Grouping



Outline

e (Gestault motivations

* (Grouping as clustering (k-means, meanshitt,
agglomertive)

* Graph theoretic (graph cuts, normalized cuts)



Bird’'s eye view of grouping

Model-based clustering Graph theoretic (pairwise)

e G

K-means Graph cuts
Sparse coding Normalized cuts
Gaussian mixture models Spectral clustering

Start by representing pixel as a vector Start by computing pairs of similarities/affinities between pixels
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We want vector embedding or similarity to capture gestalt cues



Flexibility of a similarity matrix

“Intervening contour cue’:
two pixels are similar if there exists no strong edge between them



K-means using
color alone,
11 segments.

Aside: Given N points, what is complexity of clustering”






SLIC superpixels

* FInd k£ superpixels such that

— Respect boundaries
— Are spatially roughly equally sized




Select {¢;} on a regular

grid of k centers

0. Initialize cluster centers {c;

|
1.Given {c¢;§, assign each x; to the closest j

2.Compute the centers ¢; = 2 X.

Search only in a

neighborhood 25x2S
neighborhood around i



http://ivrg.epfl.ch/supplementary material/
RK SLICSuperpixels/index.html
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Meanshift clustering

Insufficiently well-known clustering algorithm: mean shitt clustering

To find cluster center for P1:

Repeatedly find centroid of points in a sphere (init @ P1) and recenter at centroid until convergence



Parzen's window estimate

Construct probability density estimate out of data samples {xi}




Meanshift as mode-finding

Meanshitt steps perform gradient ascent on this probability model!




Meanshift clustering

Start mode-finding from each point
Label all points that converge to same point as one cluster

3-8 28 8 8 sl piissnice
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What is complexity of clustering?
How does one perform model selection (tune K)7



Agglomerative clustering

http://en.wikipedia.org/wiki/Hierarchical_clustering
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Algorithm 15.3: Aggomerative clustering, or clustering by mergjng

Make each point a separate cluster
Until the clustering is satisfactory
Merge the two clusters with the
smallest inter-cluster distance
end



http://en.wikipedia.org/wiki/Hierarchical_clustering

Agglomerative clustering

Strategies for measuring distance between two clusters

Names Formula
Maximum or complete linkage clustering max { d(a,b):a€ A, be B }
Minimum or single-linkage clustering min {([ (a,b):ac A, be B }
Mean or average linkage clustering, or UPGMA A|B Z Z d(a,b).
|| | acA beB
Centroid linkage clustering, or UPGMC | |(. s — Cp | | where Cg and C; are the centroids of clusters s and {, respectively.

Which requires a vector embedding?
Which requires a similarity?



Sample results
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Seems nice; simple and we get a “multi-scale” clustering

Why doesn't this solve the problem?



Outline

Model-based clustering Graph theoretic (pairwise)

K-means Graph cuts
Sparse coding Normalized cuts
Gaussian mixture models Spectral clustering
Start by representing pixel as a vector Start by computing pairs of similarities/affinities between pixels
2
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We want vector embedding or similarity to capture gestalt cues



Flexibility of a similarity matrix

“Intervening contour cue’:
two pixels are similar if there exists no strong edge between them



Other similarity functions



Historical perspective

[exture Cues

Filter

E M M M 4
.ooocoooooo.
0%6% %%
.0000000000.
.0000000000.
0%%:%
_0000000000.
0%6%%e%"*

==l EENNEN
SRS ENRENI

I
o
|

a-
- 13
g >
B
.

Filter responses



Alternate perspective;
sparse coding
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 Emergence of Simple-Cell Receptive Field Properties by
Learning a Sparse Code for Natural Images.
Olshausen BA, Field DJ (1996). Nature, 381: 607-609



Sparse coding (0)

. 2
?%C(Z,D,X) where C(Z,D, X) ZHx —d, ||



Sparse coding (1)

in || X — DZ||5
min | |7

X = LEl,QZ‘n]
D=[d,..., dg]
[ = Zl,Zn]

K-means: z; =1...,0,1,0,...]



Sparse coding (2)

min || X — DZ] |% subject to sparse constraints on Z

D.Z

K-means: z;

LO sparse-coding:
L1 sparse-coding:

2
2

Z = |21,...2y]

=1...,0,1,0,..]

o <M
1 <M

(greedy algorithms known as “matching pursuit”)

(convex program)
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 Emergence of Simple-Cell Receptive Field Properties by
Learning a Sparse Code for Natural Images.
Olshausen BA, Field DJ (1996). Nature, 381: 607-609

Extensions include convolutional sparse coding and hierarchical sparse coding
(stmilar to unsupervised pre-training)



(lower layer?) Activations of deep network

Recent work: train deep models to return back embeddings for pixels

TIIl

LEARNING DENSE CONVOLUTIONAL EMBEDDINGS
FOR SEMANTIC SEGMENTATION



Bird’'s eye view of grouping

Model-based clustering Graph theoretic (pairwise)

e G

K-means Graph cuts
Sparse coding Normalized cuts
Gaussian mixture models Spectral clustering

Start by representing pixel as a vector Start by computing pairs of similarities/affinities between pixels

’ — . 2
CE@ERN W, =e [l =5

We want vector embedding or similarity to capture gestalt cues



Graph-theoretic grouping

Formalize grouping as a graph labeling problem
(cf, discrete MRFs for low-level vision)

O O O
O C)
19| e
\/x/

O

\

X
\



Global energy function

¢ 1

Pixel labeling

T

min F(X), E(x):Z@(xi) z; € {0,1}




Markov Random Field (MRF) energy functions
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INnference In MRFs

* |n general, computing the min energy soln is NP complete
* [nference is tractable for some problems
* Trees

» Submodular functions (“graphcut-able”)



[terated conditional modes

d = f

Fig. 6.2. Various steps of ICM

Sequentially update x; := arg min F(x)



Fig. 2.3. Smoothing
with the wrong prior. (a)
Original, (b) degraded
image, (c¢) MAP esti-
mate 3 = 1, (d) MAP
estimate 8 = 0.3, (e)



Markov Random Field (MRF) energy functions
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E(r) = Z%‘(% Tj) + Z ¢i(x;)

1i5(0,0) +4;(1,1) <1;5(0,1) + 1045 (1,0)

“Submodular” energy function (favors smooth labels)



Potts pairwise model

source

sink




B~

Graph construction

E(z) = Z WijI(z; # xj) + Z ¢i (i)

ijEE =%

Define node for each pixel
Add edges between pixels with weight = cost of diagreeing label

Add a source + terminal node
Add edges from pixels to source+terminal with weight = cost of fg/bg label

(x=1)

ey
OO0
6 lg / 5

terminal ]

(x=0)

Claims: (1) minimum energy soln given by minimum cut that separates s-t nodes

(2) Equivalent to min-cut max-flow problem



Max-flow (sketch)

(x=1)
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Flow=0 Flow += 5+4+5 => 14 Flow +=4 => 18

(1) “Per-pixel” labeling: max-out flow along each s-pixel-t path

(2) Push out remaining flow (find flowable path with bread-first search)

Repeat until you can’t push any more flow

An island of pixels will be cut when the costs of its perimeter is smaller than the (delta) cost of its area



Extensions - k-way labeling

E(x) =Y Wil(z; #x;)+ Y ¢i(w;)

ijEE eV

Input labeling

Green expansion
move from f

| >

= Find green expansion move that most decreases FE
- Move there, then find the best blue expansion move, etc

— Done when no alpha-expansion move decreases the
energy, for any label alpha



Interactive segmentation

(¢) Cardiac MR (e) Lung CT

(d) LV Segment (f) Lobe Segment (h) Liver Segment

Use user-strokes to fix certain labels to fb/bg or learn initial color models



ombining k-means + graph cuts

“GrabCut” — Interactive Foreground Extraction using lterated Graph Cuts

= : M 4
Carsten Rother” Viadimir l'\olnlog_vorov'r Andrew Blake*
Microsoft Research Cambridge, UK

Figure 1: Three examples of GrabCut. The user drags a rectangle loosely around an object. The object is then extracted automatically.

Spatially Coherent Clustering Using Graph Cuts

Ramin Zabih Vladimir Kolmogorov
Cornell University Microsoft Research
Ithaca, NY 14853 Cambridge, UK
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Multi-dimensional graphcuts
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Frame t+2 Time
‘ Frame t+1
Frame t

Video Cube Video Cube




Can we define a generic
cut without a local term?

Allows us to group pixels sole based oft of pairwise properties



The problem with mincuts

(local terms reduce this, but tendency is still there in graphcuts !)
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Up next...

Normalized Cuts and Image Segmentation

Jianbo Shi and Jitendra Malik, Member, IEEE

Abstract—We propose a novel approach for solving the perceptual grouping problem in vision. Rather than focusing on local features
and their consistencies in the image data, our approach aims at extracting the global impression of an image. We treat image
segmentation as a graph partitioning problem and propose a novel global criterion, the normalized cut, for segmenting the graph. The
normalized cut criterion measures both the total dissimilarity between the different groups as well as the total similarity within the
groups. We show that an efficient computational technique based on a generalized eigenvalue problem can be used to optimize this
criterion. We have applied this approach to segmenting static images, as well as motion sequences, and found the results to be very
encouraging.



Graph Termmology

Weighted adjacency matrix:




Cuts in a graph




Graph Terminology

Degree of node:

120 140




Graph Terminology

Volume of set: .
“UOZ(A) — Z d'?f.a A (_: ‘/' ¢ =

€A A




Normalize cuts in a graph

e (edge) Ncut = balanced cut @ = ? %

| 1
Ncut(A, B) = cut(A, B)(

vol(A) 3 ’UOZ(B))




Normalize cuts in a graph

e (edge) Ncut = balanced cut @ %

1 <& cut \
Neut(V,,V,,.V,) = — 3 i1 Vi,V \V))
K vol(V)

Multiple cuts



Finding high quality cuts

* Problem: finding the minimum normalized
cut is NP-hard, even for k=2.

» Solution: Formulate as a quadratic
program and relax integer constraints to
get an approximate solution

— uses nice ideas from linear algebra and
spectral graph theory



Matrix formulation

P1 0 0
1 0 0
X=1010
O 1 0
0 0 1

Define an indicator vector specitying partition it belongs to
Cut(A,V-A) = xTDx -x"Wx




K

_ ] cut ( V[ Y V — V[)
Nceut(X) =
cut(X) K [Z; vol(Vp)

K
1 o XD - Wi,
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XT DX,

X0 118 Xl — 1y

D-W often called the graph laplacian



becomes

Neut(Z) = %tr(ZTWZ) Z'DZ = I

Rayleigh and Ritz Says:

Eigensolutions

(D—W)z* = ADz"

Z* — [ZI7 z;? Sy ZZ]




Eigenvectors




How to discretize eigenvectors? — [mm——

A
y

Heuristic that works well: interpret k eigenvectors as coordinates for
points in R¥ and cluster again (using say, k-means)

K-means on eigenvectors

“spectral clustering” K-means

Intuition: eigenvectors capture transitive similarity properties
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A ook back

Object proposals
“segmentation soup”

Superpixels
‘oversegmentation”

model-based clustering graphcuts



Mumford-Shah functional

B(.C) = [ (160 = fx)dx + [

Q\C

Vf(x)|dx + / ds

C

f: piecewise smooth approximation of image |
C: set of curves around each segment

Optimize with gradient descent



Image snakes

Evolution of Explicit Boundaries




