Two-view geometry
(cont’d)



Multi-view geometry




Three questions:

(i) Correspondence geometry: Given an image point X in the
first view, how does this constrain the position of the

corresponding point X’ in the second image?

(i) Camera geometry (motion): Given a set of corresponding
image points {x; X'}, i=1,...,n, what are the cameras P and
P’ for the two views?

(iii) Scene geometry (structure): Given corresponding image
points x; «»>Xx’; and cameras P, P’, what is the position of (their

pre-image) X in space?



Outline

2-view geometry
essential matrix, fundamental matrix
properties

estimation



Mathematical formulation

AN
1 X

7

Goal: given point in left image, we want to compute the equation of the line on the right image



Detinitions

y

N

How do epipolar lines change when we double distance between two cameras?

Epipolar plane: plane defined by 2 camera centers & candidate 3D point (green)

(also defined by 2 camera centers any 1 points in either image plane)

Epipolar lines: intersection of epipolar plane and image planes (red)

Epipoles: projection of camera center 1 in camera 2 (& vice versa) (orange)

(set of all epipolar lines intersect at the epipoles)



A Special case

Sterco Pair Rectified Stereo Pair

Rectify a stero pair with a homograpy transformation

Epipolar geometry is purely determined by camera extrinsics and camera instrinics



Projecting from camera coordinate
system to 1mage coordinates

A

// (X,Y,Z)
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Projecting from camera coordinate
system to normalized 1mage coordinates

A

COP !

(X,Y,2)

2 ]

y'| =K |y
/

AX = X

To simplify notation, we’ll use x instead of x’



Recall

Dot product: a-b = ||a|| ||bl||cosd

0

- =
A
axb
Cross product: a x b = ||a]| ||b]| sinf n "

p’ laxb]|

a
_CLng — agbg_ I 0 —as an |

Cross prOdUCt matrix;: ax b = az3b; —ai1b3| = | aj 0 —aq

_albg — CLle_ _—CL2 aq 0 |

Important property (skew symmetric): al = —a

Q>




Recall

Dot product: a-b = ||a|| ||bl||cosd

0

- =
A
axb
Cross product: a x b = ||a]|||b]|sinf n %f IaX:/
f
i 0 —as as | _bl_
Cross product matrix;: axb=ab= | a3 0 —a1| |bs
_—CL2 aq 0 i _bg_

a- (b x c¢) =volume of parallelpiped
= 0 for coplanar vectors




Calibrated 2-view geometry




Epipolar geometry

Xo=RX,+T

X1 :>\1331, XZZ)\QCUZ
)\QCEQ — R)\lazl -+ T

lake (left) cross product of both sides with T
)\QT.’IJQ — TR)\1€131 + 17T
"~
=0
lake (left) dot product of both sides with x2

)\QCB;TLEQ — CE;_TR)\lCEl
H,—/
=0



Geometric derivation

(R, T)

Simply the coplanar constraint applied to 3 vectors from camera 2’s coordinate system

X2°(T><RX1):O



Epipolar geometry

xr, Bz, =0

E 1s known as the essential matrix



Fundamental matrix

(Faugeras and Luong, 1992)

In uncalibrated case, we need to account for camera intrinsics:

X = KX

E=TR
F=K,"EK;!



Essential matrix

xr, Fx; =0

N 74
- o
b| =F |1
e — - 1 —

axry +bys +c =0

Maps a (x1,y1) point from left image to line 1n right 1mage (and vice versa)

But how 1s this different from a Homography (also a 3X3 matrix)?



Epipoles

x, Ex; = 0

We’ll write epipolar lines as 3-vectors: lo = X3

Note that all epipolar lines in an image plane intersect at the epipole.
Equivalently, the epipole has a distance of zero from every epipolar line:
ey ly = 0,Vz,, and similarly e/ l; = 0, V,.

For this to hold true, e, E and Fe; must be zero vectors, i.e.,

e, F =0, Ee, =0

Thus e; and e; are vectors in the right and left null space of E, re-
spectively, i.e., the left and right singular vectors of E with singular value

0.
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Overview

Fundamental matrices:

Xol Fx1 = 0

8 DOFs because of scale ambiguity
Rank 2

Essential matrices:

xr, Bz, = 0

More-or-less behaves like a cross-product (skew symmetric matrix)




Properties (essential matrix)

https://en.wikipedia.org/wiki/Essential matrix#Properties of the essential matrix

Q. How many DOFs are needed to specify an essential matrix?

3 (rotations) + 2 (translation direction)

Q. Can any 3x3 matrix be an essential matrix?
No...

E 1s the product of a rotation and skew-symmetric matrix
Singular values of E = (s1igma,sigma,0)

[rotations do not effect singular values]

0. Given E, can we uniquely recover R,t?

Almost. It 1s unique up to easy-to-deal with symmetries


https://en.wikipedia.org/wiki/Essential_matrix#Properties_of_the_essential_matrix

(c) (d)

Fig. 8.12. The four possible solutions for calibrated reconstruction from E. Be-
tween the left and right sides there is a baseline reversal. Between the top and bottom rows
camera B rotates 180° about the baseline. Note, only in (a) is the reconstructed point in
front of both cameras.



Background: SVDs of
skew symmetric matrics

Any skew-symmetric matrice (A = -A') can be thought of as a cross-product

_ - _ A
az2b3 — azbo 0 —asz a2 | |0y axb
axb= Cbgbl — Cblbg = as 0 —a1 b2 ab
b/ |axb|
a1b2 — a2b1 —Aas9 aq 0 bg t
a

SVD of a skew-symmetric matrix:

llall 0 0] [ef
A — [—ez e 93] 0 Jla|| Of |ed where e3 = a / ||a||
I 0 0 O_ _egT_

One singular value 1s 0 and the other two = ||a||

lal] 0 0] [0 —1 0] [el]
a=le; e eg] | 0 Ja||] O] |1 0O O0f |e3
0 0 o||o o 1f]|el




Recovering T,R from E

1. Universal scale ambiguity
Doubling T results in same epipolar lines

Let’s fix ||[T|| = 1

_ . unit-vector: t
[notation switch] #

skew-symmetric matrix: t,

Numerous methods for recovering t,R from E exist:
SVD, Louget-Higgen’s alg, etc.



Recovering T from E

SVD-based approach for noise-free E (Szeliski Chap 7.2)

xr, Bz, =0

y

N

Take (left-handside) cross product of E = [t]xR with t
]
t E =0.

Implies that translation vector = epipole 1n right image (in homogenous coordinates)



Recovering T from E

SVD-based approach for noise-free E (Szeliski Chap 7.2)

4

E:[ﬂXR:Usz:[uO " f} 1 v

Set translation direction = smallest left singular vector of E
But we can’t distinguish E from -E, so we only know direction up to a sign

Aside: v2 = epipole in left image




Recovering R from E

SVD-based approach (Szeliski Chap 7.2)

4

Recall skew-symmetric decomposition (for unit-norm vector)

[ 1 1To -1 ][ s¥]
[ﬂx = SZRQOOST = [ So S1 li: } 1 1 0 3{
0 1 it

E=[l|\R=SZRyS"R=UXZV?’
By matching orthogonal and diagonal matrices, S = U, Z = Sigma
Ry U ' R=V"
T ;T
R=URy,,V
T T
— ::URZIZQOO V

Generate 4 possible rotations and keep 2 with determinant = 1 (non-reflections)



(c) (d)

Fig. 8.12. The four possible solutions for calibrated reconstruction from E. Be-
tween the left and right sides there is a baseline reversal. Between the top and bottom rows
camera B rotates 180° about the baseline. Note, only in (a) is the reconstructed point in
front of both cameras.



Properties (fundamental matrix)

N

X2TK2_TTRK1_1X]_ =0

X9l Fx1 =0

Q. How many DOF's are needed to specify F?
8 =9 -1 (for scale)

Q. Can any 3x3 matrix be a fundamental matrix?

No! epipoles are still in the null space, implying rank(F) = 2

Proof: Let e; = KoT
elF=0

(similar argument for ey c.f. Invitation to 3D Vision, Chap 6.2)



Properties (fundamental matrix)

4

T
0
F:UZVT — [ Ug U1 €1 } 01 ’U{
T
0

Two non-zero singular values are not (in general) equal

Singular vectors with zero singular valur are the eipoles



Essential and Fundamental Matrices

o 1 [vE o1 vi

T T

= [110 U 82} o V3 F = [110 uq 62} 09 \ A
I 0] |ei 0| [ef

“Proof”: properties of skew-symmetric matrices

where el, e2 are epipoles in right and left images

Proof: scale ambiguity




Formal characterizations

Ma et al, An Invitation to 3D Vision

Theorem 5.1 (Characterization of the essential matrix). A non-

zero matriz £ € R3*3 is an essential matriz if and only if E has a singular
value decomposition (SVD): E = UXV! with

Y, = diag{o,o,0}
for some o € Ry and U,V € SO(3).

Remark 6.1. Characterization of the fundamental matrix. A non-zero

matric F € R>*° 4s a fundamental matriz if F has a singular value
decomposition (SVD): E = UXVT with

¥ = diag{o1,02,0}

for some 01,02 € R, .
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Estimation (fundamental matrix)

4

Assume we have a corrsponding pair of points: 1n noise-free case....

[ Fio Fig| |2 Fo1
iz oy 1] |Fa Fa Fos| |Y| =0 <= |zo/ zy 2« ya' yy y o y 1] |Fan
(F31 F32 F33| |1 Fo3




Estimation (fundamental matrix)

Given m point correspondences (Xi,yi) and (X’i,y’i):

B / / / / ]

T1T] Ty T1 o viry vy yvio oz oy 1 £
- / / / / /1

 TmTy, TmY;m Tmo YmTm YmYm Ym T Ym 1| | Fhs




Estimation (fundamental matrix)

Given m point correspondences (Xi,yi) and (X’i,y’i):

B / / / / / i
r1z] Ty T1 vz wniyy o yi 2y vy 1] | Fo;

/ / / / / /
| ImZy TmlYm Tmo YmThy YmYm Ym Ty Ym 1| | Fos

AF()=0

noisy case: H%rl'i'gl AF()|]? = min Z(x'fFX/i)z
7

Is this reasonable error to minimize?



Recall: distance of point from a line

https://en.wikipedia.org/wiki/Distance from a point to a line

. .. ,. . axg + byg + ¢
distance(ax 4+ by +¢c = 0, (xg, yp) ) = I - , /0 , :
F \/a3 + b2

—

T
x/ ; F'x; is scaled euclidean distance of (x’i,y’i) from line defined by (Xi,yi)



The eight-point algorithm

N
- Meaning of error E(foxlf)zz
=l

sum of squared distances between points x;and
epipolar lines Fx’; (or points x’; and epipolar lines
F'x;) multiplied by a scale factor

* Nonlinear approach: minimize

N
E I:d2 (xiDFxlf) + d2 (X;,FTXZ-):I
=l



3-point algorithm

Longuet-Higgens

Given m point correspondences...

/ / / / / /
L1y TL1Yq1y L1 Yi¥qy YY1 Y1 1 Y4 1

/

/ / / / /
ImTy, TmUYm Tm YmTy, YmYm Ym Loy Ym 1_

~10000 ~10000 ~100 ~10000 ~10000 ~100 ~100 ~100 1

Orders of magnitude difference
Between column of data matrix
— |east-squares yields poor results




“In Defence of the 8-point Algorithm”
(Hartley, PAMI "97)

Transform image to [-1,1]x[-1,1]

(0,500) (700,500) (-1,1) (1,1)
<0 -1
700
2
£ _1
500
1
(090) (70090) (_19_1) (19_1)

SVD now produces good results



Final "annoying” issue

Least squares solution won’t produce F that satisfies rank 2
(or rank-2 E with 2 1dentical singular values)

Solution: find the closest F/E (Frebonius norm) with SVD

_0'1 0 O_
X=U|0 oo 0]|V?"
_O 0 0'3_

Closest fundamental matrix: set sigma3 = 0
Closest essential matrix: set sigma3 = 0, sigma = .5*(sigmal+sigma2)



Rank-2 Fundamental Matrix

Lmlop

L,

A




/-point algorithm
Since F are rank-difficient, we can estimate them with m=7 correspondences

- f11 |
J21
] , | f31
r1z] Ty] T1 vizy wniyy v 7y vy 1 f12
: : : : : : : : : :O
T .CU/ T / / / / / 1 f22
| fmdm mYm Tm YmLy YmYm Ym Ly Ym 1 f32
J13
f23
- f33

AF(:)=0

Idea: search for null vector of Amx9 that satisfies additional contraints (reshaped 3x3 matrix has 0 singular value)

1) A1s rank 7. Find 2 vectors that span null space of A, F1 and Fo.
2) Find alpha such that Determinant(alpha*F1 + (1-alpha)*F2) =0

[3rd order polynomial in alpha with at least one real solution]



Aside: what if cameras are calibrated?

Turns out we only need 5 points, but need to find roots to 10th degree polynomial

[Nister 04]



Recall: RANSAC

RANSAC loop:

1.

2.
3.
4

Select feature pairs (at random)
Compute transformation T (exact)
Compute inliers (point matches where |p,’- Tp,|°< ¢)

Keep largest set of inliers

Re-compute least-squares estimate of transformation T
using all of the inliers



Fundamental matrix estimaiton with RANSAC
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Three questions:

(i) Correspondence geometry: Given an image point X in the
first view, how does this constrain the position of the

corresponding point X’ in the second image?

(i) Camera geometry (motion): Given a set of corresponding
image points {x; X'}, i=1,...,n, what are the cameras P and
P’ for the two views?

(iii) Scene geometry (structure): Given corresponding image
points x; «»>Xx’; and cameras P, P’, what is the position of (their

pre-image) X in space?



Stereo




Basic Stereo Algorithm

FTTT T HON. ABRAIAM LINCOLN, President of United States. S5g

- - -

For each epipolar line
For each pixel in the left image

« compare with every pixel on same epipolar line in right image

« pick pixel with minimum match cost

Improvement: match windows
 (Normalized) Correlation, Sum of Squared Difference (SSD), Sum of Absolute Differences (SAD), etc...



Triangulation for Rectified Stereo Pairs

Top-down view where world coordinates are centered between cameras

(X,Y,Z)
XL XR
-b/2 b/2
o Xty X-hy ey
f Z f Z o r Z
— X=b(xL+xR) Y=b(,VL+)/R) _ bf
Z(XL ~ XR) Z(XL ~ xR) (XL — XR)

d=x; —xTp = VA IS the disparity between corresponding left and right image points

* inverse proportional to depth Z » disparity increases with baseline b



Disparity Maps

bf

dZCBL—LER:7

Disparity values (0-64)

Note how disparity 1s larger
(brighter) for closer surfaces.

If we double the size of scene geometry and baseline, what happens to disparity?



Numerical gtability

X1, XR

-b/2 b/2
bf

d:a:L—xR:7

Scene + camera variables: Z.f,b

Dependant variable: d = function(Z,1,b)

How do we characterize the error in depth Z given an error in disparity d, in terms of scene + camera?

z- Y bf q
L, — TR

1. Error increases quadratically with depth (hard to reconstruct far away points)
2. Error inversely proportional to baseline (larger baselines increase numerical stability)

ZQ
d2 bf




Disparity maps (1n practice)

Small matching window Large matching window
(better localization) (better detection)



Variational stereo

Penalize differences in nearby disparities (a “1-d”” flow problem!)

Iﬁlgl Emtensﬂy + Esmooth

zntenszty // 12 Zlf—l—d ZC y Il(x y)) d:l?dy Smooth // ||Vd X y ||2d$dy

1. Linearlize Eintensity term and solve with least squares

2. Add robust error terms p(-) to handle discontinuties



Coarse-to-fine stereo

, estimate disparities _

\ upsample

\4

Gaussian pyramid of image H Gaussian pyramid of image /



Discrete disparity estimation

[
s

Solve with GraphCuts



Special case: single-scan-line consistency

Left Image Right Image

-

Dissimilarity Values
(1-NCC) or SSD




ty Space Image (DSI)

1sparl

D

Left scanline

QUITUBDS JY3TY



Representing the cost of all scanline
correspondences

="

N W R T




Ordering Constraint

g

...-..-...-
-.-‘-.rv’-'

T3 d
a% e

...and its failure

Ordering constraint...



Occlusions

Left scanline Right scanline




Occlusions

Left scanline R VA Right scanline

Match

Match

v \
Occluded from Match Occluded from
right scanline left scanline




Compute partial scanline costs

Y

Occluded
fro from left

1,)-1 Occluded 1,]

Three cases: from right

— Matching patches. Cost = dissimilarity score
— Occluded from right. Cost is some constant value.
— Occluded from left. Cost is some constant value.

C(i,j)= min([ C(i-1,j-1) + dissimilarity(i,j)

C(1-1,)) + occlusionConstant,
C(1,)-1) + occlusionConstant]);

Cox, Hingorani, Rao, Maggs, “A Maximum
Likelihood Stereo Algorithm,” Computer
Vision and Image Understanding, Vol 63(3),
Mav 1996. pn.542-567.



Dynamic Programming

DP cost matrix

cost of optimal path from each point to END)

Each pixel in DSI 1s now marked with a disparity value or occlusion label

In practice, enforce upper bound on disparity by computing diagonal band of DSI



Results

Result of DP alg

Result without DP (independent pixels

T
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Stereo evaluation: http://vision.middlebury.edu/stereo/

vision.middlebury.edu
stereo|* mview « URF -+ flow

//
m Evaluation  Datasets » Code « Submit

Daniel Scharstein « Richard Szzliski

Welcome to the Midclebury Stereo Vision Page, formerly located at

www. middlebury edu/stereo. This website eccompanies oJr taxonomy and comoarison of
two-frame stereo correspondence algorithms [1]. It contains:

An on-line evauation of current algonthms
Many stereo datasets with ground-truth disparities
Our stereo corespondence software

An on-line submission script that allows you to evaluate your stereo algorithm in
our framework

How to cite the materials on this website:

We grant permissinn tn use and publish all images and numerical results an this
websitz. If you report performance results, we request tha: you cite our paper [1].
Instructions on how to cite our datasets are listed an the datasets page. If you want to
cile Lhis websile, please use Lhe URL "vision.umiddlebury.edu/stereo/".

References:

[1] D. Scharstein and R. Szzliski. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms.
Intzmational Joumal of Computer Vision, 47(1/2/3):7-£2, Apri-June 2002.
Microsoft Research Tecknical Report VSR-TR-2001-81, November 2001.




Stereo—best algorithms

Error Threshold = 1 Sort by nonocc Sort by all Sort by disc
Error Threshold... ¥ v v v
: Cones
Algorithm Avg. .
Rank nonocc  all disc

\/

088+ 1.29: 476

12410 17613 598¢

0455 1875

0468 1744

8302 9.631

8384 100z

\/

2902 8788 7.79:2

2935 8737 7914

SymBP+occ [7] 108 | 0974 1752 5094 | 016 0332 219z | 647 1076 17.014/47924 10721 10920
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SO+borders [29]

ErnhanradRD 104
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Dense mult1 view stereo

20 RNy
— { 2 \

» Reconstruct the 3D position of the points corresponding to
(all the) pixels 1n a set of 1images.

» Key assumption: We know the relative position,
orientation, K, of all the cameras.

e Number of cameras >> 2



Trinocular stereo (version 0)

1. Pick 2 views, find correspondences
2. For each matching pair, reconstruct 3D point
3. If can’t find correspondence near projected location, reject

I
I
I
I
I
I
I
I
: I
I
I
I
I
I
I
I
I
I
I
I

é

Camera 1 Camera 2 ACTE ) o era 3 CaNE T 2

Version 1: generalize 3x3 fundmamental matrix to a 3x3x3 trifocal tensor

(constraints points and lines across 3 1images)



Multiview stereo (version 0)

-Pick one reference view
-For each point and for each candidate depth

- keep depths with low SSD error 1n all other views
(or any photoconsistency measure)

Problem: not all points are visible 1n all other views (occlusion and visibility major nuisance!)



Multiview stereo (version 1)

Hypothesize depths in a “smart” order where occluding points are found first

Use knowledge of occluding points to smartly select view for photoconsistency check

Layers

Scene
Traversal

Store photoconsistent color 1n a 3D voxel grid (don’t need a reference image)

Reconstuct shape and appearance



Speedup: plane sweeps

nput image

composite

virtual camera

Validate voxels in a plane by computing their appearance 1n a virtual view using all N cameras
Keep track of image-specific occlusion masks

What 1s the transformation that warps image N to virtual view?



Voxel coloring




What about other camera steups?




Panoramic depth ordering

Seitz & Dyer

Layers radiate inwardly/outwardly



Space carving

Kutulakos & Seitz

Initialize voxel grid to all “1°’s

Repeatedly choose a voxel on current surface:
Project to visible images

Carve out if not photoconsistent



Convergence

Consistency Property
* The resulting shape is photo-consistent
> all inconsistent points are removed

Convergence Property

« (Carving converges to a non-empty shape
> a point on the true scene is never removed

[
&<
|z




Calibrated Image Acquisition

Selected Dinosaur Images

4 T - '
B e
“. AOHE>. ,\>\
.. L L N
- »-‘. Bt

Calibrated Turntable

Selected Flower Images



Voxel Coloring Results

Dinosaur Reconstruction Flower Reconstruction
72 K voxels colored 70 K voxels colored
7.6 M voxels tested 7.6 M voxels tested
7 min. to compute 7 min. to compute

on a 250MHz SGI on a 250MHz SGI



21 images 21 images

16 images 99 images



Silhoette carving

Backproject binary silhouettes and find intersection

In limit of infinite cameras, this will produce convex hull reconstruction of object



Outline

* essential matrix, fundamental matrix
(point-to-line correspondence, SVD properties)

* siereo
(variational, discrete graph labelling, dynamic programming)

e Mmultiview

(volumetric models, visibility reasoning, patch-based methods)



Long-standing leader

Accurate, Dense, and Robust Multi-View Stereopsis

Yasutaka Furukawa and Jean Ponce, Fellow, IEEE

Normal

Position
Extent

TPatch

Easier to approximate
surface by dense set of
local planar patches

Patch-based Multiview Stereo (PMVS)



Pipeline: feature detection

Find sparse matches over pairs of images (using interest points + matching)
Triangulate to find sparse 3D points {p}



Pipeline: patch optimization

Al

WA

B e s
i T

At each point p, estimate normal N(p) and visibility Vi(p) in each image using photoconsistency check (NCC over ~9x9 pixels)
P

h(p,11,12)
q(p, ]1) _>discrepancy - q(p, ]2)

function




Pipeline: patch expansion

Expand set of points {p} by looking for hypothesizing 2D neighbors in visible images, backprojecting, and verifying photoconsistency

neighbors
A A / A 4 A patch
| I I | l ! image projection
|
’: ‘\ | ,' ?\/' A ® of apatch
\\ ‘\ : I’ // ,/\a)' Expanded
\ \ ' ' / ,/ _» Not expanded by
\ ‘\/V : X ! / b the first condition
v 1 Vi, w4,/ s Notexpanded by the
Lcelll AR / C  second condition
N image screen
\ | | /
\ ? 4 :b /’a /

Fig. 5. (a) Given an existing patch, an expansion procedure is performed
to generate new ones for the neighboring empty image cells in its visible
images. The expansion procedure is not performed for an image cell (b) if
there already exists a neighboring patch reconstructed there, or (c) if there is a
depth discontinuity when viewed from the camera. See text for more details.



Pipeline: filter out outlier patches

I 13 I7 I I3
14

\

Pi

11

T
£

i A Correct patch
P :
Jip/it __|A_>3 f ! iP A Outlier

Fig. 7. The first filter enforces global visibility consistency to remove outliers
(red patches). An arrow pointing from p; to I; represents a relationship /; €

V(pi). In both cases (left and right), U(p) denotes a set of patches that is
inconsistent in visibility information with p.



Pipeline: construct mesh

Convert set of 3D patches (surfel model) into polygonal mesh

Oriented points  Indicator gradient  Indicator function Surface

V Vi Am M

Represent surface implicitly using a volumetric signed distance function
Solve differential equation that equates gradients of function to normals



Results
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Outline

* essential matrix, fundamental matrix
(point-to-line correspondence, SVD properties)

* siereo
(variational, discrete graph labelling, dynamic programming)

e Mmultiview

(volumetric models, visibility reasoning, patch-based methods)



