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Formalizing recognition
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Output

What are outputs of interest? 
How should space of outputs be represented?
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yes-no answers: does this contain a car?
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is this a beach?Image classification
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Object poses + materialsAttributes
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What are these people doing?Activities



Instance recognition
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Recognition meet geometry



Formalizing recognition

Human vision experiment: what can people describe when looking at images?

Tricky question to answer….



Rapid scene catgorization
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Appears to suggest feed-forward computations suffice (or at least dominate)

People can distinguish high-level concepts (animal/transport) in under 150ms (Thorpe)



phrases that corresponded to different environments.2 We
typed each of these words or word phrases in the Google
image search engine. From the first few page(s) of search
results, we randomly selected 3–6 images that depicted
the keyword. The Google image search engine largely
returned images found on people’s personal websites,
most often taken with a snapshot camera. Although
everyone has a bias when taking a picture, we believe
that the large number of images from different unknown
sources would help average out these biases.
A number of authors have suggested that color

information is not critical for the rapid categorization of
scenes (Fabre-Thorpe, Delorme, Marlot, & Thorpe, 2001;
Fei-Fei et al., 2005). While color could be diagnostic in a
later stage of recognition (Oliva & Schyns, 2000), and
uncommon colors might even hinder rapid scene catego-
rization (Goffaux, Jacques, Mauraux, Oliva, Schynsand, &
Rossion, 2005), we are mostly concerned with the initial
evolution of scene perception. Thus, we decided to use only
grayscale versions of our images for our experiments. It will
be, however, interesting to compare our results with a
future study using colored images.

Experimental Stage I: Free recall
Subjects

Twenty-two highly motivated California Institute of
Technology students (from 18 to 35 years old) who were
proficient in English served as subjects in Experiment

Stage I. One author (A.I.) was among the subjects. All
subjects (including A.I.) were naive about the purpose of
the experiments until all data were collected.

Apparatus

Subjects were seated in a dark room especially designed
for psychophysics experiments. The seat was approxi-
mately 100 cm from a computer screen, connected to a
Macintosh (OS9) computer. The refresh rate of the
monitor was 75 Hz. All experimental software was
programmed using the Psychophysics Toolbox (Brainard,
1997; Pelli, 1997) and MATLAB.

Procedure

Figure 3 illustrates a single trial of Stage I. An image
from our data set was presented for one of seven different
possible PTs: 27, 40, 53, 67, 80, 107, and 500 ms. For
each trial, the particular PT was randomly selected with
equal probability from these choices. The image was then
masked by one of eight natural image perceptual masks,
constructed by superposing white noise band-passed at
different spatial frequencies (Li et al., 2002; VanRullen, &
Koch, 2003). The subject was then shown a screen with
the words:

Please describe in detail what you see in the picture.
Two sample responses are: 1. City scene. I see a big
building on the right, and some people walking by

Figure 3. A single trial in Stage I: A fixation cross appeared for about 250 ms. An image from our data set was then presented at the
center, subtending 6- ! 8- in visual angle. After a variable PT, the image was masked by one of eight natural image perceptual masks (for
details of the mask, see Li et al., 2002). The time between the onset of the image and the onset of the mask is called the PT. The mask
was presented for 500 ms. Afterward, subjects were prompted to a screen in which they were asked to type in what they had seen of the
image. Subjects were given an unlimited amount of time to write down their responses. When they were ready to continue, they could
initiate the next trial by pressing the space bar.
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Introduction

It is known that humans can understand a real-world scene
quickly and accurately, saccading many times per second
while scanning a complex scene. Each of these glances
carries considerable information. Filmmakers have long
exploited this ability through a technique called Bflash cut.[
In a commercial motion picture called The Pawnbroker
(Lumet, 1965), S. Lumet inserted an unusually brief scene
that represented a distant memory. Lumet found that a
presentation lasting a third of a second, although unexpected
and unrelated to the flow of the main narrative, was sufficient
for the audience to capture the meaning of the interposed
scene (Biederman, Teitelbaum, & Mezzanotte, 1983).
Pioneering studies extended these anecdotal findings.

Potter (1976) and Potter, Staub, Rado, and O’Connor
(2002) utilized rapid serial visual presentations of images
and revealed that subjects could perceive scene content in
less than 200 ms. Furthermore, Potter demonstrated that

although the semantic understanding of a scene is quickly
extracted, it requires a few hundred milliseconds to be
consolidated into memory (Potter, 1976). Later studies
documented limits to our perception of a scene. Rensink,
O’Regan, and Clark (1997) showed that changes to
retinotopically large portions of the scene will sometimes
go unobserved. It is likely that this occurs if the regions
are not linked to the scene’s overall Bmeaning.[
Other hallmark investigations attempted to elucidate the

information involved in this Boverall meaning[; their
conclusions regarding scene perception paralleled con-
cepts in auditory studies of sentence and word compre-
hension. Biederman et al. found that recognition of objects
is impaired when those objects are embedded in a randomly
jumbled rather than a coherent scene (Biederman, 1972).
They identified several physical (support, interposition)
and semantic (probability, position, size) constraints that
objects must satisfy within a scene, similar to the syntactic
and grammatical rules of language (Biederman, 1982).
They investigated how object recognition was modulated
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accurate measured the Bdegree[ to which the attribute was
perceived in this image. This initial score thus reflected a
particular image, PT, and scorer. The scores were then
normalized: The seven scores for a given image (one for
each PT) were divided by the highest score achieved for
that image (across all PTs). All evaluation scores were
therefore between 0 and 1. Due to this Bwithin-image[
normalization, inherent differences in Bdifficulty[ of
perceiving or understanding scenes between different
images were eliminated.
These scores were then utilized in three general kinds of

analyses, depending on the issues we were interested in
exploring. Most questions we asked fall into the realm of
characterizing the content of subject’s perception. Hence,
in the first type of analysis, the evaluation scores were
further averaged over images so that the averaged evalua-
tion score represented the degree to which the attribute was
perceived at a given PT across the entire image set.
Finally, the scores were averaged over all five scorers.

Because this is the primary analysis employed, we
will focus on the evaluation of one attribute, building, to
better illustrate the parameters just discussed (depicted in
Figure 6).
On the x-axis are the seven PTs for which images were

displayed. The y-axis reflects normalized accuracy evalu-
ation score. For the PT of 80 ms, for example, each scorer
sees roughly three responses for each image. For each
response, the scorer determines whether the attribute
building was accurately reported with respect to the
corresponding image (the other 104 attributes were also
checked, but we will not follow those for the purposes of
this example.) Suppose that the scorer indicates that
building was described accurately in only one response.
The initial evaluation score for the attribute building for
this image at PT 80 ms is therefore 1/3 or 0.33. Suppose
also that the maximum accuracy score achieved in
describing this image occurred at PT 500 ms, where two
thirds of the responses accurately reported a building. This
maximum score of 0.67 would be used to normalize all
scores so that the evaluation score PT 80 ms is now 0.5
and the score at 500 ms is 1.0. This normalization allows
each image to be its own baseline; therefore, differences in
the quality of the image (i.e., simple vs. cluttered, see
Figure 7) will not affect scores. Finally, all normalized
building scores at PT 80 msVone for each imageVare
averaged to obtain the final evaluation score at this PT for
this particular scorer.
This process of normalization per image and then

averaging over all images is done for each PT. Again,
the resulting values are per scorer. Thus, in Figure 6, the
yellow, blue, green, cyan, and magenta lines each
represent the normalized evaluation scores (averaged over
images) for one scorer. These curves are then averaged
over all the scorers. The resulting means are plotted in the
red line in Figure 6, with error bars representing standard
error of the mean.

Figure 6. A sample score plot for the building attribute.

 

 

Figure 7. Subject description samples. In the first row, the scene is relatively easy. Subjects are nearly as good at perceiving the details of
the scene at PT 107 ms compared to PT 500 ms. In the second row, the scene is more cluttered and complex.
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Hierarchical annotation

Figure 2: An example of a scene graph (bottom) and a grounding
(top). The scene graph encodes objects (“girl”), attributes, (“girl is
blonde”), and relationships (“girl holding racket”). The grounding
associates each object of the scene graph to a region of an image.
The image, scene graph, and grounding are drawn from our real-
world scene graphs dataset (Sect. 4).

3. Scene Graphs
To retrieve images containing particular semantic con-

tents, we need a formalized way of representing the contents
of a scene. This representation must be powerful enough to
describe the rich variety of scenes that can exist, without
being too cumbersome. To this end, we define two abstrac-
tions: a scene graph, which is a way of describing a scene,
and a scene graph grounding, which is a concrete associa-
tion of a scene graph to an image.

3.1. Definition
A scene graph is a data structure that describes the con-

tents of a scene. A scene graph encodes object instances,
attributes of objects, and relationships between objects.

This simple formulation is powerful enough to describe
visual scenes in great detail because it places no restriction
on the types of objects, attributes, and relationships that can
be represented. Fig. 2 (bottom) shows an example of a scene
graph. In this example we see that object instances may
be people (“girl”), places (“tennis court”), things (“shirt”),
or parts of other objects (“arm”). Attributes can describe
color (“cone is orange”), shape (“logo is round”), and pose
(“arm is bent”). Relationships can encode geometry (“fence
behind girl”), actions (“girl swinging racket”), and object
parts (“racket has handle”).

Formally, given a set of object classes C, a set of attribute
types A, and a set of relationship types R, we define a scene
graph G to be a tuple G = (O, E) where O = {o1, . . . , on

}
is a set of objects and E ✓ O⇥R⇥O is a set of edges. Each
object has the form o

i

= (c
i

, A
i

) where c
i

2 C is the class
of the object and A

i

✓ A are the attributes of the object.

3.2. Grounding a scene graph in an image
A scene graph on its own is not associated to an image;

it merely describes a scene that could be depicted by an
image. However a scene graph can be grounded to an image
by associating each object instance of the scene graph to a
region in an image. Fig. 2 (top) shows an example of part
of a scene graph grounded to an image.

Formally, we represent an image by a set of candidate
bounding boxes B. A grounding of a scene graph G =
(O, E) is then a map � : O ! B. For ease of notation, for
o 2 O we frequently write �(o) as �

o

.
Given a scene graph and an image, there are many pos-

sible ways of grounding the scene graph to the image. In
Sect. 5 we formulate a method for determining the best
grounding of a scene graph to an image.

3.3. Why scene graphs?
An obvious alternative choice for representing the con-

tent of scenes is natural language. However, in order to
represent visual scenes at the level of detail shown in Fig. 2,
a full paragraph of description would be necessary:

A blonde white girl is standing in front of an orange cone on a
lined tennis court and is holding a long heavy yellow wide racket
that has a black handle. The girl is wearing a white shirt; there
is a bent arm in front of the shirt and another bent arm beside the
first. There is a round yellow logo on the shirt, and the logo is
beside hands that are on the handle of the racket. There is a black
fence behind the girl, and the girl has brown eyes above a closed
mouth. There are butterflies barrettes in long blonde hair, and the
hair is in a ponytail.

To make use of such a description for image retrieval, we
would need to resolve co-references in the text [53, 30, 39],
perform relationship extraction to convert the unstructured
text into structured tuples [47], and ground the entities of the
tuples into regions of the image described by the text [33].
Such pipelines are challenging even in constrained settings
[33], and would not scale to text of the detail shown above.

We can avoid these complexities by working directly
with grounded scene graphs. We find that with careful user
interface design, non-expert workers can quickly construct
grounded scene graphs of arbitrary complexity. Details can
be found in Sec. 4 and in our supplementary material.

4. Real-World Scene Graphs Dataset
To use scene graphs as queries for image retrieval, we

need many examples of scene graphs grounded to images.
To our knowledge no such dataset exists. To this end, we
introduce a novel dataset of real-world scene graphs.
4.1. Data collection

We manually selected 5,000 images from the intersection
of the YFCC100m [61] and Microsoft COCO [42] datasets,
allowing our dataset to build upon rather than compete with
these existing datasets.

Image Retrieval using Scene Graphs
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Michael S. Bernstein1, Li Fei-Fei1
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Abstract

This paper develops a novel framework for semantic im-
age retrieval based on the notion of a scene graph. Our
scene graphs represent objects (“man”, “boat”), attributes
of objects (“boat is white”) and relationships between ob-
jects (“man standing on boat”). We use these scene graphs
as queries to retrieve semantically related images. To this
end, we design a conditional random field model that rea-
sons about possible groundings of scene graphs to test im-
ages. The likelihoods of these groundings are used as
ranking scores for retrieval. We introduce a novel dataset
of 5,000 human-generated scene graphs grounded to im-
ages and use this dataset to evaluate our method for im-
age retrieval. In particular, we evaluate retrieval using full
scene graphs and small scene subgraphs, and show that our
method outperforms retrieval methods that use only objects
or low-level image features. In addition, we show that our
full model can be used to improve object localization com-
pared to baseline methods.

1. Introduction
Retrieving images by describing their contents is one of

the most exciting applications of computer vision. An ideal
system would allow people to search for images by specify-
ing not only objects (“man”, “boat”) but also structured re-
lationships (“man on boat”) and attributes (“boat is white”)
involving these objects. Unfortunately current systems fail
for these types of queries because they do not utilize the
structured nature of the query, as shown in Fig. 1.

To solve this problem, a computer vision system must
explicitly represent and reason about the objects, attributes,
and relationships in images, which we refer to as detailed
semantics. Recently Zitnick et al. have made important
steps toward this goal by studying abstract scenes com-
posed of clip-art [71, 72, 22]. They show that perfect recog-
nition of detailed semantics benefits image understanding
and improves image retrieval.

Bringing this level of semantic reasoning to real-world
scenes would be a major leap forward, but doing so involves
two main challenges: (1) interactions between objects in a

(a) Results for the query on a popular image search engine.

(b) Expected results for the query.
Figure 1: Image search using a complex query like “man holding
fish and wearing hat on white boat” returns unsatisfactory results
in (a). Ideal results (b) include correct objects (“man”, “boat”),
attributes (“boat is white”) and relationships (“man on boat”).

scene can be highly complex, going beyond simple pairwise
relations, and (2) the assumption of a closed universe where
all classes are known beforehand does not hold.

In order to address these challenges, this paper proposes
a novel framework for detailed semantic image retrieval,
based on a conditional random field (CRF [36]) model of vi-
sual scenes. Our model draws inspiration from recent work
in computer graphics that uses graph-based formulations to
compare [20] and generate [7] scenes. We use the notion of
a scene graph to represent the detailed semantics of a scene.

Our scene graphs capture the detailed semantics of visual
scenes by explicitly modeling objects, attributes of objects,
and relationships between objects. Our model performs se-
mantic image retrieval using scene graphs as queries. Re-
placing textual queries with scene graphs allows our queries
to describe the semantics of the desired image in precise de-
tail without relying on unstructured text. This formulation is
related to a number of methods for object and scene recog-
nition using context [25, 13]. But by using scene graphs,
we can model multiple modes of interaction between pairs
of objects while traditional CRF models are more restricted,
and encode a fixed relation given two nodes (e.g. think of
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Other hiearchies for organizing 
recognition outputs

Partonomies  
(people are made out of arms and legs)

Spatiotemporal Relations 
(people stand on floors)

Taxonomies  
(dogs and cats are types of mammals)



Associative memory
Big-data philoshopy: ask not “what is this”, but “what is this like”? 

Malisiewicz et al, “Exemplar SVMs”



Visual Question Answering (VQA)
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VQA: Visual Question Answering

www.visualqa.org

Stanislaw Antol

⇤
, Aishwarya Agrawal

⇤
, Jiasen Lu, Margaret Mitchell,

Dhruv Batra, C. Lawrence Zitnick, Devi Parikh

Abstract—We propose the task of free-form and open-ended Visual Question Answering (VQA). Given an image and a natural

language question about the image, the task is to provide an accurate natural language answer. Mirroring real-world scenarios, such

as helping the visually impaired, both the questions and answers are open-ended. Visual questions selectively target different areas

of an image, including background details and underlying context. As a result, a system that succeeds at VQA typically needs a

more detailed understanding of the image and complex reasoning than a system producing generic image captions. Moreover, VQA

is amenable to automatic evaluation, since many open-ended answers contain only a few words or a closed set of answers that can

be provided in a multiple-choice format. We provide a dataset containing ⇠0.25M images, ⇠0.76M questions, and ⇠10M answers

(www.visualqa.org), and discuss the information it provides. Numerous baselines for VQA are provided and compared with human

performance.

F

1 INTRODUCTION

We are witnessing a renewed excitement in multi-discipline
Artificial Intelligence (AI) research problems. In particular,
research in image and video captioning that combines Com-
puter Vision (CV), Natural Language Processing (NLP), and
Knowledge Representation & Reasoning (KR) has dramati-
cally increased in the past year [14], [7], [10], [36], [24],
[22], [51]. Part of this excitement stems from a belief that
multi-discipline tasks like image captioning are a step towards
solving AI. However, the current state of the art demonstrates
that a coarse scene-level understanding of an image paired
with word n-gram statistics suffices to generate reasonable
image captions, which suggests image captioning may not be
as “AI-complete” as desired.
What makes for a compelling “AI-complete” task? We believe
that in order to spawn the next generation of AI algorithms, an
ideal task should (i) require multi-modal knowledge beyond a
single sub-domain (such as CV) and (ii) have a well-defined
quantitative evaluation metric to track progress. For some
tasks, such as image captioning, automatic evaluation is still
a difficult and open research problem [49], [11], [20].
In this paper, we introduce the task of free-form and open-
ended Visual Question Answering (VQA). A VQA system
takes as input an image and a free-form, open-ended, natural-
language question about the image and produces a natural-
language answer as the output. This goal-driven task is
applicable to scenarios encountered when visually-impaired
users [2] or intelligence analysts actively elicit visual infor-
mation. Example questions are shown in Fig. 1.
Open-ended questions require a potentially vast set of AI
capabilities to answer – fine-grained recognition (e.g., “What
kind of cheese is on the pizza?”), object detection (e.g., “How
many bikes are there?”), activity recognition (e.g., “Is this man
crying?”), knowledge base reasoning (e.g., “Is this a vegetarian

• ⇤The first two authors contributed equally.
• S. Antol, A. Agrawal, J. Lu, D. Batra, and D. Parikh are with Virginia

Tech.
• M. Mitchell and C. L. Zitnick are with Microsoft Research, Redmond.

Does it appear to be rainy? 
Does this person have 20/20 vision? 

Is this person expecting company? 
What is just under the tree? 

How many slices of pizza are there? 
Is this a vegetarian pizza? 

What color are her eyes? 
What is the mustache made of? 

Fig. 1: Examples of free-form, open-ended questions collected for
images via Amazon Mechanical Turk. Note that commonsense
knowledge is needed along with a visual understanding of the scene
to answer many questions.

pizza?”), and commonsense reasoning (e.g., “Does this person
have 20/20 vision?”, “Is this person expecting company?”).
VQA [17], [34], [48], [2] is also amenable to automatic
quantitative evaluation, making it possible to effectively track
progress on this task. While the answer to many questions is
simply “yes” or “no”, the process for determining a correct
answer is typically far from trivial (e.g. in Fig. 1, “Does this
person have 20/20 vision?”). Moreover, since questions about
images often tend to seek specific information, simple one-
to-three word answers are sufficient for many questions. In
such scenarios, we can easily evaluate a proposed algorithm
by the number of questions it answers correctly. In this paper,
we present both an open-ended answering task and a multiple-
choice task [43], [31]. Unlike the open-ended task that requires
a free-form response, the multiple-choice task only requires an
algorithm to pick from a predefined list of possible answers.
We present a large dataset that contains 204,721 images from
the MS COCO dataset [30] and a newly created abstract
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Fig. 2: Examples of questions (black), (a subset of the) answers given when looking at the image (green), and answers given when not
looking at the image (blue) for numerous representative examples of the dataset. See the appendix for more examples.

more diverse, comprehensive, and interesting the resultant set
of questions and their answers.
Abstract Scenes. The VQA task with real images requires the
use of complex and often noisy visual recognizers. To attract
researchers interested in exploring the high-level reasoning
required for VQA, but not the low-level vision tasks, we
create a new abstract scenes dataset [1], [55], [56], [57]
containing 50K scenes. The dataset contains 20 “paperdoll”
human models [1] spanning genders, races, and ages with 8
different expressions. The limbs are adjustable to allow for
continuous pose variations. The clipart may be used to depict
both indoor and outdoor scenes. The set contains over 100
objects and 31 animals in various poses. The use of this clipart
enables the creation of more realistic scenes (see bottom row
of Fig. 2) that more closely mirror real images than previous
papers [55], [56], [57]. See the appendix for the user interface,
additional details, and examples.
Splits. For real images, we follow the same train/val/test
split strategy as the MC COCO dataset [30] (including test-
dev, test-standard, test-challenge, test-reserve). For abstract
scenes, we create standard splits, separating the scenes into
20K/10K/20K for train/val/test splits, respectively.
Captions. The MS COCO dataset [30], [5] already contains
five single-sentence captions for all images. We also collected
five single-captions for all abstract scenes using the same user
interface1 for collection.

1. https://github.com/tylin/coco-ui

Questions. Collecting interesting, diverse, and well-posed
questions is a significant challenge. Many simple questions
may only require low-level computer vision knowledge, such
as “What color is the cat?” or “How many chairs are present
in the scene?”. However, we also want questions that require
commonsense knowledge about the scene, such as “What
sound does the pictured animal make?”. Importantly, questions
should also require the image to correctly answer and not
be answerable using just commonsense information, e.g.,
in Fig. 1, “What is the mustache made of?”. By having a
wide variety of question types and difficulty, we may be able
to measure the continual progress of both visual understanding
and commonsense reasoning.
We tested and evaluated a number of user interfaces for
collecting such “interesting” questions. Specifically, we ran
pilot studies asking human subjects to ask questions about a
given image that they believe a “toddler”, “alien”, or “smart
robot” would have trouble answering. We found the “smart
robot” interface to elicit the most interesting and diverse
questions. As shown in the appendix, our final interface stated:

“We have built a smart robot. It understands a lot about
images. It can recognize and name all the objects, it
knows where the objects are, it can recognize the scene
(e.g., kitchen, beach), people’s expressions and poses, and
properties of objects (e.g., color of objects, their texture).
Your task is to stump this smart robot!”.

Generate questions 
 via Amazon MTurk:



My (current) favorite answer: semantic image segmentation

The Role of Context for Object Detection and Semantic Segmentation in the Wild

Roozbeh Mottaghi1 Xianjie Chen2 Xiaobai Liu2 Nam-Gyu Cho3 Seong-Whan Lee3
Sanja Fidler4 Raquel Urtasun4 Alan Yuille2

Stanford University1 UCLA2 Korea University3 University of Toronto4

Abstract

In this paper we study the role of context in existing state-
of-the-art detection and segmentation approaches. Towards
this goal, we label every pixel of PASCAL VOC 2010 de-
tection challenge with a semantic category. We believe this
data will provide plenty of challenges to the community, as
it contains 520 additional classes for semantic segmenta-
tion and object detection. Our analysis shows that near-
est neighbor based approaches perform poorly on semantic
segmentation of contextual classes, showing the variability
of PASCAL imagery. Furthermore, improvements of exist-
ing contextual models for detection is rather modest. In
order to push forward the performance in this difficult sce-
nario, we propose a novel deformable part-based model,
which exploits both local context around each candidate de-
tection as well as global context at the level of the scene.
We show that this contextual reasoning significantly helps
in detecting objects at all scales.

1. Introduction
Humans perceive the visual world effortlessly. We look

at a complex and cluttered scene and know that the tiny ob-
ject on the table is a fork and not the tail of an elephant. We
know that the object hanging on the wall is more likely to be
a picture or even a moose head than a car, and that a highly
deformable entity stretching on the sofa is more likely to
be a cat than a tiger. Context is a statistical property of the
world we live in and provides critical information to help us
solve perceptual inference tasks faster and more accurately.

Cognition-based studies have proved the effect of con-
text in various perceptual tasks such as object detection,
semantic segmentation and scene classification. The sem-
inal work of Biederman et al. [3] and Hock et al. [17]
showed that contextual information such as biases in ob-
ject arrangements in particular scenes, relative physical size
to other objects, and location are important cues for humans
to detect objects. Furthermore, it is known that humans re-
quire a longer time to detect out of context objects. In a
recent study, Parikh et al. [27] showed that context is an
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Figure 1. Examples of our annotations, which contain semantic
segmentation of 540 categories in the PASCAL VOC 2010.

effective cue for humans to detect low-resolution (and typ-
ically small) objects in images. For object segmentation,
Torralba [35] showed that at lower resolutions where only
coarse scene information can be perceived, humans perform
surprisingly well in delineating the most salient objects in
the scene. In [26], the authors showed that humans are
worse than machines at classifying small image patches but
are far better when more contextual information is available.

In this paper, we are interested in further analyzing the
effect of context in detection and segmentation approaches.
Towards this goal, we label every pixel of the training and
validation sets of the PASCAL VOC 2010 detection chal-
lenge with a semantic class. We selected PASCAL as our
testbed as it has served as the benchmark for detection and
segmentation in the community for years (over 600 citations
and tens of teams competing in the challenges each year).
Our analysis shows that our new dataset is much more chal-
lenging than existing ones (e.g., Barcelona [34], SUN [38],
SIFT flow [25]), as it has higher class entropy, less pixels
are labeled as “stuff” and instead belong to a wide variety
of object categories beyond the 20 PASCAL object classes.

We analyze the ability of state-of-the-art methods [34, 7]
to perform semantic segmentation of the most frequent
classes, and show that approaches based on nearest neigh-
bor (NN) retrieval are significantly outperformed by ap-
proaches based on bottom-up grouping, showing the vari-

1



A “detail”: instance segmentation

2 Nathan Silberman, David Sontag, Rob Fergus

Our goal during inference is to (a) find the best non-overlapping subset of
these segments such that each pixel is explained by a single region from the
tree – referred to as cutting the segmentation tree – and (b) each selected region
is labeled with a semantic label denoting the class and instance ID (e.g. chair
#2). The inference procedure finds the cut through the segmentation tree that
maximizes these two objectives. During learning, we will seek to maximize the
Coverage Score [10], a measure of how similar two segmentations are, between our
inferred semantic/instance segments and those produced by human annotators.

Fig. 1. An illustration of the limits of semantic segmentation: (a) the input image. (b)
a perfect semantic segmentation; note all of the chair pixels are labeled blue. (c) a naive
instance segmentation in which all connected components of the same class are consid-
ered separate instances of the chair class. (d) a correct instance segmentation, which
correctly reasons about instances within contiguous segments and across occlusions.

While at a high level this approach is similar to many semantic segmentation
methods, two main factors complicate the joint learning of semantic-instance
segmentation models using segmentation trees:

The Ground Truth Mapping Problem: When using a reduced search space,
such as one provided by a given hierarchical segmentation, it is extremely rare
that the exact ground truth regions are among the set of bottom-up proposed

regions, due to mistakes made at detecting object boundaries. Therefore, during
training, we must be able to map the human-provided labels to a set of surrogate
labels, defined on the set of proposed regions.

Fig. 2. Computing the best possible set of instances that overlap with the ground truth
cannot be computed independently per ground truth region. For example, ground truth
region 2 best overlaps with proposed region A and ground truth region 1 best overlaps
with proposed region B. But both proposed regions A and B cannot be selected at the
same time because they overlap.

Obtaining these surrogate labels is problematic for semantic-instance seg-
mentation. The constraint that the regions must not non-overlap means the best
possible subset of regions cannot be computed independently as the inclusion of

Augment semantic labels with an instance ID
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Let’s give it a try

When an object is not completely visible because there
is another one that hides it, then I write inside the object
name the word “occluded.” However, I do not always add
the word “occluded” to the object name. For instance,
when I see books or folders (as in the next picture) that are
in their natural place so that you only see the book spines,
I never write the word “occluded”. I do not use the word
“occluded” when these objects are occluded because that
is their natural way of appearing.

During the time that I have been doing image anno-
tations, I have encountered several interesting cases that
have made me think, rectify, and deduce what I was see-
ing. But once I decided to write this little article, many
of those anecdotes have disappeared from my mind and
I have only been able to explain the situations that I was
encountering since I started writing. But I do not discard
that I might continue adding new experiences that I will
continue collecting day after day.

When I was proposed to work with LabelMe, I found
the task interesting because it was something that I’d never
done before. The beginning was easy because the pictures
that I was given to label were very simple. They contained
very specific things that were easy to recognize. But, little
by little, the pictures they sent me became more and more
complex and suddenly nothing seemed easy. But when
you devote several hours a day to a job, you start mastering
it and the difficulty has to be very large in order to become
impossible to do. However, even after all my labeling
experience, I still find images that I do not know how to
annotate.

The next picture represents a big challenge. What is on
the right side?

I can see the ceiling, a wall and a ladder, but I do not
know how to annotate what is on the right side of the
picture. Maybe I just need to admit that I can not solve
this picture in an easy and fast way. But if I was forced
to label it then I would proceed as follows: I would start
ignoring the unfinished wall that will split the room and
I would extend the walls and ceiling. Then, at the end, I
would label the wood of the splitting wall in such a way
that the object mask will allow seeing what is behind, just
as in the picture. I have no idea about what is the object
that is in the frontal plane of this picture.

And this picture...

...it is such a mess that it seems the mind does not want
to make the fight to split every element. But, as it was
the case with the previous picture, it would be possible
to annotate the image if you found yourself with the duty
to do it. The true problem appears when one does not
recognize what an object is.

Notes on image annotation page 7 of 15



Notes on image
annotation
Adela Barriuso, Antonio Torralba

Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology

We are under the illusion that seeing is effortless, but fre-
quently the visual system is lazy and makes us believe that
we understand something when in fact we don’t. Labeling
a picture forces us to become aware of the difficulties un-
derlying scene understanding. Suddenly, the act of seeing
is not effortless anymore. We have to make an effort in
order to understand parts of the picture that we neglected
at first glance.

In this report, an expert image annotator relates her ex-
perience on segmenting and labeling tens of thousands of
images. During this process, the notes she took try to high-
light the difficulties encountered, the solutions adopted,
and the decisions made in order to get a consistent set
of annotations. Those annotations constitute the SUN
database [7].

1 Forward by Antonio Torralba

Online games [5], Amazon Mechanical Turk [3], crowd-
sourcing and a variety of image annotation tools [2, 6]
have changed the way data is collected for computer vision
research. It would be common to find a student frantically
labeling images before a deadline, in order to build up a
dataset that would nevertheless be too small to conclude
anything reliable [4]. Those days seem behind us (or
are they?). With the prevalence of crowd-sourcing tools,
datasets are becoming larger and more ambitious.

Despite new crowd-sourcing tools allowing the creation

Figure 1: Example of annotated image using the LabelMe im-
age annotation tool.

of large datasets, it remains important to do some labeling
oneself. Labeling images is a good exercise for gaining in-
tuition about possible representations and the limits of the
task we are trying to solve. Labeling forces us to clearly
think about naming and categorization issues, how to repre-
sent occluded objects, how to deal with parts of the image
that are unrecognizable, when context becomes important
for recognition, what is the effect of our prior knowledge
and expertise about a particular visual domain, and how
do we deal with clearly visible objects whose name or
function is unknown to us. Where does the identity of an
object come from? Does the identity of an object come
from its features or from the surrounding objects and our
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Semantic blindspots

When an object is not completely visible because there
is another one that hides it, then I write inside the object
name the word “occluded.” However, I do not always add
the word “occluded” to the object name. For instance,
when I see books or folders (as in the next picture) that are
in their natural place so that you only see the book spines,
I never write the word “occluded”. I do not use the word
“occluded” when these objects are occluded because that
is their natural way of appearing.

During the time that I have been doing image anno-
tations, I have encountered several interesting cases that
have made me think, rectify, and deduce what I was see-
ing. But once I decided to write this little article, many
of those anecdotes have disappeared from my mind and
I have only been able to explain the situations that I was
encountering since I started writing. But I do not discard
that I might continue adding new experiences that I will
continue collecting day after day.

When I was proposed to work with LabelMe, I found
the task interesting because it was something that I’d never
done before. The beginning was easy because the pictures
that I was given to label were very simple. They contained
very specific things that were easy to recognize. But, little
by little, the pictures they sent me became more and more
complex and suddenly nothing seemed easy. But when
you devote several hours a day to a job, you start mastering
it and the difficulty has to be very large in order to become
impossible to do. However, even after all my labeling
experience, I still find images that I do not know how to
annotate.

The next picture represents a big challenge. What is on
the right side?

I can see the ceiling, a wall and a ladder, but I do not
know how to annotate what is on the right side of the
picture. Maybe I just need to admit that I can not solve
this picture in an easy and fast way. But if I was forced
to label it then I would proceed as follows: I would start
ignoring the unfinished wall that will split the room and
I would extend the walls and ceiling. Then, at the end, I
would label the wood of the splitting wall in such a way
that the object mask will allow seeing what is behind, just
as in the picture. I have no idea about what is the object
that is in the frontal plane of this picture.

And this picture...

...it is such a mess that it seems the mind does not want
to make the fight to split every element. But, as it was
the case with the previous picture, it would be possible
to annotate the image if you found yourself with the duty
to do it. The true problem appears when one does not
recognize what an object is.
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Can we define a canonical list of objects, 
attributes, actions, materials….?

ImageNet (cf. WordNet, VerbNet, FrameNet,..)



Crowdsourced dataset construction
13

Fig. 11: Icons of 91 categories in the MS COCO dataset grouped by 11 super-categories. We use these icons in our
annotation pipeline to help workers quickly reference the indicated object category.

Fig. 12: User interfaces for collecting instance annotations, see text for details.
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Fig. 11: Icons of 91 categories in the MS COCO dataset grouped by 11 super-categories. We use these icons in our
annotation pipeline to help workers quickly reference the indicated object category.

Fig. 12: User interfaces for collecting instance annotations, see text for details.
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Abstract

We revisit the notion of object affordances, an idea that
speaks to an object’s functional properties more than its
class label. We study the problem of spatially localizing
affordances in the form of 2D segmentation masks anno-
tated with discrete affordance labels. For example, we use
affordance masks to denote on what surfaces a person sits,
grabs, and looks at when interacting with a variety of ev-
eryday objects (such as chairs, bikes, and TVs). We in-
troduce such a functionally-annotated dataset derived from
the PASCAL VOC benchmark and empirically evaluate sev-
eral approaches for predicting such functionally-relevant
object regions. We compare “blind” approaches that ig-
nore image data, bottom-up approaches that reason about
local surface layout, and top-down approaches that reason
about structural constraints between surfaces/regions of ob-
jects. We show that the difficulty of functional region predic-
tion varies considerably across objects, and that in general,
top-down functional object models do well, though there is
much room for improvement.

1. Introduction
“If you know what can be done with a ... object,
what it can be used for, you can call it whatever
you please”
J. J Gibson [14]

Gibson eloquently argues that predicting functional “affor-
dance” is more important than predicting object category
labels. However, the vast majority of work on object recog-
nition focuses on the task of predicting bounding boxes
and category labels - see, for example, the PASCAL VOC
benchmark [7]. As an example, consider the objects in
Fig. 1; though it is unclear if they should be labeled as a
“chair”, most people would know how to sit on them. If a
humanoid robot were to be confronted with these objects,
it would not suffice to simply name them or estimate their
bounding boxes; rather the crucial bit is knowing where the
robot should rest its bum and back.

Figure 1. Objects that can potentially be used as chairs by humans.
Humanoid robots, when faced with such objects would need pre-
cise localization of the regions that they can sit on (yellow) and rest
their back against (blue). We benchmark a wide variety of algo-
rithms for producing such outputs, including blind baselines that
ignore image data, bottom-up models of surface geometry, and
top-down models that reflect object-specific structural constraints.

We argue such precise modes of interaction exist for vir-
tually any object category. When interacting with a bottle,
we must estimate where to grab it with our hands and where
to place our mouths. When interacting with a computer, we
must estimate where to look, since a rear-facing monitor af-
fords little use to an observer. The central thesis of this work
is that functional regions are an important type of output
that recognition systems should produce, alongside classic
outputs as categorical labels and attribute values. We define
a generic set of affordance labels based on body parts that
touch an object during typical interactions (e.g., when using
a bike, one places feet on pedals and hands on handlebars).
Additionally, we define “looking at” as an important inter-
action that does not involve touching. We show examples
of functional regions for everyday objects in Fig. 2.

Functional prediction dataset: Formally, we define the
task of function region prediction as the prediction of seg-
mentation masks with discrete affordance labels. We de-
fine a candidate mask and label to be correct if it over-
laps the correspondingly-labeled ground-truth segmentation
mask by a sufficient amount. For simplicity, we consider the
case when an object bounding box is known at test-time,
similar to the formulation of attribute prediction [9].

Benchmark evaluation: We compare several baseline
approaches to functional region prediction. We first con-
sider “blind” baselines that do not look at any image data,
and just use the bounding box to predict functional region
masks. We show that such baselines do well for certain ob-
jects with little variability in 3D structure or pose. For ex-
ample, bottles tend to mostly be upright, in which case one

1
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Goal: detecting pedestrians
within-class between-class

activation textures of objects spatial cueing
inhibition NMS mutual exclusion

global expected counts co-occurrence
Table 1. A taxonomy of interactions captured in our model.
Within a single object class, our model can favor typical spa-
tial layouts of objects (people often stand in crowds) while di-
rectly learning how to inhibit overlapping detections in such cases
(NMS). Our model also captures long-range interactions between
objects, such as the constraint that there exists at most one object
instance (counting). Analogous interactions exist between object
classes, including typical spatial relations between objects (bottles
sit on tables), mutual exclusion (dog and cat detectors should not
respond to the same image region), and co-occurrence (couches
and cars do not commonly co-occur).

other (Fig.2). In general, spatial object-object interactions
may be arbitrarily complex and depend on latent informa-
tion which is not readily available from single image. As an
extreme example, studies of proxemics [11], the body spac-
ing and pose of people as they interact, shows that physical
spacing between people depends in complicated ways on
their “social distance”. While such complex interactions are
difficult to encode, we argue there does exist useful infor-
mation that is being ignored by current ad-hoc approaches
to NMS.

NMS is generally described in terms of intra-class in-
hibition, but can be generalized to suppression of overlap-
ping detections between different classes. We refer to this
more general constraint, that two objects cannot occupy the
same 3D volume at the same time, as mutual exclusion. As
seen in a 2D image projection, the exact nature of this con-
straint depends on the object classes. Fig.2(right) shows
an example of ground-truth labelings in the PASCAL VOC
dataset in which strict mutual-exclusion would produce sub-
optimal performance.

Object detections can also serve to enhance rather than
inhibit other detections within a scene. This has been an
area of active research in object recognition over the last
few years [22, 18, 10, 12, 13, 4, 15]. For example, different
object classes may be likely to co-occur in a particular spa-
tial layout. People ride on bikes, bottles rest on tables, and
so on. In contextual cueing, a confident detection of one
object (a bike) provides evidence that increases the likeli-
hood of detecting another object (a person above the bike)
[4, 10, 15]. Contextual cueing can also occur within an ob-
ject category, e.g., a crowd of pedestrians reinforcing each
other’s detection responses. An extreme example of this
phenomena is near-regular texture in which the spatial lo-
cations of nearly identical elements provides a strong prior
on the expected locations of additional elements, lowering
their detection threshold [17].

In Table 1 we outline a simplified taxonomy of different
types of object-object interactions, both positive and nega-

Non−Maxima Suppression Mutual Exclusion

Figure 2. Our novel contributions include the ability to learn in-
hibitory intra-class constraints (NMS) and inhibitory inter-class
constraints (Mutual Exclusion) in a single unified model along
with contextual cuing and spatial co-occurrence. Naive methods
for NMS or mutual exclusion may fail for objects that tend to
overlap themselves (left) and other objects (right). In contrast,
our framework learns how best to enforce such constraints from
training data. We formulate the tasks of NMS and Mutual Exclu-
sion using the language of structured prediction. This allows us
to compute an optimal model by minimizing a convex objective
function.

tive, within and between classes. The contribution of this
paper is a single model that incorporates all interactions
from Table 1 through the framework of structured predic-
tion. Rather than returning a binary label for a each image
window, our model simultaneously predicts a set of detec-
tions for multiple objects from multiple classes over the en-
tire image. Given training images with ground-truth object
locations, we show how to formulate parameter estimation
as a convex max-margin learning problem. We employ the
cutting plane algorithm of [14] to efficiently learn globally
optimal parameters from thousands of training images.

In the sections that follow we formulate the structured
output model in detail, describe how to perform inference
and learning, and detail the optimization procedures used
to efficiently learn parameters. We show state-of-the-art re-
sults on the PASCAL 2007 VOC benchmark[7], indicating
the benefits of learning a global model that encapsulates the
layout statistics of multiple objects classes in real images.
We conclude with a discussion of related work and future
directions.

2. Model
We describe a model for capturing interactions across

a family of object detectors. To do so, we will explicitly
represent an image as a collection of overlapping windows
at various scales. The location of the ith window is given
by its center and scale, written as li = (x, y, s). The col-
lection of M windows are precisely the regions scored by
a scanning-window detector. Write xi for the features ex-
tracted from window i, for example, a histogram of gradient
features [6]. The entire image can then be represented as the
collection of feature vectors X = {xi : i = 1 . . . M}

Assume we have K object models. We write yi �
{0 . . . K} for the label of the ith window, where the 0 la-



Thought experiment: let’s build a person detector (HW4).  
Why is this difficult? 

variation in pose, viewpointvariation in appearance

occlusion & clutter

Classic “nuisance factors” for general object recognition

variation in illumination



Main idea: use “invariant features”

edges!



Image features:
Image features - 

histograms of gradients 

•Our implementation of DalalTriggs HOG features

Histogram of Gradient (HOG) Features

• Image is partitioned into 8x8 pixel blocks

• In each block we compute a histogram of gradient orientations

- Invariant to changes in lighting, small deformations, etc.

• We compute features at different resolutions (pyramid)

Histogram of Gradient (HOG) Features

• Image is partitioned into 8x8 pixel blocks

• In each block we compute a histogram of gradient orientations

- Invariant to changes in lighting, small deformations, etc.

• We compute features at different resolutions (pyramid)

Image features - 
histograms of gradients 

•Our implementation of DalalTriggs HOG features

Histogram of Gradient (HOG) Features

• Image is partitioned into 8x8 pixel blocks

• In each block we compute a histogram of gradient orientations

- Invariant to changes in lighting, small deformations, etc.

• We compute features at different resolutions (pyramid)

Histogram of Gradient (HOG) Features

• Image is partitioned into 8x8 pixel blocks

• In each block we compute a histogram of gradient orientations

- Invariant to changes in lighting, small deformations, etc.

• We compute features at different resolutions (pyramid)

Bin gradients from 8x8 pixel 
neighborhoods into 9 orientations

(Dalal & Triggs 05)

Learned model
fw(x) = w · �(x)Training

• Training data consists of images with labeled bounding boxes

• Need to learn the model structure, filters and deformation costs

Training

positive
weights

negative
weights

Histograms of oriented gradients (HOG)



(Simplified) HOG constructionImage Gradients Cells Blocks Descriptor 

!  Convolve the image with discrete derivative mask 
!  [-1, 0, 1] 
!  [-1, 0, 1]T 

Original Image 

X gradient 

Y gradient 

[-1,1] 
[-1,1]’

Y

X



Image features - 
histograms of gradients 

•Our implementation of DalalTriggs HOG features

Histogram of Gradient (HOG) Features

• Image is partitioned into 8x8 pixel blocks

• In each block we compute a histogram of gradient orientations

- Invariant to changes in lighting, small deformations, etc.

• We compute features at different resolutions (pyramid)

Histogram of Gradient (HOG) Features

• Image is partitioned into 8x8 pixel blocks

• In each block we compute a histogram of gradient orientations

- Invariant to changes in lighting, small deformations, etc.

• We compute features at different resolutions (pyramid)

Image features - 
histograms of gradients 

•Our implementation of DalalTriggs HOG features

Histogram of Gradient (HOG) Features

• Image is partitioned into 8x8 pixel blocks

• In each block we compute a histogram of gradient orientations

- Invariant to changes in lighting, small deformations, etc.

• We compute features at different resolutions (pyramid)

Histogram of Gradient (HOG) Features

• Image is partitioned into 8x8 pixel blocks

• In each block we compute a histogram of gradient orientations

- Invariant to changes in lighting, small deformations, etc.

• We compute features at different resolutions (pyramid)
Quantize each gradient into one of no = 9 orientations

Do we want to put gradients 180 apart in same or different bins?

What should be the angle range of each bin?

[H x W] ->[H x W x 9]
“orientation channel array”



Image features - 
histograms of gradients 

•Our implementation of DalalTriggs HOG features

Histogram of Gradient (HOG) Features

• Image is partitioned into 8x8 pixel blocks

• In each block we compute a histogram of gradient orientations

- Invariant to changes in lighting, small deformations, etc.

• We compute features at different resolutions (pyramid)

Histogram of Gradient (HOG) Features

• Image is partitioned into 8x8 pixel blocks

• In each block we compute a histogram of gradient orientations

- Invariant to changes in lighting, small deformations, etc.

• We compute features at different resolutions (pyramid)

Image features - 
histograms of gradients 

•Our implementation of DalalTriggs HOG features

Histogram of Gradient (HOG) Features

• Image is partitioned into 8x8 pixel blocks

• In each block we compute a histogram of gradient orientations

- Invariant to changes in lighting, small deformations, etc.

• We compute features at different resolutions (pyramid)

Histogram of Gradient (HOG) Features

• Image is partitioned into 8x8 pixel blocks

• In each block we compute a histogram of gradient orientations

- Invariant to changes in lighting, small deformations, etc.

• We compute features at different resolutions (pyramid)

Get some spatial invariance (sort of)…
Count up orientation bins over 8x8 pixel neighborhoods. (im2col)

[H x W x 9] - > [H/8 x W/8 x 9]



Re-normalize 9 numbers so that their sum is 1

Image features - 
histograms of gradients 

•Our implementation of DalalTriggs HOG features

Histogram of Gradient (HOG) Features

• Image is partitioned into 8x8 pixel blocks

• In each block we compute a histogram of gradient orientations

- Invariant to changes in lighting, small deformations, etc.

• We compute features at different resolutions (pyramid)

Histogram of Gradient (HOG) Features

• Image is partitioned into 8x8 pixel blocks

• In each block we compute a histogram of gradient orientations

- Invariant to changes in lighting, small deformations, etc.

• We compute features at different resolutions (pyramid)

Image features - 
histograms of gradients 

•Our implementation of DalalTriggs HOG features

Histogram of Gradient (HOG) Features

• Image is partitioned into 8x8 pixel blocks

• In each block we compute a histogram of gradient orientations

- Invariant to changes in lighting, small deformations, etc.

• We compute features at different resolutions (pyramid)

Histogram of Gradient (HOG) Features

• Image is partitioned into 8x8 pixel blocks

• In each block we compute a histogram of gradient orientations

- Invariant to changes in lighting, small deformations, etc.

• We compute features at different resolutions (pyramid)

Get some lighting invariance (sort of)…

[H/8 x W/8 x 9] - > [H/8 x W/8 x 9]



Image features - 
histograms of gradients 

•Our implementation of DalalTriggs HOG features

Histogram of Gradient (HOG) Features

• Image is partitioned into 8x8 pixel blocks

• In each block we compute a histogram of gradient orientations

- Invariant to changes in lighting, small deformations, etc.

• We compute features at different resolutions (pyramid)

Histogram of Gradient (HOG) Features

• Image is partitioned into 8x8 pixel blocks

• In each block we compute a histogram of gradient orientations

- Invariant to changes in lighting, small deformations, etc.

• We compute features at different resolutions (pyramid)

Image features - 
histograms of gradients 

•Our implementation of DalalTriggs HOG features

Histogram of Gradient (HOG) Features

• Image is partitioned into 8x8 pixel blocks

• In each block we compute a histogram of gradient orientations

- Invariant to changes in lighting, small deformations, etc.

• We compute features at different resolutions (pyramid)

Histogram of Gradient (HOG) Features

• Image is partitioned into 8x8 pixel blocks

• In each block we compute a histogram of gradient orientations

- Invariant to changes in lighting, small deformations, etc.

• We compute features at different resolutions (pyramid)

Bin gradients from 8x8 pixel 
neighborhoods into 9 orientations

Image [H x W] -> Image Descriptor = [H/8 x W/8 x 9]

Learned model
fw(x) = w · �(x)Training

• Training data consists of images with labeled bounding boxes

• Need to learn the model structure, filters and deformation costs

Training

positive
weights

negative
weights

Histograms of oriented gradients (HOG)
(note that actual HOG construction is a bit more intricate)

1. Work with raw gradients instead of thresholded gradients 
2. Normalize with respect to histograms of 2x2 neighborhoods



Recall SIFT
http://en.wikipedia.org/wiki/Scale-invariant_feature_transform

One can interpret HOG precisely as dense grid of SIFT descriptors 
(of size 2x2x9), computed at grid points of 8x8 pixel shifts

http://en.wikipedia.org/wiki/Scale-invariant_feature_transform
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Template scoringLearned model
fw(x) = w · �(x)Training

• Training data consists of images with labeled bounding boxes

• Need to learn the model structure, filters and deformation costs

Training

positive
weights

negative
weights

How can we fix output from naive thresholding?
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Nonmaximal suppressionLearned model
fw(x) = w · �(x)Training

• Training data consists of images with labeled bounding boxes

• Need to learn the model structure, filters and deformation costs

Training

positive
weights

negative
weights

1. Find highest scoring location 
2. Zero-out responses that overlap 
3. Repeat until highest remaining score is below a threshold



41

within-class between-class
activation textures of objects spatial cueing
inhibition NMS mutual exclusion

global expected counts co-occurrence
Table 1. A taxonomy of interactions captured in our model.
Within a single object class, our model can favor typical spa-
tial layouts of objects (people often stand in crowds) while di-
rectly learning how to inhibit overlapping detections in such cases
(NMS). Our model also captures long-range interactions between
objects, such as the constraint that there exists at most one object
instance (counting). Analogous interactions exist between object
classes, including typical spatial relations between objects (bottles
sit on tables), mutual exclusion (dog and cat detectors should not
respond to the same image region), and co-occurrence (couches
and cars do not commonly co-occur).

other (Fig.2). In general, spatial object-object interactions
may be arbitrarily complex and depend on latent informa-
tion which is not readily available from single image. As an
extreme example, studies of proxemics [11], the body spac-
ing and pose of people as they interact, shows that physical
spacing between people depends in complicated ways on
their “social distance”. While such complex interactions are
difficult to encode, we argue there does exist useful infor-
mation that is being ignored by current ad-hoc approaches
to NMS.

NMS is generally described in terms of intra-class in-
hibition, but can be generalized to suppression of overlap-
ping detections between different classes. We refer to this
more general constraint, that two objects cannot occupy the
same 3D volume at the same time, as mutual exclusion. As
seen in a 2D image projection, the exact nature of this con-
straint depends on the object classes. Fig.2(right) shows
an example of ground-truth labelings in the PASCAL VOC
dataset in which strict mutual-exclusion would produce sub-
optimal performance.

Object detections can also serve to enhance rather than
inhibit other detections within a scene. This has been an
area of active research in object recognition over the last
few years [22, 18, 10, 12, 13, 4, 15]. For example, different
object classes may be likely to co-occur in a particular spa-
tial layout. People ride on bikes, bottles rest on tables, and
so on. In contextual cueing, a confident detection of one
object (a bike) provides evidence that increases the likeli-
hood of detecting another object (a person above the bike)
[4, 10, 15]. Contextual cueing can also occur within an ob-
ject category, e.g., a crowd of pedestrians reinforcing each
other’s detection responses. An extreme example of this
phenomena is near-regular texture in which the spatial lo-
cations of nearly identical elements provides a strong prior
on the expected locations of additional elements, lowering
their detection threshold [17].

In Table 1 we outline a simplified taxonomy of different
types of object-object interactions, both positive and nega-

Non−Maxima Suppression Mutual Exclusion

Figure 2. Our novel contributions include the ability to learn in-
hibitory intra-class constraints (NMS) and inhibitory inter-class
constraints (Mutual Exclusion) in a single unified model along
with contextual cuing and spatial co-occurrence. Naive methods
for NMS or mutual exclusion may fail for objects that tend to
overlap themselves (left) and other objects (right). In contrast,
our framework learns how best to enforce such constraints from
training data. We formulate the tasks of NMS and Mutual Exclu-
sion using the language of structured prediction. This allows us
to compute an optimal model by minimizing a convex objective
function.

tive, within and between classes. The contribution of this
paper is a single model that incorporates all interactions
from Table 1 through the framework of structured predic-
tion. Rather than returning a binary label for a each image
window, our model simultaneously predicts a set of detec-
tions for multiple objects from multiple classes over the en-
tire image. Given training images with ground-truth object
locations, we show how to formulate parameter estimation
as a convex max-margin learning problem. We employ the
cutting plane algorithm of [14] to efficiently learn globally
optimal parameters from thousands of training images.

In the sections that follow we formulate the structured
output model in detail, describe how to perform inference
and learning, and detail the optimization procedures used
to efficiently learn parameters. We show state-of-the-art re-
sults on the PASCAL 2007 VOC benchmark[7], indicating
the benefits of learning a global model that encapsulates the
layout statistics of multiple objects classes in real images.
We conclude with a discussion of related work and future
directions.

2. Model
We describe a model for capturing interactions across

a family of object detectors. To do so, we will explicitly
represent an image as a collection of overlapping windows
at various scales. The location of the ith window is given
by its center and scale, written as li = (x, y, s). The col-
lection of M windows are precisely the regions scored by
a scanning-window detector. Write xi for the features ex-
tracted from window i, for example, a histogram of gradient
features [6]. The entire image can then be represented as the
collection of feature vectors X = {xi : i = 1 . . . M}

Assume we have K object models. We write yi �
{0 . . . K} for the label of the ith window, where the 0 la-

Learned model
fw(x) = w · �(x)Training

• Training data consists of images with labeled bounding boxes

• Need to learn the model structure, filters and deformation costs

Training

positive
weights

negative
weights

Pedestrian detection

Dalal and Triggs “Histograms of Gradients”



Face detection



Template classifiers

Learned model
fw(x) = w · �(x)Training

• Training data consists of images with labeled bounding boxes

• Need to learn the model structure, filters and deformation costs

Training

positive
weights

negative
weights

w·x > 0

w

Learned model
fw(x) = w · �(x)Training

• Training data consists of images with labeled bounding boxes

• Need to learn the model structure, filters and deformation costs

Training

positive
weights

negative
weights

w = weights for orientation and spatial bins

Train with a linear classifier (perceptron, logistic regression, SVMs...)

Learned model
fw(x) = w · �(x)Training

• Training data consists of images with labeled bounding boxes

• Need to learn the model structure, filters and deformation costs

Training

positive
weights

negative
weights

Learned model
fw(x) = w · �(x)Training

• Training data consists of images with labeled bounding boxes

• Need to learn the model structure, filters and deformation costs

Training

positive
weights

negative
weights

Learned model
fw(x) = w · �(x)Training

• Training data consists of images with labeled bounding boxes

• Need to learn the model structure, filters and deformation costs

Training

positive
weights

negative
weights

neg

pos



Search over scales

Learned model
fw(x) = w · �(x)Training

• Training data consists of images with labeled bounding boxes

• Need to learn the model structure, filters and deformation costs

Training

positive
weights

negative
weights



Outline

• Motivation 

• How to define problem? 

• Case example: finding people 

• Statistical classification



Template classifiers

Learned model
fw(x) = w · �(x)Training

• Training data consists of images with labeled bounding boxes

• Need to learn the model structure, filters and deformation costs

Training
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weights
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weights
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Learned model
fw(x) = w · �(x)Training

• Training data consists of images with labeled bounding boxes

• Need to learn the model structure, filters and deformation costs

Training

positive
weights

negative
weights

neg

pos

contrast with “old school”:



Statistical classification  
(20 min review!)

Why?
• This is the world in which we live - statistical models 

from data overpower classic “hand-designed” models 

Good texts:

• Basic linear classification forms basis for nonlinear 
models (deep learning)



Statistical classification 

x 2 R

N

y 2 {�1, 1}
{(xi, yi)}

Given training points (xi,yi), learn function f(x) that predicts a label  {-1,1}
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Recall N ~ 10x5x9 for typical HOG templates



Statistical classification 

x 2 R

N

y 2 {�1, 1}
{(xi, yi)}

Version 0: nearest neighbor classification
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Trivially handles multiple classes

Train time:0 
Test time: expensive

Is surprisingly powerful!



Statistical classification
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(in my view) this is the heart of all data-driven learning



Statistical classification 

x 2 R

N

y 2 {�1, 1}
{(xi, yi)}

Given training points (xi,yi), learn function f(x) that predicts a label  {-1,1}

Version 0: nearest neighbor classification
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What’s the best line?

min
w

X

i

[yi 6= thresh(w · xi)]

Find w that minimizes mistakes on training data

[Hard to optimize]
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What’s the best line?

Easy to optimize - least squares!
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The first term is a regularizer (prevents overfitting and makes optimization easier)
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Alternate visualization: heightfeild
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Unified notation:  
regularized loss minimization

losssquared(m) = (1�m)2

loss01(m) = I(m < 0)

min
w

�R(w) +
X

i

loss(yifw(xi))

R(w) =
1

2
||w||2

fw(xi) = w · xi

m

loss(m)

want this to always be large



Birds-eye view of ML

(Logistic regression)

(Support vector machine)

loss

squared

(m) = (1�m)

2

loss

log

(m) = log(1 + e

�m

)

loss

hinge

(m) = max(0, 1 +m)

fw(xi) = w

T
xi

fw(xi) = CNNw(xi)

Linear classifier

Nonlinear classifier

(Linear regression)

min
w

�R(w) +
X

i

loss(yifw(xi))

RL2(w) =
1

2
||w||2

RL1(w) =
X

j

|wj |

(L2 regularization)

(L1/sparse regularization)



squared loss

lo
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loss01(m) = I(m < 0)

loss

squared
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(m) = max(0, 1 +m)

Learning with losses
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Bottom line: other than 01 and squared loss, most loss functions look similar (to me)



Learning with  
gradient descent

w := w � step ⇤
�
w +

X

i

(fw(xi)� yi)
@fw(xi)

@w

�

min
w

L(w) where L(w) =
1

2
||w||2 +

X

i

(fw(xi)� yi)
2

Early 2000’s: obsession with convex L(w)



min
w

1

2
||w||2 +

X

i

(fw(xi)� yi)
2

w := w � step ⇤
�
w + (fw(xi)� yi)

@fw(xi)

@w

�

Trivially “out-of-core”: most contemporary models are trained in this manner

Large-scale learning: 
stochastic gradient descent



Special case: hinge loss (SVMs)
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techn
ical 

note 

Positive examples that score better than 1 and negative examples that 
score less than 1 do not affect the objective function

Implication: we can through them away without changing the solution

min

w
L(w) where L(w) =

�

2

||w||2 +
X

i

max(0, 1� yiw · xi)

m

loss(m) = max(0,1-m)



Large-scale learning

Our test set distribution is highly imbalanced; so should be the training set
(hundreds of positives, hundreds of millions of negatives)

negpos

(turn continuous search over parameters into combinatorial search over data)

Support vector machines (SVMs) are attractive because they generate sparse learning problems



Large-scale learning for SVMs
Lots of large-scale solvers for quadratic programs 

(SVMS)
Two flavors

Online: Require access to on-the-fly training data

Batch: Require access to all training data

(usually stochastic in practice)

(guarantees on convergence)

In-between: Support-vectors fit in memory, but data doesn’t
(Relatively unexplored!)



For large training datasets, can get near optimal results 
with a single-pass through data

where w0 = µ, and R = ��1/2. We can massage (36) into (2) with the substitution ŵ = (w � w0)R:

argmin
ŵ,�

1

2
||ŵ||2 +

�

i

⇥i (37)

s.t. ŵT x̂ij > l̂ij � ⇥i

⇥i ⇤ 0

where ŵ = (w � w0)R

x̂ij = R�1xij

l̂ij = lij � wo · xij

We assume that � is full rank, impling that R�1 exists. An important special case is given by a diagonal
matrix �, which corresponds to an arbitrary regularization of each parameter associated with a particular
feature. This is useful, for example, when regular izing a feature vector constructed from heterogenous
features (such as appearance features, spatial features, and biases).
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In practice, can get near-optimal models with a single 
pass of “dual coordinate descent” through large datasets

http://www.csie.ntu.edu.tw/~cjlin/liblinear/

Large-scale learning for SVMs

http://www.csie.ntu.edu.tw/~cjlin/liblinear/


How to interpret positive and negative weights?
w·x > 0

(wpos - wneg)·x > 0

wpos·x > wneg·x

What do negative weights mean?

(w+ - w-)x > 0

w+ > w-x

Complete system should compete pedestrian/pillar/doorway models

Discriminative models come equipped with own bg

(avoid firing on doorways by penalizing vertical edges)

>

wx > 0

pedestrian 
model

pedestrian 
background
model

What do negative weights mean?

(w+ - w-)x > 0

w+ > w-x

Complete system should compete pedestrian/pillar/doorway models

Discriminative models come equipped with own bg

(avoid firing on doorways by penalizing vertical edges)

>

wx > 0

pedestrian 
model

pedestrian 
background
model

>

Right approach is to compete pedestrian, pillar, doorway... models

Pedestrian  
template

Pedestrian  
background 

template

Background class is hard to model - easier to penalize particular vertical edges

Historically, model-based approaches tend not to model negative set
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But what if we actually try to 
model positives and negatives?

Simple generative model P(x,y) = P(y) P(x|y):

1. P(y): Flip (biased) coin to select class ‘k’ 
2. P(x|y): Sample from Gaussian (mu_k, Sigma_k)

y 2 {�1, 1}
x 2 R

N



A look ahead
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(a) AP (b) Centered (c) LDA

Fig. 3. The performance (AP) of the LDA model and the centered model (LDA with-
out whitening) vis-a-vis a standard linear SVM on HOG features. We also show the
detectors for the centered model and the LDA model.

3 Pedestrian detection

HOG feature vectors were first described in detail in [1], where they were shown
to significantly outperform other competing features in the task of pedestrian de-
tection. This is a relatively easy detection task, since pedestrians don’t vary sig-
nificantly in pose. Our local implementation of the Dalal-Triggs detector achieves
an average precision (AP) of 79.66% on the INRIA dataset, outperforming the
original AP of 76.2% reported in Dalal’s thesis [18]. We think this di↵erence is
due to our SVM solver, which implements multiple passes of data-mining for
hard negatives. We choose this task as our first test bed for WHO features.

We use our LDA model to train a detector and evaluate its performance.
Figure 3 shows our performance compared to that of a standard linear SVM on
HOG features. We achieve an AP of 75.10%. This is slightly lower than the SVM
performance, but nearly equivalent to the original performance of [18]. However,
note that compared to the SVM model, the LDA model is estimated only from a
few positive image patches and neither requires access to large pools of negative
images nor involves any costly bootstrapping steps. Given this overwhelmingly
reduced computation, this performance is impressive.

Constructing our LDA model from HOG feature vectors involves two steps,
i.e, subtracting µ0 (centering) and multiplying by ⌃�1 (whitening). To tease
out the contribution of whitening, we also evaluate the performance when the
whitening step is removed. In other words, we consider the detector formed by
simply taking the mean of the centered positive feature vectors. We call this
the “centered model”, and its performance is indicated by the black curve in
Figure 3. It achieves an AP of less than 10%, indicating that whitening is crucial
to performance. We also show the detectors in Figure 3, and it can be clearly
seen that the LDA model does a better job of identifying the discriminative
contours (the characteristic shape of the head and shoulders) compared to simple
centering.

Simple linear discriminant analysis gets us 90% of the way there…

within-class between-class
activation textures of objects spatial cueing
inhibition NMS mutual exclusion

global expected counts co-occurrence
Table 1. A taxonomy of interactions captured in our model.
Within a single object class, our model can favor typical spa-
tial layouts of objects (people often stand in crowds) while di-
rectly learning how to inhibit overlapping detections in such cases
(NMS). Our model also captures long-range interactions between
objects, such as the constraint that there exists at most one object
instance (counting). Analogous interactions exist between object
classes, including typical spatial relations between objects (bottles
sit on tables), mutual exclusion (dog and cat detectors should not
respond to the same image region), and co-occurrence (couches
and cars do not commonly co-occur).

other (Fig.2). In general, spatial object-object interactions
may be arbitrarily complex and depend on latent informa-
tion which is not readily available from single image. As an
extreme example, studies of proxemics [11], the body spac-
ing and pose of people as they interact, shows that physical
spacing between people depends in complicated ways on
their “social distance”. While such complex interactions are
difficult to encode, we argue there does exist useful infor-
mation that is being ignored by current ad-hoc approaches
to NMS.

NMS is generally described in terms of intra-class in-
hibition, but can be generalized to suppression of overlap-
ping detections between different classes. We refer to this
more general constraint, that two objects cannot occupy the
same 3D volume at the same time, as mutual exclusion. As
seen in a 2D image projection, the exact nature of this con-
straint depends on the object classes. Fig.2(right) shows
an example of ground-truth labelings in the PASCAL VOC
dataset in which strict mutual-exclusion would produce sub-
optimal performance.

Object detections can also serve to enhance rather than
inhibit other detections within a scene. This has been an
area of active research in object recognition over the last
few years [22, 18, 10, 12, 13, 4, 15]. For example, different
object classes may be likely to co-occur in a particular spa-
tial layout. People ride on bikes, bottles rest on tables, and
so on. In contextual cueing, a confident detection of one
object (a bike) provides evidence that increases the likeli-
hood of detecting another object (a person above the bike)
[4, 10, 15]. Contextual cueing can also occur within an ob-
ject category, e.g., a crowd of pedestrians reinforcing each
other’s detection responses. An extreme example of this
phenomena is near-regular texture in which the spatial lo-
cations of nearly identical elements provides a strong prior
on the expected locations of additional elements, lowering
their detection threshold [17].

In Table 1 we outline a simplified taxonomy of different
types of object-object interactions, both positive and nega-

Non−Maxima Suppression Mutual Exclusion

Figure 2. Our novel contributions include the ability to learn in-
hibitory intra-class constraints (NMS) and inhibitory inter-class
constraints (Mutual Exclusion) in a single unified model along
with contextual cuing and spatial co-occurrence. Naive methods
for NMS or mutual exclusion may fail for objects that tend to
overlap themselves (left) and other objects (right). In contrast,
our framework learns how best to enforce such constraints from
training data. We formulate the tasks of NMS and Mutual Exclu-
sion using the language of structured prediction. This allows us
to compute an optimal model by minimizing a convex objective
function.

tive, within and between classes. The contribution of this
paper is a single model that incorporates all interactions
from Table 1 through the framework of structured predic-
tion. Rather than returning a binary label for a each image
window, our model simultaneously predicts a set of detec-
tions for multiple objects from multiple classes over the en-
tire image. Given training images with ground-truth object
locations, we show how to formulate parameter estimation
as a convex max-margin learning problem. We employ the
cutting plane algorithm of [14] to efficiently learn globally
optimal parameters from thousands of training images.

In the sections that follow we formulate the structured
output model in detail, describe how to perform inference
and learning, and detail the optimization procedures used
to efficiently learn parameters. We show state-of-the-art re-
sults on the PASCAL 2007 VOC benchmark[7], indicating
the benefits of learning a global model that encapsulates the
layout statistics of multiple objects classes in real images.
We conclude with a discussion of related work and future
directions.

2. Model
We describe a model for capturing interactions across

a family of object detectors. To do so, we will explicitly
represent an image as a collection of overlapping windows
at various scales. The location of the ith window is given
by its center and scale, written as li = (x, y, s). The col-
lection of M windows are precisely the regions scored by
a scanning-window detector. Write xi for the features ex-
tracted from window i, for example, a histogram of gradient
features [6]. The entire image can then be represented as the
collection of feature vectors X = {xi : i = 1 . . . M}

Assume we have K object models. We write yi �
{0 . . . K} for the label of the ith window, where the 0 la-



Class-conditional Gaussians
If we assume all classes have same Sigma….

(For notational ease, let’s assume priors for class y in {0,1} are equal)

p(y = 1|x) = p(x|y = 1)p(y = 1)

p(x|y = 1)p(y = 1) + p(x|y = 0)p(y = 0)

=
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Class-conditional Gaussians
If we assume all classes have same Sigma….

sigmoid(x) =
1

1 + e

�x

p(y = 1|x) = sigmoid(w · x+ b)

p(y = 1|x) > .5 when fw(x) = w · x+ b > 0, w = ⌃�1(µ1 � µ0)

w[1]

w[2]

w[3]

x[1]

x[2]

x[3]

X

b



Class-conditional Gaussians

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10

x1

x2

1X 2X mX

Y

(a)

1X 2X mX

Y

(b)

X

Y

(c)0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

(a)
0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

9

10

(b)

What happens if Sigmas for the two classes are different?



Alternative: discriminative fitting 
(logistic regression)
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note 

Given data {(xi,yi)}, directly fit parameters ‘w,b’ to maximize 
X

i

log p(yi|xi)

This is sometimes called cross-entropy minimization, and is equivalent to miniming with log-loss!

p(y = 1|x) = sigmoid(w · x+ b)
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Extension to multiple classes

p(y = k|x) = e

wk·x
P

i

e

wi·x

Known as the softmax function

Same derivation of class-conditional Gaussians for  K classes (assuming all have same covariance)

When parameters are fit to maximize log p(y|x), known as softmax cross-entropy minimmization



Let’s build up intuition with generative model

Learn templates with generic (de)correlation model

SVM Gaussian model
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S(x, p) = w · �(x, p)

min
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S(x, p) = App(x, p) + Shape(p)

App(x, p) =

X

i

wi · �(x, pi)

Shape(p) = sumij2Ewij ·  (pi, pj)

X

ij2E

wij ·  (pi, pj)

 (x, pi, pj)

X

ij2E

wij

⇥
dx dx

2
dy dy

2
⇤T

= (p� µ)

T
⇤(p� µ)

= (p� µ)

T
⇤(p� µ)

(µ,⇤)

X

ij2E

aijdx
2
+ bijdx+ cijdy + dijdy

2
=

X

ij2E

✓
pi � µi

pj � µj

◆T

⇤i,j

✓
pi � µi

pj � µj

◆
+ constant, where ⇤i,j = �

2

664

aij 0 �aij 0

0 cij 0 �cij

�aij 0 aij 0

0 �cij 0 cij

3

775

S(x, p, t) =

X

i

w

ti
i · �(x, pi) +

X

ij2E

w

ti,tj
ij ·  (pi, pj) + b

ti,tj
ij

S(z) =

X

i

�i(zi) +

X

ij2E

 ij(zi, zj)

zi = (pi, ti)

w = ⌃

�1
(µ1 � µ0)

1

Discriminative Decorrelation for Clustering and Classification 7

(a) AP (b) Centered (c) LDA

Fig. 3. The performance (AP) of the LDA model and the centered model (LDA with-
out whitening) vis-a-vis a standard linear SVM on HOG features. We also show the
detectors for the centered model and the LDA model.

3 Pedestrian detection

HOG feature vectors were first described in detail in [1], where they were shown
to significantly outperform other competing features in the task of pedestrian de-
tection. This is a relatively easy detection task, since pedestrians don’t vary sig-
nificantly in pose. Our local implementation of the Dalal-Triggs detector achieves
an average precision (AP) of 79.66% on the INRIA dataset, outperforming the
original AP of 76.2% reported in Dalal’s thesis [18]. We think this di�erence is
due to our SVM solver, which implements multiple passes of data-mining for
hard negatives. We choose this task as our first test bed for WHO features.

We use our LDA model to train a detector and evaluate its performance.
Figure 3 shows our performance compared to that of a standard linear SVM on
HOG features. We achieve an AP of 75.10%. This is slightly lower than the SVM
performance, but nearly equivalent to the original performance of [18]. However,
note that compared to the SVM model, the LDA model is estimated only from a
few positive image patches and neither requires access to large pools of negative
images nor involves any costly bootstrapping steps. Given this overwhelmingly
reduced computation, this performance is impressive.

Constructing our LDA model from HOG feature vectors involves two steps,
i.e, subtracting µ0 (centering) and multiplying by ��1 (whitening). To tease
out the contribution of whitening, we also evaluate the performance when the
whitening step is removed. In other words, we consider the detector formed by
simply taking the mean of the centered positive feature vectors. We call this
the “centered model”, and its performance is indicated by the black curve in
Figure 3. It achieves an AP of less than 10%, indicating that whitening is crucial
to performance. We also show the detectors in Figure 3, and it can be clearly
seen that the LDA model does a better job of identifying the discriminative
contours (the characteristic shape of the head and shoulders) compared to simple
centering.
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with a strong response at a horizontally-adjacent location. Multiplying gradi-
ent features by ⌃�1 subtracts o↵ such correlated measurements. Because ⌃�1

is sparse, features need only be de-correlated with adjacent or nearby spatial
locations. This in turn suggests that image gradients can be fit will with a 3rd
or 4th-order spatial Markov model, which may make for easier estimation and
faster computations. A spatial Markov assumption makes intuitive sense; given
we see a strong horizontal gradient at a particular location, we expect to see
a strong gradient to its right regardless of the statistics to its left. We experi-
mented with such sparse models [15], but found an unrestricted ⌃ to work well
and simpler to implement.

Implications: Our statistical model, though quite simple, has several impli-
cations for scanning-window templates. (1) One should learn templates of larger
spatial extent than the object. For example, a 2nd-order spatial Markov model
implies that one should score gradient features two cells away from the object
border in order to de-correlate features. Intuitively, this makes sense; a pedes-
trian template wants to find vertical edges at the side of the face, but if it also
finds vertical edges above the face, then this evidence maybe better explained
by the vertical contour of a tree or doorway. Dalal and Triggs actually made the
empirical observation that larger templates perform better, but attributed this
to local context [1]; our analysis suggests that decorrelation may be a better ex-
planation. (2) Current strategies for modeling occlusion/truncation by “zero”ing
regions of a template may not su�ce [16, 17]. Rather, our model allows us to
properly marginalize out such regions from µ and ⌃. The resulting template
w will not be equivalent to a zero-ed out version of the original template, be-
cause the de-correlation operation must change for gradient features near the
occluded/truncated regions.
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Fig. 2.We visualize correlations between 9 orientation features in horizontally-adjacent
HOG cells as concatenated set of 9 ⇥ 9 matrices. Light pixels are positive while dark
pixels are negative. We plot the covariance and precision matrix on the left, and the
positive and negative values of the precision matrix on the right. Multiplying a HOG
vector with ⌃

�1 decorrelates it, subtracting o↵ gradient measurements from adjacent
orientations and locations. The sparsity pattern of ⌃

�1 suggests that one needs to
decorrelate features only a few cells away, indicating that gradients maybe well-modeled
by a low-order spatial Markov model.
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(a) AP (b) Centered (c) LDA

Fig. 3. The performance (AP) of the LDA model and the centered model (LDA with-
out whitening) vis-a-vis a standard linear SVM on HOG features. We also show the
detectors for the centered model and the LDA model.

3 Pedestrian detection

HOG feature vectors were first described in detail in [1], where they were shown
to significantly outperform other competing features in the task of pedestrian de-
tection. This is a relatively easy detection task, since pedestrians don’t vary sig-
nificantly in pose. Our local implementation of the Dalal-Triggs detector achieves
an average precision (AP) of 79.66% on the INRIA dataset, outperforming the
original AP of 76.2% reported in Dalal’s thesis [18]. We think this di↵erence is
due to our SVM solver, which implements multiple passes of data-mining for
hard negatives. We choose this task as our first test bed for WHO features.

We use our LDA model to train a detector and evaluate its performance.
Figure 3 shows our performance compared to that of a standard linear SVM on
HOG features. We achieve an AP of 75.10%. This is slightly lower than the SVM
performance, but nearly equivalent to the original performance of [18]. However,
note that compared to the SVM model, the LDA model is estimated only from a
few positive image patches and neither requires access to large pools of negative
images nor involves any costly bootstrapping steps. Given this overwhelmingly
reduced computation, this performance is impressive.

Constructing our LDA model from HOG feature vectors involves two steps,
i.e, subtracting µ0 (centering) and multiplying by ⌃�1 (whitening). To tease
out the contribution of whitening, we also evaluate the performance when the
whitening step is removed. In other words, we consider the detector formed by
simply taking the mean of the centered positive feature vectors. We call this
the “centered model”, and its performance is indicated by the black curve in
Figure 3. It achieves an AP of less than 10%, indicating that whitening is crucial
to performance. We also show the detectors in Figure 3, and it can be clearly
seen that the LDA model does a better job of identifying the discriminative
contours (the characteristic shape of the head and shoulders) compared to simple
centering.

Simple gaussian model gets us 90% of the way there…



Parting thoughts on class-conditional Gaussians

1. Also known as Linear Discriminant Analysis (LDA) or  Fischer Discriminant Analysis (FDA) when 
derived using other criteria (maximizing ratio of between to within-class variances)

2. One can also obtain the LDA / FDA solution by discriminative learning with a squared error loss

(Hastie et al, Elements of Statistical Learning)

squared loss

lo
ss

(m
)

m

Implies the distinction between generative and discriminative models can be blurred…



Parting thoughts on statistical classification

• Loss functions: hinge, log-loss, squared loss

Cross-entropy loss:

• SVMs generate sparse optimization problems

• Generative models are promising, but current state-of-the-art relies on discrimative loss minimization

Things that will appear later:

minimizing cross-entropy of binary prediction is equivalent to log-loss

Soft-max loss: minimizing cross-entropy of K-way prediction is equivalent to soft-max loss



Outline

• Motivation 

• How to define problem? 

• Case example: finding people 

• Statistical classification


