
Grouping



Outline

• Gestault motivations 

• Grouping as clustering (k-means, meanshift, 
agglomertive) 

• Graph theoretic (graph cuts, normalized cuts)



Bird’s eye view of grouping
Model-based clustering Graph theoretic (pairwise)

K-means 
Sparse coding 

Gaussian mixture models 
….

Graph cuts 
Normalized cuts 

Spectral clustering 
…. 

Start by representing pixel as a vector

xi 2 R

N

Start by computing pairs of similarities/affinities between pixels

We want vector embedding or similarity to capture gestalt cues

W
ij

= e�||xi�xj ||2



Flexibility of a similarity matrix
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Figure 1: Pixel affinity images. The first row shows an image
with one pixel selected. The remaining rows show the similarity
between that pixel and all other pixels in the image, where white
is most similar. Rows 2-4 show our patch-only, contour-only, and
patch+contour affinity models. Rows 5 and 6 show the pixel sim-
ilarity as given by the groundtruth data, where white corresponds
to more agreement between humans. Row 6 shows simply the
same-segment indicator function, while row 5 is computed using
intervening contour on the human boundary maps.

pairwise clustering [38,44,37,39,7,29,10,41]. In contrast to
central clustering techniques such as k-means or mixtures-
of-Gaussians which compare each pixel (or other image el-
ement) to some small set of prototypes, pairwise techniques
rely on the evaluation of an affinity function between each
pair of image pixels. While pairwise techniques tend to be
more computationally expensive, they have the advantage
of removing the constraint that pixels be explicitly embed-
ded in some normed vector space where Euclidean or Ma-
halanobis distances “make sense”. Instead, pixels are im-
plicitly described by their similarity to every other pixel in
the image.
The pairwise framework allows patch and gradient in-

formation equal footing in the following way. Associate a
descriptor to each pixel that captures color, brightness and
texture in a neighborhood of the pixel. The patch based sim-
ilarity between two pixels is a function of the difference in
their descriptors. A gradient is computed as the change in
these local descriptors between nearby pixels. For each pair
of pixels, record the magnitude of the gradient encountered
along a straight path connecting the two pixels in the image
plane. Large gradients indicate the presence of an “inter-
vening contour” [15] and suggests the pixels do not belong
to the same segment. The pairwise affinity between the -th

and -th pixel is given by a function whose arguments are
the similarity between the -th and -th local descriptors and
the gradients along the path from and .
Most applications of pairwise clustering to segmenta-

tion have made use of heuristically derived affinity func-
tions (e.g. [17]). It is a natural proposal [22] to learn op-
timal pairwise affinities from training data. In the results
presented here, nearly all free parameters (i.e. filter scales,
histogram binning and quantization, descriptor windowing,
combination of gradient features, etc.) have been carefully
optimized with respect to training data. Our goal is to ex-
plicitly model the posterior probability of two pixels be-
longing to the same image segment conditioned on photo-
metric properties of the image. Figure 1 shows examples
of both groundtruth affinity functions and affinity models
learned from data.
We provide two general schemes for evaluating the ef-

fectiveness of different combinations of features. The first
is to train a classifier which declares two pixels as lying
in the same or different segments given some set of fea-
tures. Classifier performance is then evaluated by consider-
ing the trade-off between precision and recall. The second
approach is to compute the mutual information between the
classifier output and the same-segment indicator provided
by the human segmentations. These two schemes are in
strong agreement which lends force to our findings:

Segmentations of the same image by different humans
are quite consistent with each other. “Fine” segmen-
tations tend to be “coarse” segmentations with regions
that have been refined by breaking them into roughly
convex parts.
The ecological statistics of the dataset show that re-
gions are mostly convex, validating the assumptions
made by the intervening contour approach.
Intervening contour and patch comparisons both
provide significant, independent information about
whether two pixels belong in the same segment.
The color cue is best captured using patches, while for
brightness one should use gradients. For texture, both
gradients and patches are valuable.
The proximity between two pixels does not pro-
vide any information not given by the patch-based or
gradient-based similarity. It is simply a result of group-
ing, not a cue.

2. Methodology
We formulate the problem of learning the pixel affinity
function as a classification problem of discriminating same-
segment pixel pairs from different-segment pairs. Let
be the true same-segment indicator so that when pix-
els and are in the same segment, and when pixels
and are in different segments.
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“Intervening contour cue”:  
two pixels are similar if there exists no strong edge between them



K-means

K-means using!
color alone,!
11 segments.!
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Aside: Given N points, what is complexity of clustering?



K-means using colour and!
position, 20 segments!

Still misses goal of perceptually!
pleasing segmentation!!
!
Hard to pick K…!
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SLIC superpixels
• Find k superpixels such that  

– Respect boundaries 
– Are spatially roughly equally sized

64

256

1024



1.Given {cj}, assign each xi to the closest j 
2.Compute the centers cj = 1/N Σ xi

0. Initialize cluster centers {cj} 

Select {cj} on a regular 
grid of k centers

Search only in a 
neighborhood 2Sx2S 

neighborhood around i 

k=9

S



http://ivrg.epfl.ch/supplementary_material/
RK_SLICSuperpixels/index.html



Meanshift clustering
Insufficiently well-known clustering algorithm: mean shift clustering

To find cluster center for P1:
Repeatedly find centroid of points in a sphere (init @ P1) and recenter at centroid until convergence



Parzen’s window estimate
Construct probability density estimate out of data samples {xi}

p(x) /
X

i

K(x� xi)



Meanshift as mode-finding

Mean Shift Segmentation Algorithm 
1.  Convert the image into tokens (via color, gradients, texture measures etc). 
2.  Choose initial search window locations uniformly in the data. 
3.  Compute the mean shift window location for each initial position. 
4.  Merge windows that end up on the same “peak” or mode. 
5.  The data these merged windows traversed are clustered together. 

Mean Shift Segmentation 

Meanshift steps perform gradient ascent on this probability model!



Mean Shift Segmentation Algorithm 
1.  Convert the image into tokens (via color, gradients, texture measures etc). 
2.  Choose initial search window locations uniformly in the data. 
3.  Compute the mean shift window location for each initial position. 
4.  Merge windows that end up on the same “peak” or mode. 
5.  The data these merged windows traversed are clustered together. 

Mean Shift Segmentation 
Meanshift clustering

Start mode-finding from each point 
Label all points that converge to same point as  one cluster

What is complexity of clustering?
How does one perform model selection (tune K)?



Agglomerative clustering
http://en.wikipedia.org/wiki/Hierarchical_clustering

Clustering Algorithms 

http://en.wikipedia.org/wiki/Hierarchical_clustering


Agglomerative clustering
Strategies for measuring distance between two clusters

Which requires a vector embedding?  
Which requires a similarity?



Sample results

Seems nice; simple and we get a “multi-scale” clustering 
Why doesn’t this solve the problem?



Outline
Model-based clustering Graph theoretic (pairwise)

K-means 
Sparse coding 

Gaussian mixture models 
….

Graph cuts 
Normalized cuts 

Spectral clustering 
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Figure 1: Pixel affinity images. The first row shows an image
with one pixel selected. The remaining rows show the similarity
between that pixel and all other pixels in the image, where white
is most similar. Rows 2-4 show our patch-only, contour-only, and
patch+contour affinity models. Rows 5 and 6 show the pixel sim-
ilarity as given by the groundtruth data, where white corresponds
to more agreement between humans. Row 6 shows simply the
same-segment indicator function, while row 5 is computed using
intervening contour on the human boundary maps.

pairwise clustering [38,44,37,39,7,29,10,41]. In contrast to
central clustering techniques such as k-means or mixtures-
of-Gaussians which compare each pixel (or other image el-
ement) to some small set of prototypes, pairwise techniques
rely on the evaluation of an affinity function between each
pair of image pixels. While pairwise techniques tend to be
more computationally expensive, they have the advantage
of removing the constraint that pixels be explicitly embed-
ded in some normed vector space where Euclidean or Ma-
halanobis distances “make sense”. Instead, pixels are im-
plicitly described by their similarity to every other pixel in
the image.
The pairwise framework allows patch and gradient in-

formation equal footing in the following way. Associate a
descriptor to each pixel that captures color, brightness and
texture in a neighborhood of the pixel. The patch based sim-
ilarity between two pixels is a function of the difference in
their descriptors. A gradient is computed as the change in
these local descriptors between nearby pixels. For each pair
of pixels, record the magnitude of the gradient encountered
along a straight path connecting the two pixels in the image
plane. Large gradients indicate the presence of an “inter-
vening contour” [15] and suggests the pixels do not belong
to the same segment. The pairwise affinity between the -th

and -th pixel is given by a function whose arguments are
the similarity between the -th and -th local descriptors and
the gradients along the path from and .
Most applications of pairwise clustering to segmenta-

tion have made use of heuristically derived affinity func-
tions (e.g. [17]). It is a natural proposal [22] to learn op-
timal pairwise affinities from training data. In the results
presented here, nearly all free parameters (i.e. filter scales,
histogram binning and quantization, descriptor windowing,
combination of gradient features, etc.) have been carefully
optimized with respect to training data. Our goal is to ex-
plicitly model the posterior probability of two pixels be-
longing to the same image segment conditioned on photo-
metric properties of the image. Figure 1 shows examples
of both groundtruth affinity functions and affinity models
learned from data.
We provide two general schemes for evaluating the ef-

fectiveness of different combinations of features. The first
is to train a classifier which declares two pixels as lying
in the same or different segments given some set of fea-
tures. Classifier performance is then evaluated by consider-
ing the trade-off between precision and recall. The second
approach is to compute the mutual information between the
classifier output and the same-segment indicator provided
by the human segmentations. These two schemes are in
strong agreement which lends force to our findings:

Segmentations of the same image by different humans
are quite consistent with each other. “Fine” segmen-
tations tend to be “coarse” segmentations with regions
that have been refined by breaking them into roughly
convex parts.
The ecological statistics of the dataset show that re-
gions are mostly convex, validating the assumptions
made by the intervening contour approach.
Intervening contour and patch comparisons both
provide significant, independent information about
whether two pixels belong in the same segment.
The color cue is best captured using patches, while for
brightness one should use gradients. For texture, both
gradients and patches are valuable.
The proximity between two pixels does not pro-
vide any information not given by the patch-based or
gradient-based similarity. It is simply a result of group-
ing, not a cue.

2. Methodology
We formulate the problem of learning the pixel affinity
function as a classification problem of discriminating same-
segment pixel pairs from different-segment pairs. Let
be the true same-segment indicator so that when pix-
els and are in the same segment, and when pixels
and are in different segments.
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“Intervening contour cue”:  
two pixels are similar if there exists no strong edge between them



Other similarity functions



Historical perspective: 
texture cues

Universal texton dictionary

histogram



Alternate perspective: 
sparse coding

• Emergence of Simple-Cell Receptive Field Properties by 
Learning a Sparse Code for Natural Images.  
Olshausen BA, Field DJ (1996). Nature, 381: 607-609 



Sparse coding (0)
min
Z,D

C(Z,D,X) where C(Z,D,X) =
X

i

||xi � dzi ||2



Sparse coding (1)
min
D,Z

||X �DZ||2F +R(Z)

X = [x1, . . . xn]

D = [d1, . . . , dK ]

Z = [z1, . . . zn]

K-means: zi = [. . . , 0, 1, 0, . . .]



min
D,Z

||X �DZ||2F +R(Z)

X = [x1, . . . xn]

D = [d1, . . . , dK ]

Z = [z1, . . . zn]

 subject to sparse constraints on Z

K-means: zi = [. . . , 0, 1, 0, . . .]

L0 sparse-coding: ||zi||0  M

L1 sparse-coding: ||zi||1  M (convex program)

(greedy algorithms known as “matching pursuit”)

Sparse coding (2)



• Emergence of Simple-Cell Receptive Field Properties by 
Learning a Sparse Code for Natural Images.  
Olshausen BA, Field DJ (1996). Nature, 381: 607-609 

Extensions include convolutional sparse coding and hierarchical sparse coding 
(similar to unsupervised pre-training)



Recent similarity functions

(lower layer?) Activations of deep network

Recent work: train deep models to return back embeddings for pixels
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Figure 1: Pixel affinity images. The first row shows an image
with one pixel selected. The remaining rows show the similarity
between that pixel and all other pixels in the image, where white
is most similar. Rows 2-4 show our patch-only, contour-only, and
patch+contour affinity models. Rows 5 and 6 show the pixel sim-
ilarity as given by the groundtruth data, where white corresponds
to more agreement between humans. Row 6 shows simply the
same-segment indicator function, while row 5 is computed using
intervening contour on the human boundary maps.

pairwise clustering [38,44,37,39,7,29,10,41]. In contrast to
central clustering techniques such as k-means or mixtures-
of-Gaussians which compare each pixel (or other image el-
ement) to some small set of prototypes, pairwise techniques
rely on the evaluation of an affinity function between each
pair of image pixels. While pairwise techniques tend to be
more computationally expensive, they have the advantage
of removing the constraint that pixels be explicitly embed-
ded in some normed vector space where Euclidean or Ma-
halanobis distances “make sense”. Instead, pixels are im-
plicitly described by their similarity to every other pixel in
the image.
The pairwise framework allows patch and gradient in-

formation equal footing in the following way. Associate a
descriptor to each pixel that captures color, brightness and
texture in a neighborhood of the pixel. The patch based sim-
ilarity between two pixels is a function of the difference in
their descriptors. A gradient is computed as the change in
these local descriptors between nearby pixels. For each pair
of pixels, record the magnitude of the gradient encountered
along a straight path connecting the two pixels in the image
plane. Large gradients indicate the presence of an “inter-
vening contour” [15] and suggests the pixels do not belong
to the same segment. The pairwise affinity between the -th

and -th pixel is given by a function whose arguments are
the similarity between the -th and -th local descriptors and
the gradients along the path from and .
Most applications of pairwise clustering to segmenta-

tion have made use of heuristically derived affinity func-
tions (e.g. [17]). It is a natural proposal [22] to learn op-
timal pairwise affinities from training data. In the results
presented here, nearly all free parameters (i.e. filter scales,
histogram binning and quantization, descriptor windowing,
combination of gradient features, etc.) have been carefully
optimized with respect to training data. Our goal is to ex-
plicitly model the posterior probability of two pixels be-
longing to the same image segment conditioned on photo-
metric properties of the image. Figure 1 shows examples
of both groundtruth affinity functions and affinity models
learned from data.
We provide two general schemes for evaluating the ef-

fectiveness of different combinations of features. The first
is to train a classifier which declares two pixels as lying
in the same or different segments given some set of fea-
tures. Classifier performance is then evaluated by consider-
ing the trade-off between precision and recall. The second
approach is to compute the mutual information between the
classifier output and the same-segment indicator provided
by the human segmentations. These two schemes are in
strong agreement which lends force to our findings:

Segmentations of the same image by different humans
are quite consistent with each other. “Fine” segmen-
tations tend to be “coarse” segmentations with regions
that have been refined by breaking them into roughly
convex parts.
The ecological statistics of the dataset show that re-
gions are mostly convex, validating the assumptions
made by the intervening contour approach.
Intervening contour and patch comparisons both
provide significant, independent information about
whether two pixels belong in the same segment.
The color cue is best captured using patches, while for
brightness one should use gradients. For texture, both
gradients and patches are valuable.
The proximity between two pixels does not pro-
vide any information not given by the patch-based or
gradient-based similarity. It is simply a result of group-
ing, not a cue.

2. Methodology
We formulate the problem of learning the pixel affinity
function as a classification problem of discriminating same-
segment pixel pairs from different-segment pairs. Let
be the true same-segment indicator so that when pix-
els and are in the same segment, and when pixels
and are in different segments.
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ABSTRACT

This paper proposes a new deep convolutional neural network (DCNN) architec-
ture that learns pixel embeddings, such that pairwise distances between the em-
beddings can be used to infer whether or not the pixels lie on the same region.
That is, for any two pixels on the same object, the embeddings are trained to be
similar; for any pair that straddles an object boundary, the embeddings are trained
to be dissimilar. Experimental results show that when this embedding network
is used in conjunction with a DCNN trained on semantic segmentation, there is a
systematic improvement in per-pixel classification accuracy. Our contributions are
integrated in the popular Caffe deep learning framework, and consist in straight-
forward modifications to convolution routines. As such, they can be exploited for
any task involving convolution layers.

1 INTRODUCTION

Deep convolutional neural networks (DCNNs) (LeCun et al., 1998) are the method of choice for a
variety of high-level vision tasks (Razavian et al., 2014). Fully-convolutional DCNNs have recently
been a popular approach to semantic segmentation, because they can be efficiently trained end-to-
end for pixel-level classification (Sermanet et al., 2014; Chen et al., 2014; Long et al., 2014).

A weakness of DCNNs is that they tend to produce smooth and low-resolution predictions, partly
due to the subsampling that is a result of cascaded convolution and max-pooling layers. Many
different strategies have been explored for sharpening the boundaries of predictions produced by
fully-convolutional DCNNs. One popular strategy is to add a dense conditional random field (CRF)
to the end of the DCNN, introducing contextual information to the segmentation via long-range
dependencies in the CRF (Chen et al., 2014; Lin et al., 2015). Another strategy is to reduce the
subsampling effected by convolution and pooling, by using the “hole” algorithm for convolution
(Chen et al., 2014). A third strategy is to add trainable up-sampling stages to the network via “de-
convolution” layers in the DCNN (Noh et al., 2015; Long et al., 2014).

This paper’s strategy, which is complementary to those previously explored, is to train the network to
produce segmentation-like internal representations, so that foreground pixels and background pixels
within local patches can be treated differently. In particular, the aim is to increase the sharpness
of the DCNN’s final output by using local pixel affinities to filter and re-weight the final layer’s
activations. For instance, as can be seen in Figure 1, if a DCNN is centered on a “boat” pixel, but
the surrounding patch includes some pixels from an occluder or the background, the DCNN’s final
prediction will typically reflect the presence of the distractors by outputting a mix of “boat” and
“background”. The approach of this paper is to learn and use semantic affinities between pixels, so
that the DCNN output centered at the “boat” pixel can be strengthened by using information from
other “boat” pixels within the patch. More generally, the approach allows the prediction at any pixel
to be replaced with a weighted average of the similar neighboring predictions. This has the effect of
sharpening the predictions at object boundaries, while making predictions within object boundaries
more uniform.

The key to accomplishing this is to have the network produce internal representations that lend
themselves to pairwise comparisons, such that any pair that lies on the same object will produce a
high affinity measure, and pairs that straddle a boundary produce a low affinity measure. Prior work
has investigated the use of affinity cues in similar contexts (Ren & Malik, 2003; Dai et al., 2014), but

1
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Graph-theoretic grouping
Formalize grouping as a graph labeling problem  

(cf, discrete MRFs for low-level vision)



Global energy function

Pixel labeling

yi =

2

4
ri

bi

gi

3

5

�(xi = 1) = � log p(yi|xi = 1)

�(xi = 0) = � log p(yi|xi = 0)

min
x

E(X), E(x) =
X

i

�

i

(x
i

) x

i

2 {0, 1}



Markov Random Field (MRF) energy functions

E(x) =
X
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 ij(xi, xj) +
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Inference in MRFs

• In general, computing the min energy soln is NP complete  

• Inference is tractable for some problems 

• Trees 

• Submodular functions (“graphcut-able”)



Iterated conditional modes

Winkler, 1995Sequentially update xi := argminE(x)

E(x) =
X

ij

 ij(xi, xj) +
X

i

�i(xi)



MRF nodes as pixels

Winkler, 1995, p. 32



Markov Random Field (MRF) energy functions

“Submodular” energy function (favors smooth labels)

E(x) =
X

ij

 ij(xi, xj) +
X

i

�i(xi)

 ij(0, 0) +  ij(1, 1)   ij(0, 1) +  ij(1, 0)



E(x) =
X

ij2E
WijI(xi 6= xj) +

X

i2V

�i(xi)
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Potts pairwise model



Graph construction

source

terminal

9

8

4

3

5

56

10

(x=1)

(x=0)

1. Define node for each pixel 
2. Add edges between pixels with weight = cost of diagreeing label 
3. Add a source + terminal node 
4. Add edges from pixels to source+terminal with weight = cost of fg/bg label

E(x) =
X

ij2E
WijI(xi 6= xj) +

X

i2V

�i(xi)

Claims: (1) minimum energy soln given by minimum cut that separates s-t nodes
(2) Equivalent to min-cut max-flow problem



Max-flow (sketch)

(1) “Per-pixel” labeling: max-out flow along each s-pixel-t path

source

sink

9

8
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5
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(x=0)

3 10
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3 10

source

sink

3

1

6

(x=1)

(x=0)

3 14

Flow += 5+4+5 => 14Flow=0 Flow += 4 => 18

(2)   Push out remaining flow (find flowable path with bread-first search)

An island of pixels will be cut when the costs of its perimeter is smaller than the (delta) cost of its area 

Repeat until you can’t push any more flow



Extensions - k-way labeling

21 

Expansion move algorithm 

  Find green expansion move that most decreases E 

– Move there, then find the best blue expansion move, etc 

–  Done when no alpha-expansion move decreases the

 energy, for any label alpha 

Input labeling f 

Green expansion

 move from f 

xi 2 {1 . . .K}

E(x) =
X

ij2E
WijI(xi 6= xj) +

X

i2V

�i(xi)



Interactive segmentation
Segmentation with min-cut

Use user-strokes to fix certain labels to fb/bg or learn initial color models



Combining k-means + graph cutsGrabCut

http://research.microsoft.com/vision/Cambridge/papers/siggraph04.pdf

Spatially Coherent Clustering Using Graph Cuts

Ramin Zabih Vladimir Kolmogorov
Cornell University Microsoft Research
Ithaca, NY 14853 Cambridge, UK

Abstract

Feature space clustering is a popular approach to image
segmentation, in which a feature vector of local proper-
ties (such as intensity, texture or motion) is computed
at each pixel. The feature space is then clustered, and
each pixel is labeled with the cluster that contains its
feature vector. A major limitation of this approach is
that feature space clusters generally lack spatial coher-
ence (i.e., they do not correspond to a compact group-
ing of pixels). In this paper, we propose a segmenta-
tion algorithm that operates simultaneously in feature
space and in image space. We define an energy func-
tion over both a set of clusters and a labeling of pix-
els with clusters. In our framework, a pixel is labeled
with a single cluster (rather than, for example, a dis-
tribution over clusters). Our energy function penal-
izes clusters that are a poor fit to the data in feature
space, and also penalizes clusters whose pixels lack spa-
tial coherence. The energy function can be efficiently
minimized using graph cuts. Our algorithm can incor-
porate both parametric and non-parametric clustering
methods. It can be applied to many optimization-based
clustering methods, including k-means and k-medians,
and can handle models which are very close in feature
space. Preliminary results are presented on segmenting
real and synthetic images, using both parametric and
non-parametric clustering.

1. Feature-Space Analysis

Many problems in computer vision require estimating
local properties at each pixel, such as texture or mo-
tion, and then using these properties for segmentation.
To accurately compute these local properties, of course,
would require knowing the segmentation ahead of time.
A popular way to overcome this difficulty is to use
feature-space analysis [4, 19, 5, 6, 20, 17, 27]. In this
technique, a vector of local properties (“features”) is
computed at each pixel without a segmentation, and
then mapped into the feature space. Significant fea-
tures will be shared by numerous pixels, and thus form
a dense region in feature space. These dense regions

can be detected by one of the numerous available clus-
tering techniques (see section 8 of [11] for a recent re-
view of clustering methods in vision). Clusters in fea-
ture space can then be used for image segmentation,
typically by fitting a parametric model to each cluster
and then labeling the pixels whose feature vectors lie
in the cluster with the parameters.

We can formalize the feature-space analysis ap-
proach as follows. The input image will have a set
of pixels P . The feature space X has d dimensions.
For each pixel p ∈ P there is a corresponding feature
vector xp ∈ X . The feature space will be summa-
rized by a set of K models. Each model k describes
a cluster in X , and has some parameters θk. The en-
tire set of clusters can be described by the parameter
set θ = {θ1, . . . , θK}. The desired output will consist
of the parameter set θ, plus a labeling f that assigns
each pixel p to a model fp ∈ {1, . . . , K}. A cluster
can also be viewed as a subset of the pixels, where
Pk(f) = {p|fp = k}, or as a set of points in feature
space Xk(f) = {xp|p ∈ Pk(f)}. Note that in this for-
mulation we have made a few simpifying assumptions.1
These assumptions are purely to simplify the notation,
and are not required for our method.

As an example, consider a very simple color image
segmentation algorithm. The feature space would have
3 dimensions (one per color channel). An even simpler
image segmentation algorithm would use grayscale in-
tensity as its single feature, and compute thresholds
between the different clusters. Each model might be
a gaussian, parameterized by its mean and variance
θk = (µk, σk). The pixel p will be labeled with the
model fp that has the highest density at the point xp.

1.1. Spatial coherence
The natural approach to these vision problems is to
do feature space clustering and pixel labeling as two
separate phases. However, a good cluster in feature

1We assume a single input image, even though there can be
more than one (for example, in motion segmentation). We also
assume that each pixel has a different feature vector, since oth-
erwise Xk(f) is a bag rather than a set. Our notation also im-
plicitly assumes that the models are parameterized.

1

min
x,µ

X

ij2E
W

ij

I(x
i

6= x

j

) +
X

i2V

||y
i

� µ

xi ||2



Multi-dimensional graphcuts

(c) ariel shamir

Extension to video: 3D graph of pixels

Frame t

Frame t+1

Frame t+2 Time

Video Cube
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3D Graph Cut
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Can we define a generic 
cut without a local term?

Allows us to group pixels sole based off of pairwise properties

2|| ji xx
ij eW

Weighted adjacency matrix: 



The problem with MinCutThe problem with mincuts
(local terms reduce this, but tendency is still there in graphcuts !)



Up next…
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Finding high quality cuts

• Problem: finding the minimum normalized 

cut is NP-hard, even for k=2.

• Solution: Formulate as a quadratic 

program and relax integer constraints to 

get an approximate solution

– uses nice ideas from linear algebra and 

spectral graph theory



Matrix formulation

Define an indicator vector specifying partition it belongs to

Cut(A,V-A) = xTDx -xTWx 



D-W often called the graph laplacian







How to discretize eigenvectors?

Heuristic that works well: interpret k eigenvectors as coordinates for 
points in Rk and cluster again (using say, k-means) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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K-means on eigenvectors 
“spectral clustering” K-means

Intuition: eigenvectors capture transitive similarity properties







A look back
Superpixels 

“oversegmentation”
Object proposals 

“segmentation soup”

Constrained Parametric Min-Cuts for Automatic Object Segmentation

Joao Carreira and Cristian Sminchisescu
Computer Vision and Machine Learning Group, Institute for Numerical Simulation,

Faculty of Mathematics and Natural Sciences, University of Bonn
{carreira, cristian.sminchisescu}@ins.uni-bonn.de

Abstract

We present a novel framework for generating and rank-
ing plausible objects hypotheses in an image using bottom-
up processes and mid-level cues. The object hypotheses
are represented as figure-ground segmentations, and are ex-
tracted automatically, without prior knowledge about prop-
erties of individual object classes, by solving a sequence
of constrained parametric min-cut problems (CPMC) on a
regular image grid. We then learn to rank the object hy-
potheses by training a continuous model to predict how
plausible the segments are, given their mid-level region
properties. We show that this algorithm significantly out-
performs the state of the art for low-level segmentation
in the VOC09 segmentation dataset. It achieves the same
average best segmentation covering as the best perform-
ing technique to date [2], 0.61 when using just the top 7
ranked segments, instead of the full hierarchy in [2]. Our
method achieves 0.78 average best covering using 154 seg-
ments. In a companion paper [18], we also show that the
algorithm achieves state-of-the art results when used in a
segmentation-based recognition pipeline.

1. Introduction
The challenge of organizing the elements of an image

into plausible object regions, or segments, without knowing
a-priori which objects are present in that image is one of
the remarkable abilities of the human visual system, which
we often take for granted. A more vivid conscious expe-
rience arises, perhaps, when observing abstract paintings.
Clearly, in our perceived visual world not every hypothesis
is equally likely, for example objects are usually compact,
resulting in their projection in the image being connected;
it is also common for strong contrast edges to mark objects
boundaries.
The statistics of real-world object regions are not easy

to incorporate into segmentation algorithms, making their
performance sometimes brittle. One possibility would be to
learn the parameters of the segmentation algorithm directly,

Figure 1. Our object segmentation framework. Segments are ex-
tracted around regularly placed foreground seeds, with various
background seeds corresponding to image boundary edges, for
all levels of foreground bias, which has the effect of producing
segments with different scales. The resulting set of segments is
filtered and ranked according to their plausibility of being good
object hypotheses, based on mid-level properties.

by training a machine learning model using large amounts
human annotated data. However, the local scope of de-
pendencies and the intrinsically combinatorial nature of im-
age segmentation diminishes the effectiveness of learning in
such ‘pixel spaces’, at least with any moderately interesting
model. On the other hand, once sufficient image support is
available, learning to distinguish ‘good’ segments that rep-
resent plausible projections of real-world surfaces, from ac-
cidental image partitionings, is feasible.
A second issue is related to what can be expected from

a bottom-up object hypothesis segmenter. Are segment hy-
potheses allowed to overlap with each other? Should one
aim at multi-part image segmentations early? We argue that
segmentation is already a sufficiently challenging problem
without such constraints, and that global spatial consistency
should be, perhaps, enforced at a later stage of processing,
by higher-level routines that have better scope for this cal-
culation. We argue that complex early multi-part consis-
tency constraints disallow the speculative behavior neces-
sary for segmentation algorithms, given the inherently am-
biguous nature of the low-level cues they typically operate
on. Hence, differently from most of the existing approaches
to multiple segmentations, we derive methods to generate

1
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on. Hence, differently from most of the existing approaches
to multiple segmentations, we derive methods to generate

1
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Cartoon image exampleCartoon image example

E(f, C) =

Z

⌦
(I(x)� f(x))2dx+

Z

⌦\C
|rf(x)|dx+

Z

C
ds

f: piecewise smooth approximation of image I 
C: set of curves around each segment

Optimize with gradient descent
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