
Texture

• SVD Matlab demo

• Texture

• Bag-of-words

• (Spatial) pyramid matching

Recall: SVD

SVD

Deva Ramanan

February 1, 2016

Let us represent a linear transformation as follows:

y = Ax, A 2 R

n⇥m (1)

where A is a matrix with n columns and m rows. This document uses the singular value
decomposition (SVD) to decompose A into a series of geometric transformations, focusing
intuition rather than a precise formulation. For simplicity, let n = 2 and m = 3, such that
A transforms points in 2D to 3D.

Figure 1: Visualizing a matrix A 2 R

2⇥3 as a transformation of points from R

2 to R

3.

Orthonormal basis: First, let us recall that the projection of a vector x 2 R

n along a
unit vector v (e.g., vTv = 1) can be written as vTx. Let us construct a set of n unit vectors
and write them as a matrix

V =
⇥
v1 v2, . . . vn

⇤
.

We can then compute the projection or coordinates of vector x along the unit vectors with a
matrix multiplication p = V

T
x. If all the unit vectors are orthogonal to each other (vTi vj = 0

for i 6= j), then V

T
V = I. This implies that V can be thought o↵ as a rotation matrix (whos

inverse is V

T), making it easy to undo the projection. The set of vectors in V form an
orthogonal basis for Rn. Let us similar construct an orthonormal basis for the output space

U =
⇥
u1 u2 . . .

⇤

1

y = Ax

y = U⌃V T
x

Recall: SVD

SVD

Deva Ramanan

February 1, 2016

Let us represent a linear transformation as follows:

y = Ax, A 2 R

n⇥m (1)

where A is a matrix with n columns and m rows. This document uses the singular value
decomposition (SVD) to decompose A into a series of geometric transformations, focusing
intuition rather than a precise formulation. For simplicity, let n = 2 and m = 3, such that
A transforms points in 2D to 3D.

Figure 1: Visualizing a matrix A 2 R

2⇥3 as a transformation of points from R

2 to R

3.

Orthonormal basis: First, let us recall that the projection of a vector x 2 R

n along a
unit vector v (e.g., vTv = 1) can be written as vTx. Let us construct a set of n unit vectors
and write them as a matrix

V =
⇥
v1 v2, . . . vn

⇤
.

We can then compute the projection or coordinates of vector x along the unit vectors with a
matrix multiplication p = V

T
x. If all the unit vectors are orthogonal to each other (vTi vj = 0

for i 6= j), then V

T
V = I. This implies that V can be thought o↵ as a rotation matrix (whos

inverse is V

T), making it easy to undo the projection. The set of vectors in V form an
orthogonal basis for Rn. Let us similar construct an orthonormal basis for the output space

U =
⇥
u1 u2 . . .

⇤

1

y = Ax

y = U⌃V T
x

U =
⇥
u1 u2 . . . um

⇤
, UTU = I

V =
⇥
v1 v2 . . . vn

⇤
, V TV = I

⌃ =

2

6664

�1 0 0 . . .
0 �2 0 . . .
0 0 �3 . . .
...

...
...

3

7775

Recall: SVD

SVD

Deva Ramanan

February 1, 2016

Let us represent a linear transformation as follows:

y = Ax, A 2 R

n⇥m (1)

where A is a matrix with n columns and m rows. This document uses the singular value
decomposition (SVD) to decompose A into a series of geometric transformations, focusing
intuition rather than a precise formulation. For simplicity, let n = 2 and m = 3, such that
A transforms points in 2D to 3D.

Figure 1: Visualizing a matrix A 2 R

2⇥3 as a transformation of points from R

2 to R

3.

Orthonormal basis: First, let us recall that the projection of a vector x 2 R

n along a
unit vector v (e.g., vTv = 1) can be written as vTx. Let us construct a set of n unit vectors
and write them as a matrix

V =
⇥
v1 v2, . . . vn

⇤
.

We can then compute the projection or coordinates of vector x along the unit vectors with a
matrix multiplication p = V

T
x. If all the unit vectors are orthogonal to each other (vTi vj = 0

for i 6= j), then V

T
V = I. This implies that V can be thought o↵ as a rotation matrix (whos

inverse is V

T), making it easy to undo the projection. The set of vectors in V form an
orthogonal basis for Rn. Let us similar construct an orthonormal basis for the output space

U =
⇥
u1 u2 . . .

⇤

1

y = Ax

y = U⌃V T
x

Any linear operator can be thought of as mapping from Rn to Rm

Notation: ui = left singular vector, sigmai = singular values, vi = right singular vectors

1. projection (with right singular vectors)
2. scaling (with singular values),
3. reconstruction (with left singular vectors)

Recall: SVD

SVD

Deva Ramanan

February 1, 2016

Let us represent a linear transformation as follows:

y = Ax, A 2 R

n⇥m (1)

where A is a matrix with n columns and m rows. This document uses the singular value
decomposition (SVD) to decompose A into a series of geometric transformations, focusing
intuition rather than a precise formulation. For simplicity, let n = 2 and m = 3, such that
A transforms points in 2D to 3D.

Figure 1: Visualizing a matrix A 2 R

2⇥3 as a transformation of points from R

2 to R

3.

Orthonormal basis: First, let us recall that the projection of a vector x 2 R

n along a
unit vector v (e.g., vTv = 1) can be written as vTx. Let us construct a set of n unit vectors
and write them as a matrix

V =
⇥
v1 v2, . . . vn

⇤
.

We can then compute the projection or coordinates of vector x along the unit vectors with a
matrix multiplication p = V

T
x. If all the unit vectors are orthogonal to each other (vTi vj = 0

for i 6= j), then V

T
V = I. This implies that V can be thought o↵ as a rotation matrix (whos

inverse is V

T), making it easy to undo the projection. The set of vectors in V form an
orthogonal basis for Rn. Let us similar construct an orthonormal basis for the output space

U =
⇥
u1 u2 . . .

⇤

1

Immediate consequences (by appealing to geometric intuition)
Figure 2: Visualizing the spectral eigendecomposition of a symmetric PSD matrix.

This makes intuitive sense geometrically; taking the k largest singular values and vectors
produces a transformation A

0 that uses as much of the output space as possible. The sketch
of the proof relies on the fact that U and V act as rotations and so do not e↵ect the rank of
A. The best k-rank approximation of A is then given by the best k-rank approximation of
the (diagonal) matrix ⌃.

Corollary 2: The solution of a homogenous least squares problem is given by smallest
right singular value:

min
h:hT h=1

||Ah||2 = V (:, end)

The proof sketch follows by the fact that any input v must project to one of the right
singular vectors (because they form a basis). A closely related result is that for any PSD
matrix B = A

T
A, minh:hT h=1 h

T
Bh = V (:, end), where V (:, end) the eigenvector with the

smallest eigenvalue.
Corollary 3: The pseudoinverse of A is given by

A

+ = argmin
A+

||A+
A� I||F = V

2

6664

1
�1

0 0 . . .

0 1
�2

0 . . .

0 0 1
�3

. . .

...
...

...

3

7775

T

U

T

which could also be obtained by mimimizing ||AA+ � I||F (without proof).

3

Figure 2: Visualizing the spectral eigendecomposition of a symmetric PSD matrix.

This makes intuitive sense geometrically; taking the k largest singular values and vectors
produces a transformation A

0 that uses as much of the output space as possible. The sketch
of the proof relies on the fact that U and V act as rotations and so do not e↵ect the rank of
A. The best k-rank approximation of A is then given by the best k-rank approximation of
the (diagonal) matrix ⌃.

Corollary 2: The solution of a homogenous least squares problem is given by smallest
right singular value:

min
h:hT h=1

||Ah||2 = V (:, end)

The proof sketch follows by the fact that any input v must project to one of the right
singular vectors (because they form a basis). A closely related result is that for any PSD
matrix B = A

T
A, minh:hT h=1 h

T
Bh = V (:, end), where V (:, end) the eigenvector with the

smallest eigenvalue.
Corollary 3: The pseudoinverse of A is given by

A

+ = argmin
A+

||A+
A� I||F = V

2

6664

1
�1

0 0 . . .

0 1
�2

0 . . .

0 0 1
�3

. . .

...
...

...

3

7775

T

U

T

which could also be obtained by mimimizing ||AA+ � I||F (without proof).

3

.
SVD: An SVD allows us to characterize any linear operation y = Ax for A 2 R

n⇥m as
follows:

1. Project x into an orthonormal basis p = V

T
x for the input space.

2. Scale the coordinates by values �1, �2, which can be written as c = ⌃p, where ⌃ = R

n⇥m

is a diagonal matrix:

⌃ =

2

6664

�1 0 0 . . .
0 �2 0 . . .
0 0 �3 . . .

...
...

...

3

7775
(2)

3. Reconstruct a point in output space by taking a linear combination of the output basis
vectors, y = c1u1 + c2u2 . . . = Uc.

This allows us to write y = Ax = U⌃V T . The SVD of A produces the three matrices U,⌃, V
such that UT

U = I, V

T
V = I,⌃ = diagonal. We typically use the terms left-singular vectors,

singular values, and right-singular vectors to describe the three matrices due to the fact that
Avi = �iui and u

T
i A = �iv

T
i , which somewhat resemble the definition of an eigenvector (more

on this below). If m > n, than we only use n (out of the m) output basis vectors during
reconstruction. If n > m, then we only project into m (out of the n) input basis vectors
during the projection.

Proof (sketch): One can prove this by forming either of the two square matrices B =
A

T
A and C = AA

T . It is straightforward to show that B and C are symmetric and positive
semi-definite (PSD). One can then use properties of PSD matrices - namely, eigenvalues must
be positive and the eigenvectors form an orthonormal basis. Because B = V ⌃T

U

T
U⌃V T =

V ⌃2
V

T , Bvi = �

2
i vi, implying the eigenvectors and eigenvalues of B are given by the square

singular values and right singular vectors of A. An analogous argument based on the left
singular vector holds for C.

Corollary 0: Any symmetric PSD matrix B can be decomposed as B = V ⌃2
V

T , where
vi are eigenvectors with non-negative eigenvalues �2. The proof follows by the property that
any PSD matrix can be written as the product of two matrices B = A

T
A for some matrix

A. As an aside, this is how I intuitively think of a PSD matrix B: there is an underlying
transformation A that it corresponds to. This decomposition is sometimes called a spectral

eigendecomposition, and can be geometrically viewed as a projection onto a rotated basis,
scaling along that basis, and a reconstruction using the same basis vectors.

Corollary 1: The best k-rank approximation of A is given by constructing k largest
singular vectors. In matlab notation:

min
A0:rank(A0)<=k

||A� A

0||F = U(:, 1 : k)⌃(1 : k, 1 : k)V (:, 1 : k)T , where ||A||F = A(:)TA(:)

(3)

2

.
SVD: An SVD allows us to characterize any linear operation y = Ax for A 2 R

n⇥m as
follows:

1. Project x into an orthonormal basis p = V

T
x for the input space.

2. Scale the coordinates by values �1, �2, which can be written as c = ⌃p, where ⌃ = R

n⇥m

is a diagonal matrix:

⌃ =

2

6664

�1 0 0 . . .
0 �2 0 . . .
0 0 �3 . . .

...
...

...

3

7775
(2)

3. Reconstruct a point in output space by taking a linear combination of the output basis
vectors, y = c1u1 + c2u2 . . . = Uc.

This allows us to write y = Ax = U⌃V T . The SVD of A produces the three matrices U,⌃, V
such that UT

U = I, V

T
V = I,⌃ = diagonal. We typically use the terms left-singular vectors,

singular values, and right-singular vectors to describe the three matrices due to the fact that
Avi = �iui and u

T
i A = �iv

T
i , which somewhat resemble the definition of an eigenvector (more

on this below). If m > n, than we only use n (out of the m) output basis vectors during
reconstruction. If n > m, then we only project into m (out of the n) input basis vectors
during the projection.

Proof (sketch): One can prove this by forming either of the two square matrices B =
A

T
A and C = AA

T . It is straightforward to show that B and C are symmetric and positive
semi-definite (PSD). One can then use properties of PSD matrices - namely, eigenvalues must
be positive and the eigenvectors form an orthonormal basis. Because B = V ⌃T

U

T
U⌃V T =

V ⌃2
V

T , Bvi = �

2
i vi, implying the eigenvectors and eigenvalues of B are given by the square

singular values and right singular vectors of A. An analogous argument based on the left
singular vector holds for C.

Corollary 0: Any symmetric PSD matrix B can be decomposed as B = V ⌃2
V

T , where
vi are eigenvectors with non-negative eigenvalues �2. The proof follows by the property that
any PSD matrix can be written as the product of two matrices B = A

T
A for some matrix

A. As an aside, this is how I intuitively think of a PSD matrix B: there is an underlying
transformation A that it corresponds to. This decomposition is sometimes called a spectral

eigendecomposition, and can be geometrically viewed as a projection onto a rotated basis,
scaling along that basis, and a reconstruction using the same basis vectors.

Corollary 1: The best k-rank approximation of A is given by constructing k largest
singular vectors. In matlab notation:

min
A0:rank(A0)<=k

||A� A

0||F = U(:, 1 : k)⌃(1 : k, 1 : k)V (:, 1 : k)T , where ||A||F = A(:)TA(:)

(3)

2

Low
rank:

Homogenous
least-squares:

Pseudoinverse:

Extension:
positive-semidefinite (PSD) matrices

Figure 2: Visualizing the spectral eigendecomposition of a symmetric PSD matrix.

This makes intuitive sense geometrically; taking the k largest singular values and vectors
produces a transformation A

0 that uses as much of the output space as possible. The sketch
of the proof relies on the fact that U and V act as rotations and so do not e↵ect the rank of
A. The best k-rank approximation of A is then given by the best k-rank approximation of
the (diagonal) matrix ⌃.

Corollary 2: The solution of a homogenous least squares problem is given by smallest
right singular value:

min
h:hT h=1

||Ah||2 = V (:, end)

The proof sketch follows by the fact that any input v must project to one of the right
singular vectors (because they form a basis). A closely related result is that for any PSD
matrix B = A

T
A, minh:hT h=1 h

T
Bh = V (:, end), where V (:, end) the eigenvector with the

smallest eigenvalue.
Corollary 3: The pseudoinverse of A is given by

A

+ = argmin
A+

||A+
A� I||F = V

2

6664

1
�1

0 0 . . .

0 1
�2

0 . . .

0 0 1
�3

. . .

...
...

...

3

7775

T

U

T

which could also be obtained by mimimizing ||AA+ � I||F (without proof).

3

Let’s construct a square matrix B = ATA

1. projection (with eigenvectors)
2. scaling (with eigenvalues),
3. reconstruction (with same eigenvectors)

Any PSD matrix can be thought of as mapping from Rn to Rn

For V = identity, B = scaling
For general V, B = scaling in rotated coordinate system

Matlab demo

Steerable & Separable Filter Banks

Eigenfaces

(how can we efficiently exploit for convolution?)

Texture

• SVD Matlab demo

• Texture

• Bag-of-words

• (Spatial) pyramid matching

How do we define texture?

Continuum of regularity
stochastic

regular

Continuum of regularity
stochastic

regular

Each pixel is drawn iid from some
probability distribution over colors P(I)

Each pixel is color is determined
completely by its coordinates w.r.t.
the rest of the texture

Continuum of regularity
stochastic

regular

Each pixel is drawn from some
probability distribution over colors
conditioned on the value of its
neighbors P(I|N)

Pre-attentive texture discrimination
(Julesz,1981)

“textons”

160 ms, outside foveal gaze
Instantenous, or effortless texture discrimination

Representing textures
Let’s encode the texture as a distribution over localized visual elements, or “textons”

1. How do we represent a texton?

2. How do we represent a distribution over them?

Version 0
Let’s build a discrete probability distribution (or histogram) over small

KxK patches, where each pixel can take on one of N = 256 values.

What would be the size of this histogram?

Hopeless! NKK

Version 0

Project KxK patch into M filters

Let’s represent marginal distribution instead of joint
P(f1,f2,…) = N^M table entries

P(f1)P(f2)P(f3) = N*M table entries

Let’s build a discrete probability distribution (or histogram) over small
KxK patches, where each pixel can take on one of N = 256 values.

Chi-square

`
`

Histogram of filter responses

P(I *)

Use collection of histograms for a set of
filters to represent texture

Is there an efficient way to capture
joint statistics of filter responses?

Capture joint statistics via histograms
of vector quantized features

K-means
visual intuition

Cost function
min
Z,D

C(Z,D,X) where C(Z,D,X) =
X

i

||xi � dzi ||2

xi: ith input vector (to be clustered)

zi 2 {1 . . .K} : ith label

dk: kth dictionairy element (or mean)

Coordinate descent optimization

1.

2.

min
Z,D

C(Z,D,X) where C(Z,D,X) =
X

i

||xi � dzi ||2

min
Z

C(Z,D,X)

min
D

C(Z,D,X)

Training vs testing

Training:

Testing:

min
Z,D

C(Z,D,Xtrain)

min
Z

C(Z,D,Xtest)

Question: how can we
visualize mean (or texton)

B = [b1, . . . bt]Let B be a matrix of vectorized filters:

Given an vectorized image patch pi,
compute filter responses with a linear projection:

pseudoinv(BT
)di

xi = B

T
pi

Given a mean di,
compute corresponding image with:

What Are Textons? 797

Fig. 2. At each pixel, a pyramid (cone) of filters at various scales and orientations are
convolved with the image to extract a feature vector.

each cluster centers. More precisely, let Fc = (fc1, ..., fcN) be a cluster center in
the N -dimensional feature space, then an image icon φc (say 15 × 15 pixels) is
computed by

φc = arg min
N∑

j=1

(Fj ∗ φc − fcj)2, c = 1, 2, ..., C. (3)

Fig. 3. Two texture images each with 49 image icons φi, i = 1, 2, ..., 49 for the cluster
centers.

We implement this work and some results are shown in Fig. 3 for C = 49
clusters on two typical texture images. Clearly, the cluster centers capture some
essential image structures, such as blobs for the cheetah skin pattern, and bars
for the crack pattern.

In comparison, though both the generative and discriminative approaches
can compute image structures, they are fundamentally different. In a generative
model, an image I is reconstructed by the addition of a number of nB bases

Texton reconstructions

What Are Textons?

Song-Chun Zhu1, Cheng-en Guo1, Yingnian Wu2, and Yizhou Wang1

1 Dept. of Comp. and Info. Sci., Ohio State Univ., Columbus, OH 43210, USA
{szhu, cguo, wangyiz}@cis.ohio-state.edu,

2 Dept. of Statistics, Univ. of California, Los Angeles, CA, 90095, USA,
ywu@stat.ucla.edu

Abstract. Textons refer to fundamental micro-structures in generic
natural images and thus constitute the basic elements in early (pre-
attentive) visual perception. However, the word “texton” remains a vague
concept in the literature of computer vision and visual perception, and
a precise mathematical definition has yet to be found. In this article, we
argue that the definition of texton should be governed by a sound math-
ematical model of images, and the set of textons must be learned from,
or best tuned to, an image ensemble. We adopt a generative image model
that an image is a superposition of bases from an over-complete dictio-
nary, then a texton is defined as a mini-template that consists of a varying
number of image bases with some geometric and photometric configura-
tions. By analogy to physics, if image bases are like protons, neutrons
and electrons, then textons are like atoms. Then a small number of tex-
tons can be learned from training images as repeating micro-structures.
We report four experiments for comparison. The first experiment com-
putes clusters in feature space of filter responses. The second use trans-
formed component analysis in both feature space and image patches. The
third adopts a two-layer generative model where an image is generated
by image bases and image bases are generated by textons. The fourth
experiment shows textons from motion image sequences, which we call
movetons.

1 Introduction

Texton refers to fundamental micro-structures in generic natural images and the
basic elements in early (pre-attentive) visual perception[8]. In practice, the study
of textons has important implications in a series of problems. Firstly, decompos-
ing an image into its constituent components reduces information redundancy
and, thus, leads to better image coding algorithms. Secondly, the decomposed
image representation often has much reduced dimensions and less dependence
between variables (coefficients), therefore it facilitates image modeling which is
necessary for image segmentation and recognition. Thirdly, in biological vision
the micro-structures in natural images provide an ecological clue for understand-
ing the functions of neurons in the early stage of biological vision systems[1,13].
However, in the literature of computer vision and visual perception, the word
“texton” remains a vague concept and a precise mathematical definition has yet
to be found.

A. Heyden et al. (Eds.): ECCV 2002, LNCS 2353, pp. 793–807, 2002.
c⃝ Springer-Verlag Berlin Heidelberg 2002

Capture joint statistics via histograms
of vector quantized features

Universal texton dictionary

histogram

Overall pipeline

Example Natural Materials

Terrycloth Rough Plastic Plaster-b

Sponge Rug-a Painted Spheres

Columbia-Utrecht Database (http://www.cs.columbia.edu/CAVE)

match
polka-dot

brick

mesh

Texture recognition

Extenstion: matrix formulation

min
D,Z

||X �DZ||2F +R(Z)

X = [x1, . . . xn]

D = [d1, . . . , dK]

Z = [z1, . . . zn]

K-means: zi = [. . . , 0, 1, 0, . . .]

Sparse reconstructions
min
D,Z

||X �DZ||2F +R(Z)

X = [x1, . . . xn]

D = [d1, . . . , dK]

Z = [z1, . . . zn]

 subject to sparse constraints on Z

K-means: zi = [. . . , 0, 1, 0, . . .]

L0 sparse-coding: ||zi||0  M

L1 sparse-coding: ||zi||1  M (convex program)

(greedy algorithms known as “matching pursuit”)

L1 sparse dictionary learning

• Emergence of Simple-Cell Receptive Field Properties by
Learning a Sparse Code for Natural Images.
Olshausen BA, Field DJ (1996). Nature, 381: 607-609

Sparse reconstructions
min
D,Z

||X �DZ||2F +R(Z)

min
D,Z

||X �DZ||2F +R(Z)

X = [x1, . . . xn]

D = [d1, . . . , dK]

Z = [z1, . . . zn]

 subject to sparse constraints on Z

Can be written equivalently as:

K-means: zi = [. . . , 0, 1, 0, . . .]

L0 sparse-coding: ||zi||0  M

L1 sparse-coding: ||zi||1  M

Sparse reconstructions
 subject to sparse constraints on Z

in is the nth image patch
bi is the tth filter in the filter bank

min
D,Z

||BT I �DZ||2F

I = [i1, . . . xn]

D = [d1, . . . , dK]

Z = [z1, . . . zn]

B = [b1, . . . bt]

Learning Feature Representations with K-means

Adam Coates and Andrew Y. Ng

Stanford University, Stanford CA 94306, USA
{acoates,ang}@cs.stanford.edu

Originally published in: G. Montavon, G. B. Orr, K.-R. Müller (Eds.), Neural
Networks: Tricks of the Trade, 2nd edn, Springer LNCS 7700, 2012.

Abstract. Many algorithms are available to learn deep hierarchies of
features from unlabeled data, especially images. In many cases, these
algorithms involve multi-layered networks of features (e.g., neural net-
works) that are sometimes tricky to train and tune and are di�cult to
scale up to many machines e↵ectively. Recently, it has been found that
K-means clustering can be used as a fast alternative training method.
The main advantage of this approach is that it is very fast and easily
implemented at large scale. On the other hand, employing this method
in practice is not completely trivial: K-means has several limitations, and
care must be taken to combine the right ingredients to get the system
to work well. This chapter will summarize recent results and technical
tricks that are needed to make e↵ective use of K-means clustering for
learning large-scale representations of images. We will also connect these
results to other well-known algorithms to make clear when K-means can
be most useful and convey intuitions about its behavior that are useful
for debugging and engineering new systems.

1 Introduction

A major goal in machine learning is to learn deep hierarchies of features for other
tasks. For instance, given a set of unlabeled images, many current algorithms
seek to greedily learn successive layers of features that will make subsequent
classification tasks (e.g., object recognition) easier to accomplish. A typical ap-
proach taken in the literature is to use an unsupervised learning algorithm to
train a model of the unlabeled data and then use the results to extract interest-
ing features from the data [35,21,31]. Depending on the choice of unsupervised
learning scheme, it is sometimes di�cult to make these systems work well. There
can be many hyper-parameters and not much intuition for how to tune them.
More recently, we have found that using K-means clustering as the unsupervised
learning module in these types of “feature learning” pipelines can lead to excel-
lent results, often rivaling state-of-the-art systems [11]. In this chapter, we will
review some of this work with added notes on useful tricks and observations that
are helpful for building large-scale feature learning systems.

K-means has already been identified as a successful method to learn fea-
tures from images by computer vision researchers. The popular “bag of features”

K-means dictionary learning

2.1 Pre-processing

Before running a learning algorithm on our input data points x(i), it is useful to
normalize the brightness and contrast of the patches. That is, for each x

(i) we
subtract out the mean of the intensities and divide by the standard deviation. A
small value is added to the variance before division to avoid divide by zero and
also suppress noise. For pixel intensities in the range [0, 255], adding 10 to the
variance is often a good starting point:

x

(i) =
x̃

(i) �mean(x̃(i))p
var(x̃(i)) + 10

where x̃

(i) are unnormalized patches and “mean” and “var” are the mean and
variance of the elements of x̃(i).

(a) (b) (c)

Fig. 1: (a) Centroids learned by K-means from natural images without whitening.
(b) A cartoon depicting the e↵ect of whitening on the K-means solution. Left:
unwhitened data, where the centroids tend to be biased by the correlated data.
Right: whitened data, where centroids are more orthogonal. (c) Centroids learned
from whitened image patches.

After normalization, we can try to run K-means on the new input patches.
The centroids that are obtained (i.e., the columns of the dictionary D) are vi-
sualized as patches in Figure 1a. It can be seen that K-means tends to learn
low-frequency edge-like centroids. This result has been reproduced many times
in the past [16,37,2]. Unfortunately, it turns out that these centroids tend to
work poorly in recognition tasks [11]. One explanation for this result is that the
correlations between nearby pixels (i.e., low-frequency variations in the images)
tend to be very strong even after brightness and contrast normalization. In the
presence of these correlations, K-means tends to generate many highly correlated
centroids rather than spreading the centroids out to span the data more evenly.
A cartoon depicting this problem is shown on the left of Figure 1b. To remedy
this situation, one should use whitening (also called “sphering”) to rescale the
input data to remove these correlations [22]. This tends to cause K-means to

 K-means dictionary learning with whitened images

2.1 Pre-processing

Before running a learning algorithm on our input data points x(i), it is useful to
normalize the brightness and contrast of the patches. That is, for each x

(i) we
subtract out the mean of the intensities and divide by the standard deviation. A
small value is added to the variance before division to avoid divide by zero and
also suppress noise. For pixel intensities in the range [0, 255], adding 10 to the
variance is often a good starting point:

x

(i) =
x̃

(i) �mean(x̃(i))p
var(x̃(i)) + 10

where x̃

(i) are unnormalized patches and “mean” and “var” are the mean and
variance of the elements of x̃(i).

(a) (b) (c)

Fig. 1: (a) Centroids learned by K-means from natural images without whitening.
(b) A cartoon depicting the e↵ect of whitening on the K-means solution. Left:
unwhitened data, where the centroids tend to be biased by the correlated data.
Right: whitened data, where centroids are more orthogonal. (c) Centroids learned
from whitened image patches.

After normalization, we can try to run K-means on the new input patches.
The centroids that are obtained (i.e., the columns of the dictionary D) are vi-
sualized as patches in Figure 1a. It can be seen that K-means tends to learn
low-frequency edge-like centroids. This result has been reproduced many times
in the past [16,37,2]. Unfortunately, it turns out that these centroids tend to
work poorly in recognition tasks [11]. One explanation for this result is that the
correlations between nearby pixels (i.e., low-frequency variations in the images)
tend to be very strong even after brightness and contrast normalization. In the
presence of these correlations, K-means tends to generate many highly correlated
centroids rather than spreading the centroids out to span the data more evenly.
A cartoon depicting this problem is shown on the left of Figure 1b. To remedy
this situation, one should use whitening (also called “sphering”) to rescale the
input data to remove these correlations [22]. This tends to cause K-means to

Whitening: choose linear transformation B such that E[(BTX)(XTB)] = Identity

Dictionary learning

Some folks claim that k-means should always be replaced by
sparse coding (never hurts, sometimes better)

… k-means is far simpler, right?

min
D,Z

||X �DZ||2F +R(Z)

“In between” k-means and sparse coding

min
D,Z

||X �DZ||2F +R(Z) subject to sparse constraints on Z

K-means: zi = [. . . , 0, 1, 0, . . .]

L0 sparse-coding: ||zi||0  M (For M = 1, we can solve for Z in closed form)

Histograms of Sparse Codes for Object Detection

Xiaofeng Ren⇤

Amazon.com
xiaofenr@amazon.com

Deva Ramanan
University of California, Irvine

dramanan@ics.uci.edu

Abstract

Object detection has seen huge progress in recent years,
much thanks to the heavily-engineered Histograms of Ori-
ented Gradients (HOG) features. Can we go beyond gradi-
ents and do better than HOG? We provide an affirmative an-
swer by proposing and investigating a sparse representation
for object detection, Histograms of Sparse Codes (HSC).
We compute sparse codes with dictionaries learned from
data using K-SVD, and aggregate per-pixel sparse codes
to form local histograms. We intentionally keep true to the
sliding window framework (with mixtures and parts) and
only change the underlying features. To keep training (and
testing) efficient, we apply dimension reduction by comput-
ing SVD on learned models, and adopt supervised training
where latent positions of roots and parts are given exter-
nally e.g. from a HOG-based detector. By learning and
using local representations that are much more expressive
than gradients, we demonstrate large improvements over
the state of the art on the PASCAL benchmark for both root-
only and part-based models.

1. Introduction

Object detection is a fundamental problem in computer
vision and has been a major focus of research activities.
There has been huge progress in object detection in recent
years, much thanks to the celebrated Histograms of Ori-
ented Gradients (HOG) features [8, 13]. The HOG fea-
tures are the basis of the original Dalal-Triggs person detec-
tor [8], the popular Deformable Parts Model (DPM) [13],
the Exemplar-SVM model [21], and pretty much every
other modern object detector. HOG is also seeing increas-
ing use in other domains such as pose estimation [34], face
recognition [35], and scene classification [32].

The HOG features, heavily engineered for both accu-
racy and speed, are not without issues or limits. They
are gradient-based and lack the ability to directly represent

⇤Work done while the author was at the Intel Science and Technology
Center for Pervasive Computing, Intel Labs.

How to represent a local patch for object detection?

Learned Sparse Codebook

Local Patch

(Histogram of) Sparse Codes

Sliding
Window

Detection

Figure 1: Can we find better features than HOG for ob-
ject detection? We develop Histograms-of-Sparse-Codes
(HSC), which represents local patches through learned
sparse codes instead of gradients and outperforms HOG by
a large margin in state-of-the-art sliding window detection.

richer (and larger) patterns. There are multiple ad-hoc de-
signs, such as 4-way normalization and 9 orientations, that
are non-intuitive and unappealing. More importantly, such
hand-crafted features are difficult to generalize or expand to
novel domains (such as depth images or the time-domain),
and they increasingly become a bottleneck as the Moore’s
Law drives up computational capabilities. There are evi-
dences that local features are most crucial for detection [23],
and we may already be saturating the capacity of HOG [36].

Can we learn representations that outperform a hand-
engineered HOG? In the wake of recent advances in feature
learning [16, 1] and its successes in many vision problems
such as recognition [19] and grouping [26], it is promising
to consider employing local features automatically learned
from data. However, feature learning for detection is a chal-
lenging problem, which has seen only limited successes so
far [7, 9], partly because the massive number of windows
one needs to scan. One could also argue that HOG is al-
ready a high dimensional representation (for the entire ob-
ject template), much higher than the number of typical pos-
itive training examples, and therefore it remains to be an-
swered whether a richer, learned representation would fur-

1

Generalizes k-means with cosine
distance to allow for negative coefficients

Histograms of Sparse Codes for Object Recognition, CVPR13

Universal texton dictionary

histogram

Example Natural Materials

Terrycloth Rough Plastic Plaster-b

Sponge Rug-a Painted Spheres

Columbia-Utrecht Database (http://www.cs.columbia.edu/CAVE)

match
polka-dot

brick

mesh

Texture

• SVD Matlab demo

• Texture

• Bag-of-words

• (Spatial) pyramid matching

Words from vocabulary

G
ov

er
nm

en
t

O
bs

er
ve

rs

P
ol

iti
ca

l

G
ov

er
nm

en
t

G
ig

ab
yt

e

O
bs

er
ve

rs

E
le

ct
io

n

M
em

or
y

G
ig

ah
er

tz

B
us

Fr
eq

ue
nc

y
of

 o
cc

ur
re

nc
e

P
ol

iti
ca

l

G
ig

ab
yt

e

E
le

ct
io

n

M
em

or
y

G
ig

ah
er

tz

B
us

Fr
eq

ue
nc

y
of

 o
cc

ur
re

nc
e

Words from vocabulary

Analogy with “bag-of-words” for
document processing

Political observers say that
the government of Zorgia
does not control the political
situation. The government
will not hold elections …

The ZH-20 unit is a
200Gigahertz processor with
2Gigabyte memory. Its
strength is its bus and high-
speed memory……

Bag-of-visual-words

Training images Filter
responses

Clustering

Object Bag of ‘words’

ICCV 2005 short course, L. Fei-Fei

Recognition with bag-of-words

▪ Summarize entire image based on its
distribution (histogram) of word
occurrences.

▪ Compare to stored library of images
(or class-specific models)

47
Image credit: Fei-Fei Li

Texture

• SVD Matlab demo

• Texture

• Bag-of-words

• (Spatial) pyramid matching

Digression: alternative to quantization
Approximate matching with histogram similarity

Aside: what’s the “right” way to
compare histograms?

Dr(x, y) =
�X

i

(xi � yi)
r
� 1

r

Chi(x, y) =

X

i

(xi � yi)
2

xi + yi

DKL(x, y) =

X

i

xi log
xi

yi

euclidean (r=2) or manhattan (r=1)

Aside: what’s the “right” way to
compare histograms?

Dr(x, y) =
�X

i

(xi � yi)
r
� 1

r

Chi(x, y) =

X

i

(xi � yi)
2

xi + yi

DKL(x, y) =

X

i

xi log
xi

yi

chi-squared distance
[derived from chi-squared text in statistics]

euclidean (r=2)
or manhattan (r=1)

K-L divergence
[log probability of seeing x under model y]

Earth mover’s distance

In [11], the histogram unfolding method is introduced
for grey-level images and is extended to more dimensions
in [18]. An “unfolded histogram” is simply the image itself
reshaped to a vector and with its pixels sorted in increas-
ing order of value. The distance between two unfolded
histograms is then defined as the norm of their vec-
tor difference. However, the computational complexity of
this method is very high, because unfolded histograms are
as large as the original pictures they come from. Even
more importantly, unfolded histograms, as the other meth-
ods described above, cannot be used for partial matching,
an essential requirement for image retrieval.

3 The Earth Mover’s Distance
In this section we propose the Earth Mover’s Distance

(EMD) between distributions in order to address the diffi-
culties discussed above. Intuitively,given twodistributions,
one can be seen as a mass of earth properly spread in space,
the other as a collection of holes in that same space. We
can always assume that there is at least as much earth as
needed to fill all the holes to capacity by switching what
we call earth and what we call holes if necessary. Then,
the EMD measures the least amount of work needed to fill
the holes with earth. Here, a unit of work corresponds to
transporting a unit of earth by a unit of (ground) distance.
Computing the EMD is based on a solution to the old

transportationproblem [1]. This is a bipartite networkflow
problem which can be formalized as the following linear
programming problem: Let be a set of suppliers, a
set of consumers, and the cost to ship a unit of supply
from to . Figure 1 shows an example with
three suppliers and two consumers. We want to find a set
of flows that minimize the overall cost

(3)

subject to the following constraints:

(4)

(5)

(6)

where is the total supply of supplier and is the total
capacity of consumer . Constraint 4 allows shipping of
supplies from a supplier to a consumer and not vice versa.
Constraint 5 forces the consumers to fill up all of their
capacities and constraint 6 limits the supply that a supplier
can send to its total amount. A feasibility condition is that
the total demand does not exceed the total supply

suppliers consumers

I J
Cij

Figure 1: An example of a transportation problem with
three suppliers and two consumers.

The transportation problem can be naturally used for
signature matching by defining one signature as the sup-
plier and the other as the consumer, and solving the trans-
portation problem where the cost is the ground distance
between element in the first signature and element in the
second. When the total weights of the signatures are not
equal (partial matches), the smaller signature will be the
consumer in order to satisfy the feasibility condition. Once
the transportation problem is solved, and we have found the
optimal flow , the earth mover’s distance is defined as

EMD

where the denominator is a normalization factor that avoids
favoring signatures with smaller total weights. In general,
the ground distance can be any distance and it will be
chosen according to the problem at hand. Examples are
given in section 4.
Thus, the EMD naturally extends the notion of distance

between single elements to distance between sets of ele-
ments, or distributions. The advantages of the EMD over
previous definitions of distributiondistances should now be
apparent. First, the EMD applies to signatures, which sub-
sume histograms. The greater compactness and flexibility
of signatures is in itself an advantage, and having a distance
measure that can handle these variable-size structures is
important. Second, the costs of moving “earth” reflect the
notion of nearness properly, without the quantization prob-
lems of most current measures. Even for histograms, in
fact, items from neighboring bins contribute similar costs.
Third, the EMD allows for partial matches in a natural way.
This is important in order to deal with occlusions and clut-
ter in image retrieval. Fourth, if the ground distance is a
metric and the total weights of two signatures are equal,
the EMD is a true metric. Computational advantages are
discussed in section 5.

4 Applications to Image Databases
In this section we show a few examples of application of

the earth mover’s distance in the areas of color and texture

Cast as “transportation problem”

Earth mover’s distance

In [11], the histogram unfolding method is introduced
for grey-level images and is extended to more dimensions
in [18]. An “unfolded histogram” is simply the image itself
reshaped to a vector and with its pixels sorted in increas-
ing order of value. The distance between two unfolded
histograms is then defined as the norm of their vec-
tor difference. However, the computational complexity of
this method is very high, because unfolded histograms are
as large as the original pictures they come from. Even
more importantly, unfolded histograms, as the other meth-
ods described above, cannot be used for partial matching,
an essential requirement for image retrieval.

3 The Earth Mover’s Distance
In this section we propose the Earth Mover’s Distance

(EMD) between distributions in order to address the diffi-
culties discussed above. Intuitively,given twodistributions,
one can be seen as a mass of earth properly spread in space,
the other as a collection of holes in that same space. We
can always assume that there is at least as much earth as
needed to fill all the holes to capacity by switching what
we call earth and what we call holes if necessary. Then,
the EMD measures the least amount of work needed to fill
the holes with earth. Here, a unit of work corresponds to
transporting a unit of earth by a unit of (ground) distance.
Computing the EMD is based on a solution to the old

transportationproblem [1]. This is a bipartite networkflow
problem which can be formalized as the following linear
programming problem: Let be a set of suppliers, a
set of consumers, and the cost to ship a unit of supply
from to . Figure 1 shows an example with
three suppliers and two consumers. We want to find a set
of flows that minimize the overall cost

(3)

subject to the following constraints:

(4)

(5)

(6)

where is the total supply of supplier and is the total
capacity of consumer . Constraint 4 allows shipping of
supplies from a supplier to a consumer and not vice versa.
Constraint 5 forces the consumers to fill up all of their
capacities and constraint 6 limits the supply that a supplier
can send to its total amount. A feasibility condition is that
the total demand does not exceed the total supply

suppliers consumers

I J
Cij

Figure 1: An example of a transportation problem with
three suppliers and two consumers.

The transportation problem can be naturally used for
signature matching by defining one signature as the sup-
plier and the other as the consumer, and solving the trans-
portation problem where the cost is the ground distance
between element in the first signature and element in the
second. When the total weights of the signatures are not
equal (partial matches), the smaller signature will be the
consumer in order to satisfy the feasibility condition. Once
the transportation problem is solved, and we have found the
optimal flow , the earth mover’s distance is defined as

EMD

where the denominator is a normalization factor that avoids
favoring signatures with smaller total weights. In general,
the ground distance can be any distance and it will be
chosen according to the problem at hand. Examples are
given in section 4.
Thus, the EMD naturally extends the notion of distance

between single elements to distance between sets of ele-
ments, or distributions. The advantages of the EMD over
previous definitions of distributiondistances should now be
apparent. First, the EMD applies to signatures, which sub-
sume histograms. The greater compactness and flexibility
of signatures is in itself an advantage, and having a distance
measure that can handle these variable-size structures is
important. Second, the costs of moving “earth” reflect the
notion of nearness properly, without the quantization prob-
lems of most current measures. Even for histograms, in
fact, items from neighboring bins contribute similar costs.
Third, the EMD allows for partial matches in a natural way.
This is important in order to deal with occlusions and clut-
ter in image retrieval. Fourth, if the ground distance is a
metric and the total weights of two signatures are equal,
the EMD is a true metric. Computational advantages are
discussed in section 5.

4 Applications to Image Databases
In this section we show a few examples of application of

the earth mover’s distance in the areas of color and texture

min
fij

X

ij

cijfij s.t.

fij � 0
X

i

fij = yj

X

j

fij = xi

EMD(x,y) =
X

ij

cijfij

Bipartite network flow

https://www.cs.duke.edu/~tomasi/papers/rubner/rubnerTr98.pdf

https://www.cs.duke.edu/~tomasi/papers/rubner/rubnerTr98.pdf

Similarity Kernals
D(x, y) = K(x, x) +K(y, y)� 2K(x, y)

Klin(x, y) =
X

i

xiyi

Kint(x, y) =
X

i

min(xi, yi)

Kbat(x, y) =
X

i

p
xiyi

[sometimes more intuitive to define than distance functions]

[what’s corresponding distance function?]

Similarity Kernals
D(x, y) = K(x, x) +K(y, y)� 2K(x, y)

Klin(x, y) =
X

i

xiyi

Kint(x, y) =
X

i

min(xi, yi)

Kbat(x, y) =
X

i

p
xiyi

[sometimes more intuitive to define than distance functions]

What happens if x,y are binary vectors?

Similarity Kernals
D(x, y) = K(x, x) +K(y, y)� 2K(x, y)

Klin(x, y) =
X

i

xiyi

Kint(x, y) =
X

i

min(xi, yi)

Kbat(x, y) =
X

i

p
xiyi

It turns out, we can compute transformations f(x) and f(y) such that L2 distance in
transformed space corresponds to these kernals (allows use of linear predictors)

http://www.robots.ox.ac.uk/~vgg/software/homkermap/

[sometimes more intuitive to define than distance functions]

Histogram intersection kernal

I(H(X), X(Y)) =
X

k

min(H(Xk), X(Yk))

Back to correspondence matching

approximate match

But what about bin effects (partial credit for near matches)?

Back to correspondence matching

approximate match

Count matches obtained from larger bins

Counting new matches

Difference in histogram intersections across
levels counts number of new pairs matched

matches at this level matches at previous level

Histogram
intersection

Giving partial credit for new matches

Weight new matches inversely porportional to bin size

1 1/2 1/4

i=0 i=1 i=2

1

2i

Pyramid match kernel

• Weights inversely proportional to bin size

• Normalize kernel values to avoid favoring large sets

measure of difficulty of a
match at level i

histogram pyramids

number of newly matched pairs at level i

Spatial Pyramid Matching
Quantize features into words, but build pyramid in space

4

Level 0

Level 1

Level 2

Feature histograms:

Level 3

Total weight (value of pyramid match kernel):

Pyramid matching
Find maximum-weight matching (weight is inversely proportional to distance)

Indyk & Thaper (2003), Grauman & Darrell (2005)

Original images

Nifty way to encode constraints like “eye” words lie near top of image

Texture

• SVD Matlab demo

• Texture

• Bag-of-words

• (Spatial) pyramid matching

