lie close to the plane at infinity, for which it is easy to get depth reversals.
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By matching orthogonal and diagonal matrices, S = U, Z = Sigma
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downweighting the ones that lie close to the plane at infinity, for which it is easy to get depth reversals.

5 Note that as points get further away from a camera, i.e., closer toward the plane at infinity, errors in chirality
become more likely.
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Once ˆt has been recovered, how can we estimate the corresponding rotation matrix R?
Recall that the cross-product operator [ˆt]⇥ (2.32) projects a vector onto a set of orthogonal
basis vectors that include ˆt, zeros out the ˆt component, and rotates the other two by 90�,

[ˆt]⇥ = SZR90�S
T =

h
s0 s1 ˆt
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where ˆt = s0 ⇥ s1. From Equations (7.18 and 7.21), we get

E = [ˆt]⇥R = SZR90�S
T R = U⌃V T , (7.22)

from which we can conclude that S = U . Recall that for a noise-free essential matrix,
(⌃ = Z), and hence

R90�U
T R = V T (7.23)

and
R = URT

90�V
T . (7.24)

Unfortunately, we only know both E and ˆt up to a sign. Furthermore, the matrices U and V

are not guaranteed to be rotations (you can flip both their signs and still get a valid SVD). For
this reason, we have to generate all four possible rotation matrices

R = ±URT
±90�V

T (7.25)

and keep the two whose determinant |R| = 1. To disambiguate between the remaining pair
of potential rotations, which form a twisted pair (Hartley and Zisserman 2004, p. 240), we
need to pair them with both possible signs of the translation direction ±

ˆt and select the
combination for which the largest number of points is seen in front of both cameras.4

The property that points must lie in front of the camera, i.e., at a positive distance along
the viewing rays emanating from the camera, is known as chirality (Hartley 1998). In addition
to determining the signs of the rotation and translation, as described above, the chirality (sign
of the distances) of the points in a reconstruction can be used inside a RANSAC procedure
(along with the reprojection errors) to distinguish between likely and unlikely configurations.5

Chirality can also be used to transform projective reconstructions (Sections 7.2.1 and 7.2.2)
into quasi-affine reconstructions (Hartley 1998).

The normalized “eight-point algorithm” (Hartley 1997a) described above is not the only
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Generate 4 possible rotations and keep 2 with determinant = 1 (non-reflections)





Properties (fundamental matrix)

x2
TK2

�T T̂RK�1
1 x1 = 0

x2
TFx1 = 0

Q. How many DOFs are needed to specify F?

8 = 9 - 1 (for scale)

Q. Can any 3x3 matrix be a fundamental matrix?

Proof:

No! epipoles are still in the null space, implying rank(F) = 2

(similar argument for e1; c.f. Invitation to 3D Vision, Chap 6.2)

Let e2 = K2T

e2TF = 0



Properties (fundamental matrix)

7.2 Two-frame structure from motion 353

camera). Then, compute the FOE and check whether the residual error is small (indicating
agreement with this rotation hypothesis) and whether the motions towards or away from the
epipole (FOE) are all in the same direction (ignoring very small motions, which may be
noise-contaminated).

Pure rotation

The case of pure rotation results in a degenerate estimate of the essential matrix E and of
the translation direction ˆt. Consider first the case of the rotation matrix being known. The
estimates for the FOE will be degenerate, since xi0 ⇡ xi1, and hence (7.27), is degenerate.
A similar argument shows that the equations for the essential matrix (7.13) are also rank-
deficient.

This suggests that it might be prudent before computing a full essential matrix to first
compute a rotation estimate R using (6.32), potentially with just a small number of points,
and then compute the residuals after rotating the points before proceeding with a full E

computation.

7.2.1 Projective (uncalibrated) reconstruction

In many cases, such as when trying to build a 3D model from Internet or legacy photos taken
by unknown cameras without any EXIF tags, we do not know ahead of time the intrinsic
calibration parameters associated with the input images. In such situations, we can still esti-
mate a two-frame reconstruction, although the true metric structure may not be available, e.g.,
orthogonal lines or planes in the world may not end up being reconstructed as orthogonal.

Consider the derivations we used to estimate the essential matrix E (7.10–7.12). In the
uncalibrated case, we do not know the calibration matrices Kj , so we cannot use the normal-
ized ray directions x̂j = K�1

j xj . Instead, we have access only to the image coordinates xj ,
and so the essential matrix (7.10) becomes

x̂T
1 Ex̂1 = xT

1 K�T
1 EK�1

0 x0 = xT
1 Fx0 = 0, (7.28)

where
F = K�T

1 EK�1
0 = [e]⇥ ˜H (7.29)

is called the fundamental matrix (Faugeras 1992; Hartley, Gupta, and Chang 1992; Hartley
and Zisserman 2004).

Like the essential matrix, the fundamental matrix is (in principle) rank two,

F = [e]⇥ ˜H = U⌃V T =
h

u0 u1 e1
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Two non-zero singular values are not (in general) equal

Singular vectors with zero singular valur are the eipoles



Essential and Fundamental Matrices

E = T̂R
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“Proof”: properties of skew-symmetric matrices Proof: scale ambiguity

where e1, e2 are epipoles in right and left images
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82 Chapter 5. Reconstruction from two calibrated views

which we call the essential space and denote by E

E :=
{

T̂R
∣∣ R ∈ SO(3), T ∈ R3

}
⊂ R3×3.

Before we study the structure of the space of essential matrices, we
introduce a very useful lemma from linear algebra.

Lemma 5.1 (The hat operator). If T ∈ R3, A ∈ SL(3) and T ′ = AT ,
then T̂ = AT T̂ ′A.

Proof. Since both AT (̂·)A and Â−1(·) are linear maps from R3 to R3×3,
one may directly verify that these two linear maps agree on the basis
[1, 0, 0]T , [0, 1, 0]T or [0, 0, 1]T (using the fact that A ∈ SL(3) implies that
det(A) = 1).

The following theorem, due to Huang and Faugeras [HF89], captures the
algebraic structure of essential matrices:

Theorem 5.1 (Characterization of the essential matrix). A non-
zero matrix E ∈ R3×3 is an essential matrix if and only if E has a singular
value decomposition (SVD): E = UΣV T with

Σ = diag{σ,σ, 0}

for some σ ∈ R+ and U, V ∈ SO(3).

Proof. We first prove the necessity. By definition, for any essential ma-
trix E, there exists (at least one pair) (R, T ), R ∈ SO(3), T ∈ R3

such that T̂R = E. For T , there exists a rotation matrix R0 such that
R0T = [0, 0, ∥T ∥]T . Denote this vector a ∈ R3. Since det(R0) = 1, we
know T̂ = RT

0 âR0 from Lemma 5.1. Then EET = T̂RRT T̂ T = T̂ T̂ T =
RT

0 ââT R0. It is direct to verify that

ââT =

⎡

⎣
0 −∥T ∥ 0

∥T ∥ 0 0
0 0 0

⎤

⎦

⎡

⎣
0 ∥T ∥ 0

−∥T ∥ 0 0
0 0 0

⎤

⎦ =

⎡

⎣
∥T ∥2 0 0

0 ∥T ∥2 0
0 0 0

⎤

⎦ .

So the singular values of the essential matrix E = T̂R are (∥T ∥, ∥T ∥, 0). In
general, in the SVD of E = UΣV T , U and V are unitary matrices, that is
matrices whose columns are orthonormal, but whose determinants can be
±1. We still need to prove that U, V ∈ SO(3) (i.e. have determinant + 1) to
establish the theorem. We already have E = T̂R = RT

0 âR0R. Let RZ(θ) be
the matrix which represents a rotation around the Z-axis (or the X3-axis)
by an angle of θ radians, i.e. RZ(θ) = eê3θ with e3 = [0, 0, 1]T ∈ R3. Then

RZ

(
+
π

2

)
=

⎡

⎣
0 −1 0
1 0 0
0 0 1

⎤

⎦ .

116 Chapter 6. Camera calibration and self-calibration

form of fundamental matrix, the part related to translation T ′ = AT ∈ R3

is called the epipole. The epipole is the point where the baseline (the line
joining the centers of projection of the two cameras) intersect the image
plane in the second (first) view and can be computed as the left (right) null
space of the fundamental matrix F (F T ). It can be easily verified that:

FT T ′
2 = FT ′

1 = 0

l2
l1

PSfrag replacements
L2

o1

o2

(R, T )

x1 x2

d2
e1 e2

x
x

y

yz
z

Figure 6.1. Two projections x′
1,x

′
2 ∈ R3 of a 3-D point p from two vantage points.

The relative Euclidean transformation between the two vantage points is given
by (R, T ) ∈ SE(3).

Remark 6.1. Characterization of the fundamental matrix. A non-zero
matrix F ∈ R3×3 is a fundamental matrix if F has a singular value
decomposition (SVD): E = UΣV T with

Σ = diag{σ1,σ2, 0}

for some σ1,σ2 ∈ R+ .

The characterization of the fundamental matrix in terms of its SVD
reflects the fact that the F is rank deficient det(F ) = 0. This can be simply
observed by noticing that F is a product of a skew symmetric matrix T̂ ′ or
rank 2 and a matrix ARA−1 ∈ R3×3 of rank 3. Similarly to the essential
matrix we can see how can we factorize F into a skew symmetric matrix
m̂ and nonsingular matrix M :

(m̂, M) = (URZ(±π
2

)diag{1, 1, 0}UT , URT
Z(±π

2
)ΣV T ) (6.15)

Note that given the above factorization and replacing Σ by matrix Σ̃:

Σ̃ =

⎡

⎣
σ1 0 0
0 σ2 0
α β γ

⎤

⎦ (6.16)

Ma et al, An Invitation to 3D Vision
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Estimation (fundamental matrix)

Assume we have a corrsponding pair of points: in noise-free case….
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Computing  F

Given m point correspondences…

Think: how many points do we need?

CSE486, Penn State
Robert Collins

How Many Points?

Unlike a homography, where each point correspondence

contributes two constraints (rows in the linear system of

equations), for estimating the essential/fundamental matrix,

each point only contributes one constraint (row).  [because 

the Longuet-Higgins / Epipolar constraint is a scalar eqn.]

Thus need at least 8 points.

Hence: The Eight Point algorithm!

CSE486, Penn State
Robert Collins

Solving Homogeneous Systems

Assume that we need the non trivial solution of:

with m equations and n unknowns, m >= n – 1 and

rank(A) = n-1

Since the norm of x  is arbitrary, we will look for
a solution with norm ||x|| = 1

Self-study

CSE486, Penn State
Robert Collins

Least Square solution

We want Ax as close to 0 as possible and ||x|| =1:

Self-study

CSE486, Penn State
Robert Collins

Optimization with constraints

Define the following cost:

This cost is called the LAGRANGIAN  cost and
λ is called the LAGRANGIAN multiplier

The Lagrangian incorporates the constraints
into the cost function by introducing extra
variables.

Self-study

Estimation (fundamental matrix)

AF(:) = 0

P

pp

O O

Given m point correspondences (xi,yi) and (x’i,y’i):
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noisy case:

Is this reasonable error to minimize?

min
||F ||=1

||AF (:)||2 = min
F

X

i

(xT
i Fx

0
i)

2



Recall: distance of point from a line
https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line

x

0T
i Fxi is scaled euclidean distance of  (x’i,y’i) from line defined by (xi,yi)



The eight-point algorithm

• Meaning of error 
 
sum of squared distances between points xi and 
epipolar lines F x’i (or points x’i and epipolar lines 
FTxi) multiplied by a scale factor 

• Nonlinear approach: minimize
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Define the following cost:

This cost is called the LAGRANGIAN  cost and
λ is called the LAGRANGIAN multiplier

The Lagrangian incorporates the constraints
into the cost function by introducing extra
variables.
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Orders of magnitude difference 
Between column of data matrix 
→ least-squares yields poor results
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Transform image to [-1,1]x[-1,1]

(0,0)

(700,500)

(700,0)

(0,500)

(1,-1)

(0,0)

(1,1)(-1,1)

(-1,-1)

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

1

1
500
2

10
700
2

SVD now produces good results

“In Defence of the 8-point Algorithm”
(Hartley, PAMI´97)



Final “annoying” issue
Least squares solution won’t produce F that satisfies rank 2 

(or rank-2 E with 2 identical singular values)

Solution: find the closest F/E (Frebonius norm) with SVD

X = U

2

4
�1 0 0
0 �2 0
0 0 �3

3

5V T

Closest fundamental matrix: set sigma3 = 0
Closest essential matrix: set sigma3 = 0, sigma = .5*(sigma1+sigma2)



Rank-2 Fundamental Matrix



7-point algorithm
Since F are rank-difficient, we can estimate them with m=7 correspondences
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How Many Points?
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Assume that we need the non trivial solution of:

with m equations and n unknowns, m >= n – 1 and

rank(A) = n-1

Since the norm of x  is arbitrary, we will look for
a solution with norm ||x|| = 1

Self-study
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Least Square solution

We want Ax as close to 0 as possible and ||x|| =1:

Self-study
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Optimization with constraints

Define the following cost:

This cost is called the LAGRANGIAN  cost and
λ is called the LAGRANGIAN multiplier

The Lagrangian incorporates the constraints
into the cost function by introducing extra
variables.

Self-study

AF(:)=0

Idea: search for null vector of AMx9 that satisfies additional contraints (reshaped 3x3 matrix has 0 singular value)

1) A is rank 7. Find 2 vectors that span null space of A, F1 and F2.
2) Find alpha such that Determinant(alpha*F1 + (1-alpha)*F2) = 0

[3rd order polynomial in alpha with at least one real solution]



Aside: what if cameras are calibrated?
Turns out we only need 5 points, but need to find roots to 10th degree polynomial

[Nister 04]



Recall: RANSAC

RANSAC loop: 
1. Select feature pairs (at random) 
2. Compute transformation T (exact) 
3. Compute inliers (point matches where  |pi’ - T pi|2< ε) 
4. Keep largest set of inliers 

5. Re-compute least-squares estimate of transformation T 
using all of the inliers



Fundamental matrix estimaiton with RANSAC
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(i) Correspondence geometry: Given an image point x in the 
first view, how does this constrain the position of the 
corresponding point x’ in the second image? 

(ii) Camera geometry (motion): Given a set of corresponding 
image points {xi ↔x’i}, i=1,…,n, what are the cameras P and 
P’ for the two views? 

(iii) Scene geometry (structure): Given corresponding image 
points xi ↔x’i  and cameras P, P’, what is the position of (their 
pre-image) X in space? 

Three questions:



Stereo



Basic Stereo Algorithm

For each epipolar line
 For each pixel in the left image

• compare with every pixel on same epipolar line in right image

• pick pixel with minimum match cost

Improvement:  match windows 
• (Normalized) Correlation, Sum of Squared Difference (SSD), Sum of Absolute Differences (SAD), etc…



Triangulation for Rectified Stereo Pairs
Top-down view where world coordinates are centered between cameras

(X,Y,Z)
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is the disparity between corresponding left and right image points

• disparity increases with baseline b• inverse proportional to depth Z

d = xL � xR =
bf

Z



Disparity Maps
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Lecture 09: 
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Recall: Simple Stereo System
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Recall: Stereo Disparity

Left camera

Right camera

Stereo Disparity

Important equation!

baseline

disparity

depth
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Recall: Stereo Disparity

Important equation!

disparity

depth

Left camera

Right camera

Note: Depth and
stereo disparity are
inversely proportional 
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Stereo Example

Left Image Right Image

From Middlebury stereo evaluation page
http://www.middlebury.edu/stereo/

CSE486, Penn State
Robert Collins

Stereo Example

Disparity values (0-64)Left image

Right image

Note how disparity is larger
(brighter) for closer surfaces.

d = xL � xR =
bf

Z

If we double the size of scene geometry and baseline, what happens to disparity?



Numerical stability

How do we characterize the error in depth Z given an error in disparity d, in terms of scene + camera?

b/2

xL xR

-b/2

Z =
bf

xL � xR
=

bf

d

Scene + camera variables: Z,f,b

Dependant variable: d = function(Z,f,b)

@Z

@d
= �bf

d2
= �Z2

bf

1. Error increases quadratically with depth (hard to reconstruct far away points) 
2. Error inversely proportional to baseline (larger baselines increase numerical stability)

Z

d = xL � xR =
bf

Z



Disparity maps (in practice)

Small matching window Large matching window
(better localization) (better detection)



Variational stereo
Penalize differences in nearby disparities (a “1-d” flow problem!)

1. Linearlize Eintensity term and solve with least squares

min Eintensity + Esmoothu,v

Eintensity(d) =

Z Z
(I2(x+ d(x, y), y)� I1(x, y))

2
dxdy

E

smooth

(d) =

Z Z
||rd(x, y)||2dxdy
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Recall: Stereo Disparity

Left camera

Right camera

Stereo Disparity

Important equation!
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disparity

depth
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Recall: Stereo Disparity

Important equation!

disparity

depth

Left camera

Right camera

Note: Depth and
stereo disparity are
inversely proportional 
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Stereo Example

Left Image Right Image

From Middlebury stereo evaluation page
http://www.middlebury.edu/stereo/

CSE486, Penn State
Robert Collins

Stereo Example

Disparity values (0-64)Left image

Right image

Note how disparity is larger
(brighter) for closer surfaces.

2. Add robust error terms        to handle discontinuties ⇢(·)



image Iimage J

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H

estimate disparities

estimate disparities

upsample

. 

. 

.

Coarse-to-fine stereo



Discrete disparity estimation

E(z) =
X

i2V

�i(zi) +
X

ij2E

 ij(zi, zj)

z 2 {�5 . . . 5}

�i(zi) = ⇢(||I2(xi + zi, yi)� I(xi, yi)||)
 ij(zi, zj) = ⇢(zi � zj)

Solve with GraphCuts
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Disparity Space Image (DSI)
Left Image Right Image

Dissimilarity Values
(1-NCC) or SSD
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Disparity Space Image (DSI)
Left Image

Dissimilarity Values

DSI

Enter each vector of
match scores as a 
column in the DSI
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Disparity Space Image
Left scanline
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Disparity Space Image

Invalid entries due to constraint
that disparity >= low value
(0 in this case)

Invalid entries due to constraint
that disparity <= high value
64 in this case)

Left scanline
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N cols in left scanline

M
 c

ol
s i

n 
rig

ht
 sc

an
lin

e

However, I’m going to keep the full 
image around, including invalid values
(I think it is easier to understand the
pixel coordinates involved)

If we rearrange the diagonal 
band of valid values into a 
rectangular array (in this case
of size 64 x N), that is what is 
traditionally known as the DSI

coordinate in left scanline (e.g. N)

Disparity
(e.g. 64)

Disparity Space Image

CSE486, Penn State
Robert Collins

DSI and Scanline Consistency
Assigning disparities to all pixels in left scanline now 
amounts to finding a connected path through the DSIStart

End

Special case: single-scan-line consistency



Disparity Space Image (DSI)
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Dissimilarity Values
(1-NCC) or SSD
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Enter each vector of
match scores as a 
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Disparity Space Image

Invalid entries due to constraint
that disparity >= low value
(0 in this case)
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However, I’m going to keep the full 
image around, including invalid values
(I think it is easier to understand the
pixel coordinates involved)

If we rearrange the diagonal 
band of valid values into a 
rectangular array (in this case
of size 64 x N), that is what is 
traditionally known as the DSI

coordinate in left scanline (e.g. N)

Disparity
(e.g. 64)

Disparity Space Image

CSE486, Penn State
Robert Collins

DSI and Scanline Consistency
Assigning disparities to all pixels in left scanline now 
amounts to finding a connected path through the DSIStart

End



Representing the cost of all scanline 
correspondences
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Cox et.al. Stereo Matching 

matchOccluded
from left

Occluded
from right

Three cases:
– Matching patches.  Cost = dissimilarity score
– Occluded  from right.  Cost is some constant value.
– Occluded from left.  Cost is some constant value.

match
Occluded
from left

Occluded
from right

i-1,j-1 i-1,j

i,j-1 i,j

C(i,j)= min([ C(i-1,j-1) + dissimilarity(i,j) 
C(i-1,j) + occlusionConstant, 
C(i,j-1) + occlusionConstant]);

CSE486, Penn State
Robert Collins

Cox et.al. Stereo Matching

Recap: want to find lowest
cost path from upper left to
lower right of DSI image.

At each point on the path we
have three choices: step left,
step down, step diagonally.

Each choice has a well-defined
cost associated with it.

This problem just screams out for Dynamic Programming!
(which, indeed, is how Cox et.al. solve the problem)

End

Start

CSE486, Penn State
Robert Collins

DP cost matrix
(cost of optimal path from each point to END)

DSI
Real Scanline Example

Every pixel in left column now is marked with
either a disparity value, or an occlusion label.

Proceed for every scanline in left image.

CSE486, Penn State
Robert Collins

Example

Result of DP alg.  Black pixels = occluded.

Result of DP alg Result without DP (independent pixels)

CSE486, Penn State
Robert Collins

Occlusion Filling
Simple trick for filling in gaps caused by occlusion.

= left occluded

Fill in left occluded pixels with value from the 
nearest valid pixel preceding it in the scanline.

Similarly, for right occluded, look for valid pixel to the right.

CSE486, Penn State
Robert Collins

Example

Result of DP alg with occlusion filling. 



Ordering Constraint
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Lowest Cost Path

Want one with lowest “cost” (Lowest sum of
dissimilarity scores along the path)

We would like to choose the “best” path.

?
?

?
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Constraints on Path

It is common to impose an ordering constraint
on the path.  Intuitively, the path is not allowed
to “double back” on itself.
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Ordering Constraint

Ordering constraint…

A

B C
D

A B C D

A B C D

…and its failure

A B C

D

A B C D

D A B C

CSE486, Penn State
Robert Collins

Dealing with Occlusions

… …
Left scanline Right scanline
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Dealing with Occlusions

… …
Left scanline Right scanline

Match

Match

MatchOccluded from
right scanline

Occluded from
left scanline

CSE486, Penn State
Robert Collins

An Optimal Scanline Strategy

• We want to find best path, taking into
account ordering constraint and the
possibility of occlusions.

Algorithm we will discuss now is from
Cox, Hingorani, Rao, Maggs, “A Maximum
Likelihood Stereo Algorithm,” Computer
Vision and Image Understanding, Vol 63(3), 
May 1996, pp.542-567.
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dissimilarity scores along the path)

We would like to choose the “best” path.
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Constraints on Path

It is common to impose an ordering constraint
on the path.  Intuitively, the path is not allowed
to “double back” on itself.
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Ordering Constraint
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Dealing with Occlusions

… …
Left scanline Right scanline
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Dealing with Occlusions

… …
Left scanline Right scanline

Match

Match

MatchOccluded from
right scanline

Occluded from
left scanline
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An Optimal Scanline Strategy

• We want to find best path, taking into
account ordering constraint and the
possibility of occlusions.

Algorithm we will discuss now is from
Cox, Hingorani, Rao, Maggs, “A Maximum
Likelihood Stereo Algorithm,” Computer
Vision and Image Understanding, Vol 63(3), 
May 1996, pp.542-567.
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?
?

?

CSE486, Penn State
Robert Collins

Constraints on Path

It is common to impose an ordering constraint
on the path.  Intuitively, the path is not allowed
to “double back” on itself.
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Ordering Constraint

Ordering constraint…

A

B C
D

A B C D

A B C D

…and its failure

A B C

D

A B C D

D A B C

CSE486, Penn State
Robert Collins

Dealing with Occlusions
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Dealing with Occlusions

… …
Left scanline Right scanline

Match

Match

MatchOccluded from
right scanline

Occluded from
left scanline
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An Optimal Scanline Strategy

• We want to find best path, taking into
account ordering constraint and the
possibility of occlusions.

Algorithm we will discuss now is from
Cox, Hingorani, Rao, Maggs, “A Maximum
Likelihood Stereo Algorithm,” Computer
Vision and Image Understanding, Vol 63(3), 
May 1996, pp.542-567.



Compute partial scanline costs
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Cox et.al. Stereo Matching 

matchOccluded
from left

Occluded
from right

Three cases:
– Matching patches.  Cost = dissimilarity score
– Occluded  from right.  Cost is some constant value.
– Occluded from left.  Cost is some constant value.

match
Occluded
from left

Occluded
from right

i-1,j-1 i-1,j

i,j-1 i,j

C(i,j)= min([ C(i-1,j-1) + dissimilarity(i,j) 
C(i-1,j) + occlusionConstant, 
C(i,j-1) + occlusionConstant]);
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Cox et.al. Stereo Matching

Recap: want to find lowest
cost path from upper left to
lower right of DSI image.

At each point on the path we
have three choices: step left,
step down, step diagonally.

Each choice has a well-defined
cost associated with it.

This problem just screams out for Dynamic Programming!
(which, indeed, is how Cox et.al. solve the problem)

End

Start

CSE486, Penn State
Robert Collins

DP cost matrix
(cost of optimal path from each point to END)

DSI
Real Scanline Example

Every pixel in left column now is marked with
either a disparity value, or an occlusion label.

Proceed for every scanline in left image.
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Example

Result of DP alg.  Black pixels = occluded.

Result of DP alg Result without DP (independent pixels)
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Occlusion Filling
Simple trick for filling in gaps caused by occlusion.

= left occluded

Fill in left occluded pixels with value from the 
nearest valid pixel preceding it in the scanline.

Similarly, for right occluded, look for valid pixel to the right.

CSE486, Penn State
Robert Collins

Example

Result of DP alg with occlusion filling. 
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An Optimal Scanline Strategy

• We want to find best path, taking into
account ordering constraint and the
possibility of occlusions.

Algorithm we will discuss now is from
Cox, Hingorani, Rao, Maggs, “A Maximum
Likelihood Stereo Algorithm,” Computer
Vision and Image Understanding, Vol 63(3), 
May 1996, pp.542-567.
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that disparity >= low value
(0 in this case)
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However, I’m going to keep the full 
image around, including invalid values
(I think it is easier to understand the
pixel coordinates involved)

If we rearrange the diagonal 
band of valid values into a 
rectangular array (in this case
of size 64 x N), that is what is 
traditionally known as the DSI

coordinate in left scanline (e.g. N)

Disparity
(e.g. 64)

Disparity Space Image
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Robert Collins

DSI and Scanline Consistency
Assigning disparities to all pixels in left scanline now 
amounts to finding a connected path through the DSIStart

End



Dynamic Programming
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Cox et.al. Stereo Matching 

matchOccluded
from left

Occluded
from right

Three cases:
– Matching patches.  Cost = dissimilarity score
– Occluded  from right.  Cost is some constant value.
– Occluded from left.  Cost is some constant value.

match
Occluded
from left

Occluded
from right

i-1,j-1 i-1,j

i,j-1 i,j

C(i,j)= min([ C(i-1,j-1) + dissimilarity(i,j) 
C(i-1,j) + occlusionConstant, 
C(i,j-1) + occlusionConstant]);
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Cox et.al. Stereo Matching

Recap: want to find lowest
cost path from upper left to
lower right of DSI image.

At each point on the path we
have three choices: step left,
step down, step diagonally.

Each choice has a well-defined
cost associated with it.

This problem just screams out for Dynamic Programming!
(which, indeed, is how Cox et.al. solve the problem)

End

Start
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DP cost matrix
(cost of optimal path from each point to END)

DSI
Real Scanline Example

Every pixel in left column now is marked with
either a disparity value, or an occlusion label.

Proceed for every scanline in left image.
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Example

Result of DP alg.  Black pixels = occluded.

Result of DP alg Result without DP (independent pixels)
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Occlusion Filling
Simple trick for filling in gaps caused by occlusion.

= left occluded

Fill in left occluded pixels with value from the 
nearest valid pixel preceding it in the scanline.

Similarly, for right occluded, look for valid pixel to the right.
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Example

Result of DP alg with occlusion filling. 

Each pixel in DSI is now marked with a disparity value or occlusion label
In practice, enforce upper bound on disparity by computing diagonal band of DSI



Results
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Cox et.al. Stereo Matching 

matchOccluded
from left

Occluded
from right

Three cases:
– Matching patches.  Cost = dissimilarity score
– Occluded  from right.  Cost is some constant value.
– Occluded from left.  Cost is some constant value.

match
Occluded
from left

Occluded
from right

i-1,j-1 i-1,j

i,j-1 i,j

C(i,j)= min([ C(i-1,j-1) + dissimilarity(i,j) 
C(i-1,j) + occlusionConstant, 
C(i,j-1) + occlusionConstant]);
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Cox et.al. Stereo Matching

Recap: want to find lowest
cost path from upper left to
lower right of DSI image.

At each point on the path we
have three choices: step left,
step down, step diagonally.

Each choice has a well-defined
cost associated with it.

This problem just screams out for Dynamic Programming!
(which, indeed, is how Cox et.al. solve the problem)

End

Start
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DP cost matrix
(cost of optimal path from each point to END)

DSI
Real Scanline Example

Every pixel in left column now is marked with
either a disparity value, or an occlusion label.

Proceed for every scanline in left image.
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Example

Result of DP alg.  Black pixels = occluded.

Result of DP alg Result without DP (independent pixels)

CSE486, Penn State
Robert Collins

Occlusion Filling
Simple trick for filling in gaps caused by occlusion.

= left occluded

Fill in left occluded pixels with value from the 
nearest valid pixel preceding it in the scanline.

Similarly, for right occluded, look for valid pixel to the right.
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Example

Result of DP alg with occlusion filling. 



Stereo evaluation: http://vision.middlebury.edu/stereo/  



Stereo—best algorithms



Outline
• 2-view geometry 

• essential matrix, fundamental matrix 

• properties 

• estimation 

• stereo 

• multiview stereo



Dense multi view stereo

• Reconstruct the 3D position of the points corresponding to 
(all the) pixels in a set of images. 

• Key assumption: We know the relative position, 
orientation, K, of all the cameras. 

• Number of cameras >> 2

?



Trinocular stereo (version 0)

Version 1: generalize 3x3 fundmamental matrix to a 3x3x3 trifocal tensor
(constraints points and lines across 3 images)

1. Pick 2 views, find correspondences 
2. For each matching pair, reconstruct 3D point  
3. If can’t find correspondence near projected location, reject

Why More Than 2 Views? 

• Ambiguity with 2 views 

Camera 1 Camera 2 

? 

? 

Why More Than 2 Views? 

• Ambiguity with 2 views 

Camera 1 Camera 2 Camera 3 

ü  



Multiview stereo (version 0)

Multibaseline Stereo Reconstruction 

-Pick one reference view 
-For each point and for each candidate depth

• keep depths with low SSD error in all other views
Multibaseline Stereo 

Multibaseline Stereo 
Multibaseline Stereo 

Multibaseline Stereo 

Problem: not all points are visible in all other views (occlusion and visibility major nuisance!)

(or any photoconsistency measure)



Multiview stereo (version 1)
Hypothesize depths in a “smart” order where occluding points are found first

Use knowledge of occluding points to smartly select view for photoconsistency check

Voxel Coloring Sweep Order 

 
 

 

Layers 

Scene 
Traversal 

Seitz Store photoconsistent color in a 3D voxel grid (don’t need a reference image)

Reconstuct shape and appearance



Speedup: plane sweeps

31

Plane Induced Parallax

� Determine homography of a plane
– Remaining differences reflect depth from plane
– Flat surfaces like in sporting events

Validate voxels in a plane by computing their appearance in a virtual view using all N cameras
19

Plane Sweep Stereo

� Sweep family of planes through volume

– each plane defines an image ⇒ composite homography

virtual cameravirtual camera

compositecomposite
input imageinput image

← projectiveprojective rere--sampling of (sampling of (X,Y,ZX,Y,Z))

What is the transformation that warps image N to virtual view? 31

Plane Induced Parallax

� Determine homography of a plane
– Remaining differences reflect depth from plane
– Flat surfaces like in sporting events

Keep track of image-specific occlusion masks



Voxel coloring



Voxel Coloring Camera Positions 

Inward-looking 
Cameras above scene 

Outward-looking 
Cameras inside scene 

Seitz 

What about other camera steups?

Voxel Coloring Camera Positions 

Inward-looking 
Cameras above scene 

Outward-looking 
Cameras inside scene 

Seitz 



Panoramic depth ordering

Layers radiate inwardly/outwardly

Panoramic Depth Ordering 

Seitz 
Layers radiate outwards from cameras 

Seitz & Dyer



Space carving
Kutulakos & SeitzSpace Carving 

  

Image 1 Image N 

…... 

Initialize to a volume V containing the true scene 

Repeat until convergence 

Choose a voxel on the current surface 

Carve if not photo-consistent 
Project to visible input images 

Kutulakos & Seitz 

Initialize voxel grid to all ‘1’s
Repeatedly choose a voxel on current surface:

Project to visible images 

Carve out if not photoconsistent



Convergence

Consistency Property 
• The resulting shape is photo-consistent 

> all inconsistent points are removed 

Convergence Property 
• Carving converges to a non-empty shape 

> a point on the true scene is never removed



Calibrated Image Acquisition

Calibrated Turntable 
360° rotation (21 images)

Selected Dinosaur Images

Selected Flower Images



Voxel Coloring Results

Dinosaur Reconstruction 
72 K  voxels colored 
7.6 M voxels tested 
7 min. to compute  
on a 250MHz SGI 

Flower Reconstruction 
70 K  voxels colored 
7.6 M voxels tested 
7 min. to compute  
on a 250MHz SGI 



21 images      21 images

16 images   99 images



Silhoette carving

Silhouette Carving 

• Find silhouettes in all images 

• Exact version: 
– Back-project all silhouettes, find intersection 

Binary Images 

Silhouette Carving 

• Find silhouettes in all images 

• Exact version: 
– Back-project all silhouettes, find intersection 

Backproject binary silhouettes and find intersection
In limit of infinite cameras, this will produce convex hull reconstruction of object



Outline

• essential matrix, fundamental matrix 

• stereo 

• multiview
(variational, discrete graph labelling, dynamic programming)

(point-to-line correspondence, SVD properties)

(volumetric models, visibility reasoning, patch-based methods)



Long-standing leader

Patch-based Multiview Stereo (PMVS) 

Extent
Position

Normal

Mesh Patch

Easier to approximate 
surface by dense set of 
local planar patches

ACCURATE, DENSE, AND ROBUST MULTI-VIEW STEREOPSIS, VOL. 1,NO. 1, AUGUST 2008 1

Accurate, Dense, and Robust Multi-View Stereopsis
Yasutaka Furukawa and Jean Ponce, Fellow, IEEE

Abstract—This article proposes a novel algorithm for multi-
view stereopsis that outputs a dense set of small rectangular
patches covering the surfaces visible in the images. Stereopsis is
implemented as a match, expand, and filter procedure, starting
from a sparse set of matched keypoints, and repeatedly ex-
panding these before using visibility constraints to filter away
false matches. The keys to the performance of the proposed
algorithm are effective techniques for enforcing local photometric
consistency and global visibility constraints. Simple but effective
methods are also proposed to turn the resulting patch model into
a mesh which can be further refined by an algorithm that enforces
both photometric consistency and regularization constraints. The
proposed approach automatically detects and discards outliers
and obstacles, and does not require any initialization in the form
of a visual hull, a bounding box, or valid depth ranges. We
have tested our algorithm on various datasets including objects
with fine surface details, deep concavities, and thin structures,
outdoor scenes observed from a restricted set of viewpoints, and
“crowded” scenes where moving obstacles appear in front of
a static structure of interest. A quantitative evaluation on the
Middlebury benchmark [1] shows that the proposed method
outperforms all others submitted so far for four out of the six
datasets.

Index Terms—Computer vision, 3D/stereo scene analysis, mod-
eling and recovery of physical attributes, motion, shape.

I. INTRODUCTION

MULTI-view stereo (MVS) matching and reconstruction is
a key ingredient in the automated acquisition of geometric

object and scene models from multiple photographs or video clips,
a process known as image-based modeling or 3D photography.
Potential applications range from the construction of realistic
object models for the film, television, and video game industries,
to the quantitative recovery of metric information (metrology) for
scientific and engineering data analysis. According to a recent sur-
vey provided by Seitz et al. [2], state-of-the-art MVS algorithms
achieve relative accuracy better than 1/200 (1mm for a 20cm wide
object) from a set of low-resolution (640×480) images. They can
be roughly classified into four classes according to the underlying
object models: Voxel-based approaches [3], [4], [5], [6], [7], [8],
[9] require knowing a bounding box that contains the scene, and
their accuracy is limited by the resolution of the voxel grid.
Algorithms based on deformable polygonal meshes [10], [11],
[12] demand a good starting point—for example, a visual hull
model [13]—to initialize the corresponding optimization process,
which limits their applicability. Approaches based on multiple
depth maps [14], [15], [16] are more flexible, but require fusing
individual depth maps into a single 3D model. Finally, patch-
based methods [17], [18] represent scene surfaces by collections
of small patches (or surfels). They are simple and effective, and
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often suffice for visualization purposes via point-based rendering
technique [19], but require a post-processing step to turn them
into a mesh model that is more suitable for image-based modeling
applications. 1
MVS algorithms can also be thought of in terms of the datasets

they can handle, for example images of
• objects, where a single, compact object is usually fully visible
in a set of uncluttered images taken from all around it, and it is
relatively straightforward to extract the apparent contours of the
object and compute its visual hull;
• scenes, where the target object(s) may be partially occluded
and/or embedded in clutter, and the range of viewpoints may be
severely limited, preventing the computation of effective bounding
volumes (typical examples are outdoor scenes with buildings,
vegetation, etc.); and
• crowded scenes, where moving obstacles appear in different
places in multiple images of a static structure of interest (e.g.,
people passing in front of a building).
The underlying object model is an important factor in determin-

ing the flexibility of an approach, and voxel-based or polygonal
mesh-based methods are often limited to object datasets, for
which it is relatively easy to estimate an initial bounding volume
or often possible to compute a visual hull model. Algorithms
based on multiple depth maps and collections of small surface
patches are better suited to the more challenging scene datasets.
Crowded scenes are even more difficult. Strecha et al. [15] use
expectation maximization and multiple depth maps to reconstruct
a crowded scene despite the presence of occluders, but their
approach is limited to a small number of images (typically three)
as the complexity of their model is exponential in the number of
input images. Goesele et al. [21] have also proposed an algorithm
to handle internet photo collections containing obstacles and
produce impressive results with a clever view selection scheme.
In this paper, we take a hybrid approach that is applicable to

all three types of input data. More concretely, we first propose a
flexible patch-based MVS algorithm that outputs a dense collec-
tion of small oriented rectangular patches, obtained from pixel-
level correspondences and tightly covering the observed surfaces
except in small textureless or occluded regions. The proposed
algorithm consists of a simple match, expand, and filter procedure
(Fig. 1): (1) matching: features found by Harris and difference-
of-Gaussians operators are first matched across multiple pictures,
yielding a sparse set of patches associated with salient image
regions. Given these initial matches, the following two steps are
repeated n times (n= 3 in all our experiments); (2) expansion: a
technique similar to [17], [18], [22], [23], [24] is used to spread
the initial matches to nearby pixels and obtain a dense set of
patches; (3) filtering: visibility (and a weak form of regulariza-
tion) constraints are then used to eliminate incorrect matches.
Although our patch-based algorithm is similar to the method

1A patch based surface representation is also used in [20], but in a context
of scene flow capture.



Pipeline: feature detection
ACCURATE, DENSE, AND ROBUST MULTI-VIEW STEREOPSIS, VOL. 1,NO. 1, AUGUST 2008 2

Fig. 1. Overall approach. From left to right: A sample input image; detected features; reconstructed patches after the initial matching; final patches after
expansion and filtering; and the mesh model.

proposed by Lhuillier and Quan [17], it replaces their greedy
expansion procedure by iteration between expansion and filtering
steps, which allows us to process complicated surfaces and reject
outliers more effectively. Optionally, the resulting patch model
can be turned into a triangulated mesh by simple but efficient
techniques, and this mesh can be further refined by a mesh based
MVS algorithm that enforces the photometric consistency with
regularization constraints. The additional computational cost of
the optional step is balanced by the even higher accuracy it af-
fords. Our algorithm does not require any initialization in the form
of a visual hull model, a bounding box, or valid depth ranges.
In addition, unlike many other methods that basically assume
fronto-parallel surfaces and only estimate the depth of recovered
points, it actually estimates the surface orientation while enforcing
the local photometric consistency, which is important in practice
to obtain accurate models for datasets with sparse input images
or without salient textures. As shown by our experiments, the
proposed algorithm effectively handles the three types of data
mentioned above, and, in particular, it outputs accurate object
and scene models with fine surface detail despite low-texture
regions, large concavities, and/or thin, high-curvature parts. A
quantitative evaluation on the Middlebury benchmark [1] shows
that the proposed method outperforms all others submitted so far
in terms of both accuracy and completeness for four out of the
six datasets.
The rest of this article is organized as follows: Section II

presents the key building blocks of the proposed approach. Sec-
tion III presents our patch-based MVS algorithm, and Section IV
describes how to convert a patch model into a mesh and our
polygonal mesh-based refinement algorithm. Experimental results
and discussion are given in Section V, and Section VI concludes
the paper with some future work. The implementation of the
patch-based MVS algorithm (PMVS) is publicly available at [25].
A preliminary version of this article appeared in [26].

II. KEY ELEMENTS OF THE PROPOSED APPROACH

The proposed approach can be decomposed into three steps: a
patch-based MVS algorithm that is the core reconstruction step
in our approach and reconstructs a set of oriented points (or
patches) covering the surface of an object or a scene of interests;
the conversion of the patches into a polygonal mesh model; and
finally a polygonal-mesh based MVS algorithm that refines the
mesh. In this section, we introduce a couple of fundamental
building blocks of the patch-based MVS algorithm, some of which
are also used in our mesh refinement algorithm.
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Fig. 2. Left: a patch p is a (3D) rectangle with its center and normal
denoted as c(p) and n(p), respectively. Right: the photometric discrepancy
f (p,I1,I2) of a patch is given by one minus the normalized cross correlation
score between sets q(p,Ii) of sampled pixel colors. See text for the details.

A. Patch Model
A patch p is essentially a local tangent plane approximation of

a surface. Its geometry is fully determined by its center c(p), unit
normal vector n(p) oriented toward the cameras observing it, and
a reference image R(p) in which p is visible (See Fig. 2). More
concretely, a patch is a (3D) rectangle, which is oriented so that
one of its edges is parallel to the x-axis of the reference camera
(the camera associated with R(p)). The extent of the rectangle is
chosen so that the smallest axis-aligned square in R(p) containing
its image projection is of size µ×µ pixels in size (µ is either 5
or 7 in all of our experiments).

B. Photometric Discrepancy Function
Let V (p) denote a set of images in which p is visible (see

Sect. III on how to estimate V (p) and choose the reference image
R(p) ∈V (p)). The photometric discrepancy function g(p) for p
is defined as

g(p) =
1

|V (p)\R(p)| ∑
I∈V (p)\R(p)

h(p, I,R(p)), (1)

where h(p, I1, I2) is, in turn, defined to be a pairwise photometric
discrepancy function between images I1 and I2. More concretely
(see Fig. 2), given a pair of visible images I1 and I2, h(p, I1, I2) is
computed by 1) overlaying a µ×µ grid on p; 2) sampling pixel
colors q(p, Ii) through bilinear interpolation at image projections
of all the grid points in each image Ii; 2 and 3) computing one
minus the normalized cross correlation score between q(p, I1) and
q(p, I2). 3

2We have also tried bicubic interpolation but have not observed noticeable
differences.
3See [27] for an example of other photometric discrepancy functions.

Find sparse matches over pairs of images (using interest points + matching)
Triangulate to find sparse 3D points {p}
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Fig. 1. Overall approach. From left to right: A sample input image; detected features; reconstructed patches after the initial matching; final patches after
expansion and filtering; and the mesh model.

proposed by Lhuillier and Quan [17], it replaces their greedy
expansion procedure by iteration between expansion and filtering
steps, which allows us to process complicated surfaces and reject
outliers more effectively. Optionally, the resulting patch model
can be turned into a triangulated mesh by simple but efficient
techniques, and this mesh can be further refined by a mesh based
MVS algorithm that enforces the photometric consistency with
regularization constraints. The additional computational cost of
the optional step is balanced by the even higher accuracy it af-
fords. Our algorithm does not require any initialization in the form
of a visual hull model, a bounding box, or valid depth ranges.
In addition, unlike many other methods that basically assume
fronto-parallel surfaces and only estimate the depth of recovered
points, it actually estimates the surface orientation while enforcing
the local photometric consistency, which is important in practice
to obtain accurate models for datasets with sparse input images
or without salient textures. As shown by our experiments, the
proposed algorithm effectively handles the three types of data
mentioned above, and, in particular, it outputs accurate object
and scene models with fine surface detail despite low-texture
regions, large concavities, and/or thin, high-curvature parts. A
quantitative evaluation on the Middlebury benchmark [1] shows
that the proposed method outperforms all others submitted so far
in terms of both accuracy and completeness for four out of the
six datasets.
The rest of this article is organized as follows: Section II

presents the key building blocks of the proposed approach. Sec-
tion III presents our patch-based MVS algorithm, and Section IV
describes how to convert a patch model into a mesh and our
polygonal mesh-based refinement algorithm. Experimental results
and discussion are given in Section V, and Section VI concludes
the paper with some future work. The implementation of the
patch-based MVS algorithm (PMVS) is publicly available at [25].
A preliminary version of this article appeared in [26].

II. KEY ELEMENTS OF THE PROPOSED APPROACH

The proposed approach can be decomposed into three steps: a
patch-based MVS algorithm that is the core reconstruction step
in our approach and reconstructs a set of oriented points (or
patches) covering the surface of an object or a scene of interests;
the conversion of the patches into a polygonal mesh model; and
finally a polygonal-mesh based MVS algorithm that refines the
mesh. In this section, we introduce a couple of fundamental
building blocks of the patch-based MVS algorithm, some of which
are also used in our mesh refinement algorithm.
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Fig. 2. Left: a patch p is a (3D) rectangle with its center and normal
denoted as c(p) and n(p), respectively. Right: the photometric discrepancy
f (p,I1,I2) of a patch is given by one minus the normalized cross correlation
score between sets q(p,Ii) of sampled pixel colors. See text for the details.

A. Patch Model
A patch p is essentially a local tangent plane approximation of

a surface. Its geometry is fully determined by its center c(p), unit
normal vector n(p) oriented toward the cameras observing it, and
a reference image R(p) in which p is visible (See Fig. 2). More
concretely, a patch is a (3D) rectangle, which is oriented so that
one of its edges is parallel to the x-axis of the reference camera
(the camera associated with R(p)). The extent of the rectangle is
chosen so that the smallest axis-aligned square in R(p) containing
its image projection is of size µ×µ pixels in size (µ is either 5
or 7 in all of our experiments).

B. Photometric Discrepancy Function
Let V (p) denote a set of images in which p is visible (see

Sect. III on how to estimate V (p) and choose the reference image
R(p) ∈V (p)). The photometric discrepancy function g(p) for p
is defined as

g(p) =
1

|V (p)\R(p)| ∑
I∈V (p)\R(p)

h(p, I,R(p)), (1)

where h(p, I1, I2) is, in turn, defined to be a pairwise photometric
discrepancy function between images I1 and I2. More concretely
(see Fig. 2), given a pair of visible images I1 and I2, h(p, I1, I2) is
computed by 1) overlaying a µ×µ grid on p; 2) sampling pixel
colors q(p, Ii) through bilinear interpolation at image projections
of all the grid points in each image Ii; 2 and 3) computing one
minus the normalized cross correlation score between q(p, I1) and
q(p, I2). 3

2We have also tried bicubic interpolation but have not observed noticeable
differences.
3See [27] for an example of other photometric discrepancy functions.

At each point p, estimate normal N(p) and visibility Vi(p) in each image using photoconsistency check (NCC over ~9x9 pixels)
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Fig. 1. Overall approach. From left to right: A sample input image; detected features; reconstructed patches after the initial matching; final patches after
expansion and filtering; and the mesh model.

proposed by Lhuillier and Quan [17], it replaces their greedy
expansion procedure by iteration between expansion and filtering
steps, which allows us to process complicated surfaces and reject
outliers more effectively. Optionally, the resulting patch model
can be turned into a triangulated mesh by simple but efficient
techniques, and this mesh can be further refined by a mesh based
MVS algorithm that enforces the photometric consistency with
regularization constraints. The additional computational cost of
the optional step is balanced by the even higher accuracy it af-
fords. Our algorithm does not require any initialization in the form
of a visual hull model, a bounding box, or valid depth ranges.
In addition, unlike many other methods that basically assume
fronto-parallel surfaces and only estimate the depth of recovered
points, it actually estimates the surface orientation while enforcing
the local photometric consistency, which is important in practice
to obtain accurate models for datasets with sparse input images
or without salient textures. As shown by our experiments, the
proposed algorithm effectively handles the three types of data
mentioned above, and, in particular, it outputs accurate object
and scene models with fine surface detail despite low-texture
regions, large concavities, and/or thin, high-curvature parts. A
quantitative evaluation on the Middlebury benchmark [1] shows
that the proposed method outperforms all others submitted so far
in terms of both accuracy and completeness for four out of the
six datasets.
The rest of this article is organized as follows: Section II

presents the key building blocks of the proposed approach. Sec-
tion III presents our patch-based MVS algorithm, and Section IV
describes how to convert a patch model into a mesh and our
polygonal mesh-based refinement algorithm. Experimental results
and discussion are given in Section V, and Section VI concludes
the paper with some future work. The implementation of the
patch-based MVS algorithm (PMVS) is publicly available at [25].
A preliminary version of this article appeared in [26].

II. KEY ELEMENTS OF THE PROPOSED APPROACH

The proposed approach can be decomposed into three steps: a
patch-based MVS algorithm that is the core reconstruction step
in our approach and reconstructs a set of oriented points (or
patches) covering the surface of an object or a scene of interests;
the conversion of the patches into a polygonal mesh model; and
finally a polygonal-mesh based MVS algorithm that refines the
mesh. In this section, we introduce a couple of fundamental
building blocks of the patch-based MVS algorithm, some of which
are also used in our mesh refinement algorithm.
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Fig. 2. Left: a patch p is a (3D) rectangle with its center and normal
denoted as c(p) and n(p), respectively. Right: the photometric discrepancy
f (p,I1,I2) of a patch is given by one minus the normalized cross correlation
score between sets q(p,Ii) of sampled pixel colors. See text for the details.

A. Patch Model
A patch p is essentially a local tangent plane approximation of

a surface. Its geometry is fully determined by its center c(p), unit
normal vector n(p) oriented toward the cameras observing it, and
a reference image R(p) in which p is visible (See Fig. 2). More
concretely, a patch is a (3D) rectangle, which is oriented so that
one of its edges is parallel to the x-axis of the reference camera
(the camera associated with R(p)). The extent of the rectangle is
chosen so that the smallest axis-aligned square in R(p) containing
its image projection is of size µ×µ pixels in size (µ is either 5
or 7 in all of our experiments).

B. Photometric Discrepancy Function
Let V (p) denote a set of images in which p is visible (see

Sect. III on how to estimate V (p) and choose the reference image
R(p) ∈V (p)). The photometric discrepancy function g(p) for p
is defined as

g(p) =
1

|V (p)\R(p)| ∑
I∈V (p)\R(p)

h(p, I,R(p)), (1)

where h(p, I1, I2) is, in turn, defined to be a pairwise photometric
discrepancy function between images I1 and I2. More concretely
(see Fig. 2), given a pair of visible images I1 and I2, h(p, I1, I2) is
computed by 1) overlaying a µ×µ grid on p; 2) sampling pixel
colors q(p, Ii) through bilinear interpolation at image projections
of all the grid points in each image Ii; 2 and 3) computing one
minus the normalized cross correlation score between q(p, I1) and
q(p, I2). 3

2We have also tried bicubic interpolation but have not observed noticeable
differences.
3See [27] for an example of other photometric discrepancy functions.
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Fig. 5. (a) Given an existing patch, an expansion procedure is performed
to generate new ones for the neighboring empty image cells in its visible
images. The expansion procedure is not performed for an image cell (b) if
there already exists a neighboring patch reconstructed there, or (c) if there is a
depth discontinuity when viewed from the camera. See text for more details.

generate a new patch p′: We first initialize n(p′),R(p′) and V (p′)
by the corresponding values of p. c(p′) is, in turn, initialized
as the point where the viewing ray passing through the center
of Ci(x,y) intersects the plane containing the patch p. After
computing V∗(p′) from V (p) by using Eq. (2), we refine c(p′)
and n(p′) by the optimization procedure described in Sect.II-
C. During the optimization, c(p′) is constrained to lie on a ray
such that its image projection in Ii does not change in order to
make sure that the patch always projects inside the image cell
Ci(x,y). After the optimization, we add to V (p′) a set of images
in which the patch should be visible according to a depth-map
test, where a depth value is computed for each image cell instead
of a pixel, then update V∗(p′) according to Eq. (2). It is important
to add visible images obtained from the depth-map test to V (p′)
instead of replacing the whole set, because some matches (and
thus the corresponding depth map information) may be incorrect
at this point. Due to this update rule, the visibility information
associated with reconstructed patches become inconsistent with
each other, a fact that is used in the following filtering step
to reject erroneous patches. Finally, if |V∗(p′)| ≥ γ , we accept
the patch as a success and update Qi(x,y) and Q∗i (x,y) for
its visible images. Note that, as in the initial feature matching
step, α is set to 0.6 and 0.3, before and after the optimization,
respectively, but we loosen (increase) both values by 0.2 after
each expansion/filtering iteration in order to handle challenging
(homogeneous or relatively texture-less) regions in the latter
iterations. The overall algorithm description is given in Fig.
6. Note that when segmentation information is available, we
simply ignore image cells in the background during initial feature
matching and the expansion procedure, which guarantees that
no patches are reconstructed in the background. The bounding
volume information is not used to filter out erroneous patches in
our experiments, although it would not be difficult to do so.

C. Filtering
The following three filters are used to remove erroneous

patches. Our first filter relies on visibility consistency. Let U(p)
denote the set of patches p′ that are inconsistent with the
current visibility information—that is, p and p′ are not neighbors
(Eq. (8)), but are stored in the same cell of one of the images
where p is visible (Fig. 7). Then, p is filtered out as an outlier if
the following inequality holds

|V ∗(p)|(1−g∗(p)) < ∑
pi∈U(p)

1−g∗(pi).

Input: Patches P from the feature matching step.
Output: Expanded set of reconstructed patches.

While P is not empty
Pick and remove a patch p from P;
For each image cell Ci(x,y) containing p
Collect a set C of image cells for expansion;
For each cell Ci(x′,y′) in C
// Create a new patch candidate p′
n(p′)← n(p), R(p′)← R(p), V (p′)←V ∗(p′);
Update V∗(p′); // Eq. (2)
Refine c(p′) and n(p′); // (Sect.II-C)
Add visible images (a depth-map test) to V (p′);
Update V∗(p′); // Eq. (2)
If |V ∗(p′)| < γ
Go back to For-loop (failure);

Add p′ to P;
Add p′ to corresponding Qj(x,y) and Q∗j(x,y);

Fig. 6. Patch expansion algorithm. The expansion and the filtering procedure
is iterated n(= 3) times to make patches dense and remove outliers.
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Fig. 7. The first filter enforces global visibility consistency to remove outliers
(red patches). An arrow pointing from pi to Ij represents a relationship Ij ∈
V(pi). In both cases (left and right), U(p) denotes a set of patches that is
inconsistent in visibility information with p.

Intuitively, when p is an outlier, both 1−g∗(p) and |V∗(p)| are
expected to be small, and p is likely to be removed. The second
filter also enforces visibility consistency, but more strictly: For
each patch p, we compute the number of images in V∗(p) where p
is visible according to depth-map test. If the number is less than γ ,
p is filtered out as an outlier. Lastly, in the third filter, we enforce
a weak form of regularization: For each patch p, we collect the
patches lying in its own and adjacent cells in all images of V (p).
If the proportion of patches that are neighbors of p (Eq. (8)) in
this set is lower than 0.25, p is removed as an outlier.

IV. POLYGONAL MESH RECONSTRUCTION
The reconstructed patches form an oriented point, or surfel

model. Despite the growing popularity of this type of models
in the computer graphics community [19], it remains desirable
to turn our collection of patches into surface meshes for image-
based modeling applications. In the following, we first propose
two algorithms for initializing a polygonal mesh model from
reconstructed patches, then a surface refinement algorithm, which
polishes up a surface with explicit regularization constraints.

A. Mesh Initialization
1) Poisson Surface Reconstruction: Our first approach to mesh

initialization is to simply use Poisson Surface Reconstruction
(PSR) software [29] that directly converts a set of oriented points
into a triangulated mesh model. The resolution of the mesh model
is adaptive and the size of a triangle depends on the density of

Pipeline: patch expansion
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Fig. 5. (a) Given an existing patch, an expansion procedure is performed
to generate new ones for the neighboring empty image cells in its visible
images. The expansion procedure is not performed for an image cell (b) if
there already exists a neighboring patch reconstructed there, or (c) if there is a
depth discontinuity when viewed from the camera. See text for more details.

generate a new patch p′: We first initialize n(p′),R(p′) and V (p′)
by the corresponding values of p. c(p′) is, in turn, initialized
as the point where the viewing ray passing through the center
of Ci(x,y) intersects the plane containing the patch p. After
computing V∗(p′) from V (p) by using Eq. (2), we refine c(p′)
and n(p′) by the optimization procedure described in Sect.II-
C. During the optimization, c(p′) is constrained to lie on a ray
such that its image projection in Ii does not change in order to
make sure that the patch always projects inside the image cell
Ci(x,y). After the optimization, we add to V (p′) a set of images
in which the patch should be visible according to a depth-map
test, where a depth value is computed for each image cell instead
of a pixel, then update V∗(p′) according to Eq. (2). It is important
to add visible images obtained from the depth-map test to V (p′)
instead of replacing the whole set, because some matches (and
thus the corresponding depth map information) may be incorrect
at this point. Due to this update rule, the visibility information
associated with reconstructed patches become inconsistent with
each other, a fact that is used in the following filtering step
to reject erroneous patches. Finally, if |V∗(p′)| ≥ γ , we accept
the patch as a success and update Qi(x,y) and Q∗i (x,y) for
its visible images. Note that, as in the initial feature matching
step, α is set to 0.6 and 0.3, before and after the optimization,
respectively, but we loosen (increase) both values by 0.2 after
each expansion/filtering iteration in order to handle challenging
(homogeneous or relatively texture-less) regions in the latter
iterations. The overall algorithm description is given in Fig.
6. Note that when segmentation information is available, we
simply ignore image cells in the background during initial feature
matching and the expansion procedure, which guarantees that
no patches are reconstructed in the background. The bounding
volume information is not used to filter out erroneous patches in
our experiments, although it would not be difficult to do so.

C. Filtering
The following three filters are used to remove erroneous

patches. Our first filter relies on visibility consistency. Let U(p)
denote the set of patches p′ that are inconsistent with the
current visibility information—that is, p and p′ are not neighbors
(Eq. (8)), but are stored in the same cell of one of the images
where p is visible (Fig. 7). Then, p is filtered out as an outlier if
the following inequality holds

|V ∗(p)|(1−g∗(p)) < ∑
pi∈U(p)

1−g∗(pi).

Input: Patches P from the feature matching step.
Output: Expanded set of reconstructed patches.

While P is not empty
Pick and remove a patch p from P;
For each image cell Ci(x,y) containing p
Collect a set C of image cells for expansion;
For each cell Ci(x′,y′) in C
// Create a new patch candidate p′
n(p′)← n(p), R(p′)← R(p), V (p′)←V ∗(p′);
Update V∗(p′); // Eq. (2)
Refine c(p′) and n(p′); // (Sect.II-C)
Add visible images (a depth-map test) to V (p′);
Update V∗(p′); // Eq. (2)
If |V ∗(p′)| < γ
Go back to For-loop (failure);

Add p′ to P;
Add p′ to corresponding Qj(x,y) and Q∗j(x,y);

Fig. 6. Patch expansion algorithm. The expansion and the filtering procedure
is iterated n(= 3) times to make patches dense and remove outliers.
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Fig. 7. The first filter enforces global visibility consistency to remove outliers
(red patches). An arrow pointing from pi to Ij represents a relationship Ij ∈
V(pi). In both cases (left and right), U(p) denotes a set of patches that is
inconsistent in visibility information with p.

Intuitively, when p is an outlier, both 1−g∗(p) and |V∗(p)| are
expected to be small, and p is likely to be removed. The second
filter also enforces visibility consistency, but more strictly: For
each patch p, we compute the number of images in V∗(p) where p
is visible according to depth-map test. If the number is less than γ ,
p is filtered out as an outlier. Lastly, in the third filter, we enforce
a weak form of regularization: For each patch p, we collect the
patches lying in its own and adjacent cells in all images of V (p).
If the proportion of patches that are neighbors of p (Eq. (8)) in
this set is lower than 0.25, p is removed as an outlier.

IV. POLYGONAL MESH RECONSTRUCTION
The reconstructed patches form an oriented point, or surfel

model. Despite the growing popularity of this type of models
in the computer graphics community [19], it remains desirable
to turn our collection of patches into surface meshes for image-
based modeling applications. In the following, we first propose
two algorithms for initializing a polygonal mesh model from
reconstructed patches, then a surface refinement algorithm, which
polishes up a surface with explicit regularization constraints.

A. Mesh Initialization
1) Poisson Surface Reconstruction: Our first approach to mesh

initialization is to simply use Poisson Surface Reconstruction
(PSR) software [29] that directly converts a set of oriented points
into a triangulated mesh model. The resolution of the mesh model
is adaptive and the size of a triangle depends on the density of



Pipeline: construct mesh
Convert set of 3D patches (surfel model) into polygonal mesh

Represent surface implicitly using a volumetric signed distance function 
Solve differential equation that equates gradients of function to normals
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Fig. 16. Final mesh models: From left to right and top to bottom: roman, temple, dino, skull, face-1, face-2, body, city-hall, wall, fountain, brussels, steps-1,
steps-2, steps-3, and castle datasets. Note that the mesh models are rendered from multiple view points for fountain and castle datasets to show their overall
structure.
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