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==== Availability form  ====
One person from each team (at least) is required to fill out the following form about poster 
printing and availability by this Wednesday (4/20) at midnight. 
(this is different from the google spreadsheet set a couple weeks ago): 
https://docs.google.com/forms/d/19Io5iS80RScp1uYgWWmYnnLrDPL8nYfrHXKajmQYhtc/
viewform 
==== Posters ====
- Posters should fit on a 30in x 40in board.  Landscape format is preferred. 
- A Blackboard link is now up for submitting posters.  All teams must submit a version of their 
poster (in pdf form) by 11:59pm on Sunday evening. Teams printing their own posters should 
update this with the final printed version if it changes after Sunday evening. 
- It is preferred that each team print their own poster.  If you have an SCS account, or have a 
friend with one, submit your poster using these instructions: https://www.cs.cmu.edu/~help/
printing/poster_printing.html 
You should submit your poster 48 hours ahead of the presentation to ensure it is printed on 
time.  We recommend saving it to a pdf when you submit it (to avoid formatting changes). 
- If you cannot submit your own poster, the TAs will get the poster printed for you (using the 
version submitted to Blackboard by Sunday evening).  You will have to pick up the poster 
yourself once it has been printed (you will be notified).  This option should be selected in the 
form you're required to fill out, linked above. 
- Tips: check the website for poster formatting tips to avoid common mistakes:
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==== Presentations ====
Each team will present on only one of the two days (schedule to be 
released).  Students should arrive between 2:30 and 2:45pm to set up 
their posters on the day of their presentation.  Presentations will be in the 
NSH Atrium. 

==== Writeups ====
A Blackboard link is now up for the writeups.  Check the website for 
writeup suggestions (requirements: 8 page maximum, CVPR format):



Big picture (1)

Low,Mid,High-Level Vision



Big picture (2)

Geometry Physics of appearance



Radiometry
Study of light transport

Classically a computer graphics topic (rendering)  
What is its relevance to vision?



Motivation: understanding shadows and shading

Complicating factors

1. Inter-reflections

2. Cast shadows

Other surfaces can reflect light (e.g., the wall of a room),  
effectively behaving as “light sources” themselves

Cast vs attached shadows

Cast shadow
Attached shadow Inter-reflection



Motivation: dehazing

Dehazing



Reconstruct from a single viewpoint, but with multiple images with 
differing light sources

Motivation: photometric stereo



Motivation: color processing

Why can color be represented with 3 (R,G,B) values?

Why do objects look different under different illuminations?



Physics of illumination

An abundance of photons

Properly determining the right color is really hard.

Photons can:

� interact with the atmosphere, or with things in the atmosphere
� strike a surface and

• be absorbed
• be reflected
• cause fluorescence or phosphorescence.

� interact in a wavelength-dependent manner
� generally bounce around and around, ad nauseum

Our problem

We’re going to build up to an approximation of reality called 
the Phong illumination model.

It has the following characteristics:

� not physically based
� gives a first-order approximation to physical light reflection
� very fast
� widely used

Assumptions

local illumination

No interreflections, no shadows.Light source 
Surface 
Camera



Physics of illumination



Recall:  
light as a wave + particle



Fundamental quantity: irradiance

Measures amount of light hitting a surface

Irradiance = power of electromagnetic radiation / area

= watts / meter2



Fundamental quantity: irradiance

Measures amount of light hitting a surface

Irradiance = power of electromagnetic radiation / area

= watts / meter2

Power = energy / sec



Fundamental quantity: irradiance

Measures amount of light hitting a surface

Irradiance = power of electromagnetic radiation / area

= watts / meter2

= joules / (sec meter2)

My intuition: # of photons hitting (infinitesimly) small area in (infinitesimly) small time step



Fundamental quantity (2): 
radiance

Measures amount of light traveling along rays in space



Fundamental quantity (2): 
radiance

Measures amount of light traveling along particular direction in space

Subtety 1: Should count photons travelling along direction per foreshortened area patch

Subtety 2: Measuring infinitesimly small set of directions in 3D





Differential solid angles

CS 217 Lecture 1 — April 1 Spring 2009

2. We measure the amount of light leaving a surface as

Radiance = power / (foreshortened area · solid angle)

= watt / (meter2 · sr)

=
δ2P

δA · δω
≈

P

∆A · ∆ω
Steradian = surface area of an unit radians sphere

cut-out by a solid angle (0 ∼ 4π)

in 1D, reduces to radian = length of an unit radius circle

cut-out by a unit angle (0 ∼ 2π)

we need foreshortened area because a patch directly overhead δA sees more of A

1.1.3 Imaging a pixel

pixel intensity
∝ total irradiance =

∫ x+∆x

x

∫ y+∆y

y

∫ 1

t=0

∫ π

−π

∫ π

2

0
E[x, y, t, θ,φ] · f(θ,φ) dx dy dt dθ dφ

(sensor response)

0 < f(θ,φ) < 1
↪→ will tend to 1 for (θ,φ) directly overhead patch

Q : Why do we not see an image of a scene on a paper?

A: Restrict directions of incoming light with a pinhole.

Pinhole optics:

Right-hand coordinate system place the scene at -z:

y′

f ′
=

y

z
,

x′

f ′
=

x

z
⇒

y = f ′ · y
z

x = f ′ · x
z

1-2



The messy math



Fundamental quantity (2): 
radiance

Measures amount of light traveling along particular direction in space

Radiance = power / (foreshortened area * solid angle)

= watt / (meter2 * steradians)



BRDF: Bidirectional Reflectance Distribution Function
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Li(✓i,�i) cos ✓i



BRDF: Bidirectional Reflectance Distribution Function
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Lr(!r)

Li(!i) cos ✓i
(solid angle notation)



BRDF: Bidirectional Reflectance Distribution Function
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viewing
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incident
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),( ii φθ ),( rr φθ

f(!i,!r) =
Lr(!r)

Li(!i) cos ✓i

Ei(!i) (directional irradiance falling on patch)

f(✓i,�i, ✓r,�r) =
Lr(✓r,�r)

Li(✓i,�i) cos ✓i



The “rendering equation”

CS294-13: Lecture #3 3

3 Deriving the Rendering Equation

Recall the reflectance equation (Figure 2):
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This equation describes the reflected radiance L

r

from a surface x in direction !

r

due to incident radiance L

i

from a single light source. To bring this equation closer to a
global description of light transport, we can first extend it to a sum over all light sources
in the scene:
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This, however, is still an oversimplification. The incident irradiance on a surface is
not all due to direct light sources; as we’ve seen, a significant portion of it comes from
light reflected o↵ of other nearby surfaces.

Figure 3: Local geometry for the rendering equation.

To capture this idea, we will generalize our equation. Instead of a sum over light
sources, we can integrate over all solid angles in the visible hemisphere. We also replace
the incident radiance L

i

with the reflected radiance L

r

from some other surface in the
scene:
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2. We measure the amount of light leaving a surface as

Radiance = power / (foreshortened area · solid angle)

= watt / (meter2 · sr)
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δ2P

δA · δω
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P
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E[x, y, t, θ,φ] · f(θ,φ) dx dy dt dθ dφ

(sensor response)

0 < f(θ,φ) < 1
↪→ will tend to 1 for (θ,φ) directly overhead patch

Q : Why do we not see an image of a scene on a paper?

A: Restrict directions of incoming light with a pinhole.

Pinhole optics:

Right-hand coordinate system place the scene at -z:

y′

f ′
=

y
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,

x′

f ′
=

x

z
⇒

y = f ′ · y
z

x = f ′ · x
z

1-2

Replace incident irradiance with reflected radiance from some other surface in the scene

Global illumination: given lights (Le), visibility/geometry (x,x’), and materials (BRDFs) in a scene, solve for reflected radiance

Add ‘x’ to model a spatially-varying BRDF

x



Measuring BRDFs

Stanford Spherical Gantry



Visualizing BRDFs

Foley & Van Dam
In order to make computations tractable, we’ll make lots of 
simplifying assumptions: constant (albedo), mirror-like, etc…



Special cases

1

Computer Graphics (Spring 2008)Computer Graphics (Spring 2008)

COMS 4160, Lecture 20: Illumination and Shading 2
http://www.cs.columbia.edu/~cs4160

BRDFBRDF

� Reflected Radiance proportional to Irradiance

� Constant proportionality: BRDF [CW pp 28,29]
� Ratio of outgoing light (radiance) to incoming light (irradiance)
� Bidirectional Reflection Distribution Function 
� (4 Vars) units 1/sr

( )( , )
( ) cos

r r
i r

i i i i

Lf
L d

ωω ω
ω θ ω

=

( ) ( ) ( , ) cosr r i i i r i iL L f dω ω ω ω θ ω=

Isotropic Isotropic vsvs AnisotropicAnisotropic

� Isotropic: Most materials (you can rotate about 
normal without changing reflections)

� Anisotropic: brushed metal etc. preferred tangential 
direction

Isotropic Anisotropic

RadiometryRadiometry

� Physical measurement of electromagnetic energy

� We consider light field
� Radiance, Irradiance
� Reflection functions: Bi-Directional Reflectance 

Distribution Function or BRDF
� Reflection Equation
� Simple BRDF models

1

Computer Graphics (Spring 2008)Computer Graphics (Spring 2008)

COMS 4160, Lecture 20: Illumination and Shading 2
http://www.cs.columbia.edu/~cs4160

BRDFBRDF

� Reflected Radiance proportional to Irradiance

� Constant proportionality: BRDF [CW pp 28,29]
� Ratio of outgoing light (radiance) to incoming light (irradiance)
� Bidirectional Reflection Distribution Function 
� (4 Vars) units 1/sr

( )( , )
( ) cos

r r
i r

i i i i

Lf
L d

ωω ω
ω θ ω

=

( ) ( ) ( , ) cosr r i i i r i iL L f dω ω ω ω θ ω=

Isotropic Isotropic vsvs AnisotropicAnisotropic

� Isotropic: Most materials (you can rotate about 
normal without changing reflections)
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direction
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RadiometryRadiometry

� Physical measurement of electromagnetic energy

� We consider light field
� Radiance, Irradiance
� Reflection functions: Bi-Directional Reflectance 

Distribution Function or BRDF
� Reflection Equation
� Simple BRDF models

Isotropic

Rotate about normal without 
changing reflections

Anisotropic
f(✓i,�i, ✓r,�r) = f(✓i, ✓i,�r � �i)f(✓i,�i, ✓r,�r) = f(✓i, ✓i,�r � �i)

(most materials)



Special case (2): constant (Lambertian/diffuse) BRDF

viewing
direction

surface
element

normal
incident
direction

iθ

n

v
s

•  Lambertian BRDF is simply a constant : (albedo)

•  Surface appears equally bright from ALL directions!   (independent of      )v

source intensity I

f(!i,!r) = ⇢d

•  Surface Radiance :

•  Commonly used in Vision and Graphics!

= ⇢dn̂ · ŝn s.L / I cos ✓i



Application: photometric stereo

Given multiple measurements of images  with known lighting 
directions (s), solve for normals with least squares

⇡ n̂ · ŝImage Intensity



White-out Conditions from an Overcast Sky 

CAN’T perceive the shape of the snow covered terrain!

CAN perceive shape in regions
       lit by the street lamp!!

   WHY?



Specular Reflection and Mirror BRDF

source intensity I

viewing
directionsurface

element

normal

incident
direction n

v

s

r
specular/mirror

direction

),( ii IT
),( vv IT

),( rr IT

• Mirror BRDF is simply a double-delta function :

• Very smooth surface.

• All incident light energy reflected in a SINGLE direction.  (only when        =        )

• Surface Radiance : )()( vivisIL ISIGTTGU ��� 

v r

)()(),;,( vivisvviif ISIGTTGUITIT ��� 

specular albedo

Special case (2): ideal mirror



Specular Reflections in Nature

Compare sizes of objects and their reflections!

The reflections when seen from a lower view
point are always longer than when viewed
from a higher view point.

It's surprising how long the 
reflections are when viewed sitting 
on the river bank. 



Intermeddiate regimes

Specular/mirror Diffuse / lambertian



Spectral BRDFs
Photon particles move with particular wavelengths, so incorporate these terms into rendering model

f(!i,!r) =
Lr(!r)

Li(!i) cos ✓i

f(!i,!r,�) =
Lr(!r,�)

Li(!i,�) cos ✓i
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1. Final Projects 
2. Radiometry 
3. Color



Color
Two ways to talk about; color of light (additive) or color of surfaces (subtractive)

L(!,�)

Spectral radiance Spectral BRDFs

f(!i,!r,�) ⇡ ⇢(�)
(spectral) abledo is a constant approximation of BRDF



© Marc Levoy

✦ wavelengths between 400nm and 700 nm (0.4µ - 0.7µ)

✦ exactly the colors in a rainbow



The Physics of Light 

Any patch of light can be completely described 
physically by its spectrum: the number of photons  
(per time unit) at each wavelength 400 - 700 nm. 

400   500    600    700

Wavelength (nm.)

# Photons
(per ms.)

© Stephen E. Palmer, 2002 

Technically, units =  
power (watts, or joules/sec)



Spectra of Light Sources 
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Some examples of the spectra of light sources 

© Stephen E. Palmer, 2002 
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Reflectance Spectra of Surfaces 

Some examples of the reflectance spectra of surfaces 

Wavelength (nm) 

%
 L

ig
ht

 R
ef

le
ct

ed
 

Red 

400          700 

Yellow 

400          700 

Blue 

400          700 

Purple 

400          700 

© Stephen E. Palmer, 2002 



Spectra of light sources 
 

Source: Popular Mechanics 

These plots suggest that 3 numbers are not sufficient to represent a color.  
So what gives? (answer in a bit)



The Psychophysical Correspondence 

There is no simple functional description for the perceived 
color of all lights under all viewing conditions, but …... 

A helpful constraint: 
  Consider only physical spectra with normal distributions 

area 

Wavelength (nm.)

# Photons

400 700500 600

mean 

variance 

© Stephen E. Palmer, 2002 



The Psychophysical Correspondence 

Mean Hue 

yellowgreenblue

# 
P

ho
to
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Wavelength 

© Stephen E. Palmer, 2002 



The Psychophysical Correspondence 

Variance Saturation 

Wavelength 

high

medium

low
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med.

low# 
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© Stephen E. Palmer, 2002 



The Psychophysical Correspondence 

Area Brightness 
# 

P
ho

to
ns

 

Wavelength 

B.  Area         Lightness

bright

dark

© Stephen E. Palmer, 2002 



A strange observation…
Some different wavelength distributions “look” the same



A closer look: human sensing
The Eye 

The human eye is a camera! 
• Iris - colored annulus with radial muscles 

• Pupil - the hole (aperture) whose size is controlled by the iris 
• What’s the “film”? 

– photoreceptor cells (rods and cones) in the retina 

Slide by Steve Seitz 



Human photoreceptors

 

Foundations of Vision, by Brian Wandell, Sinauer Assoc., 1995 

© Stephen E. Palmer, 2002 
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Three kinds of cones: 

Physiology of Color Vision 

• Why are M and L cones so close? 
• Why are there 3? 

“blue” “green” “red”



Metamers revisted



The mathematics of color

A linear model for color perception

CS 216 Class Notes

Charless Fowlkes

October 1, 2010

We would like to understand how an arbitrary colored light entering the eye (an infinite dimensional
object) can be matched perceptually by a mixture of primary colors (3 dimensional). The answer
lies in the observed linearity in the perception of color and the fact that there are only three color
receptor types in the eye.

Let Ri(�) be the sensitivity of a receptor of type i = 1 . . . 3 to wavelength �. The light incident on
the eye has some distribution of energy across wavelengths given by the function I(�). We model
the response of the receptor to an incoming distribution of light by a simple linear operation 1

vi =
Z 1

0
I(�)Ri(�)d� (1)

so for any light I to which we are exposed, the sensor system produces a vector v 2 R3.

An important consequence of this model is that linear combinations of lights yield linear com-
binations of measurements. For example, suppose we have some set of so-called primary lights
P1(�), P2(�), P3(�) and let Cij be the response of the ith detector to the jth light, i.e.

Cij =
Z 1

0
Pj(�)Ri(�)d�

Once we have C we can quickly compute the response to any linear combination of primaries. Sup-
pose I(�) =

P
j ↵jPj(�) (here ↵j is the setting of the jth ”knob” in the color matching experiment

we described). The response to such a mixture for the ith receptor is

vi =
Z 1

0
(
X

j

↵jPj(�))Ri(�)d�

=
X

j

↵j

Z 1

0
Pj(�)Ri(�)d�

=
X

j

↵jCij

1
We will also assume that these functions are mathematically nice, e.g. integrable

1

© Stephen E. Palmer, 2002 

400        450      500    550    600  650

R
E

LA
TI

V
E

 A
B

S
O

R
B

A
N

C
E

 (%
)

W AVELENGTH (nm.)

100

50

440

S

530 560  nm.

M L

Three kinds of cones: 

Physiology of Color Vision 

• Why are M and L cones so close? 
• Why are there 3? 

Spectra of Light Sources 

# 
P

ho
to

ns

D.  Normal Daylight

Wavelength (nm.)

B. Gallium Phosphide Crystal

400   500    600    700

# 
P

ho
to

ns

Wavelength (nm.)

A.  Ruby Laser

400   500    600    700

400   500    600    700

# 
P

ho
to

ns

C.  Tungsten Lightbulb

400   500    600    700

# 
P

ho
to

ns

Some examples of the spectra of light sources 

© Stephen E. Palmer, 2002 

R
el

. p
ow

er
 

R
el

. p
ow

er
 

R
el

. p
ow

er
 

R
el

. p
ow

er
 

Ri(�), i = {1, 2, 3} I(�)

Photo-receptors Incoming light

Ri(�), i = {1, 2, 3}



The mathematics of color

A linear model for color perception

CS 216 Class Notes

Charless Fowlkes

October 1, 2010

We would like to understand how an arbitrary colored light entering the eye (an infinite dimensional
object) can be matched perceptually by a mixture of primary colors (3 dimensional). The answer
lies in the observed linearity in the perception of color and the fact that there are only three color
receptor types in the eye.

Let Ri(�) be the sensitivity of a receptor of type i = 1 . . . 3 to wavelength �. The light incident on
the eye has some distribution of energy across wavelengths given by the function I(�). We model
the response of the receptor to an incoming distribution of light by a simple linear operation 1
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P1(�), P2(�), P3(�) and let Cij be the response of the ith detector to the jth light, i.e.
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Once we have C we can quickly compute the response to any linear combination of primaries. Sup-
pose I(�) =
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We will also assume that these functions are mathematically nice, e.g. integrable

1

Means the perception of color is linear

I1(�) ! v1, v2, v3

I2(�) ! w1, w2, w3

↵I1(�) + �I2(�) !



What about non-humans?

http://graphics.stanford.edu/courses/cs178/applets/locus.html

http://graphics.stanford.edu/courses/cs178/applets/locus.html


How do we numerically represent a color?

http://graphics.stanford.edu/courses/cs178/applets/colormatching.html

Given a candidate color, find scale factors for tuning 3 reference primaries so that they 
visually match

http://graphics.stanford.edu/courses/cs178/applets/colormatching.html


© Marc Levoy

1. given a stimulus wavelength, the amount of each primary 
required to match it is given by three numbers

2. some stimuli cannot be matched unless first desaturated by 
adding some of one primary to it before matching; the amount 
added is denoted by negative values of

3. the sequence of              values, some negative, required to 
match the locus of spectral colors across all λ, form the
trichromatic matching functions         ,         , and           for a
particular set of 3 primaries

26

1 2 3

(r, g, b)

r, g,  or b
(r, g, b)

r (λ) g (λ) b (λ)

Summary of color matching



RGB color matching function

Given color-matching functions, how do I compute r,g,b values for a new light spectra

Interaction of light and surfaces 

• Reflected color is the result 
of interaction of light source 
spectrum with surface 
reflectance 

r(�)g(�)b(�)

I(�)?



I(�) ⇡ I(0)�(�) + I(1)�(�� 1) + I(2)�(�� 2) + . . .

=

Z 1

0
I(u)�(�� u)du

Write any spectra as a linear combination of single-wavelength signals

= ++... + + ...

Figure 1: Staircase approximation to a continuous-time signal.

Representing signals with impulses. Any signal can be expressed as a sum of scaled and
shifted unit impulses. We begin with the pulse or “staircase” approximation to a continuous
signal , as illustrated in Fig. 1. Conceptually, this is trivial: for each discrete sample of the
original signal, we make a pulse signal. Then we add up all these pulse signals to make up the
approximate signal. Each of these pulse signals can in turn be represented as a standard pulse
scaled by the appropriate value and shifted to the appropriate place. In mathematical notation:

As we let approach zero, the approximation becomes better and better, and the in the limit
equals . Therefore,

Also, as , the summation approaches an integral, and the pulse approaches the unit impulse:

(1)

In other words, we can represent any signal as an infinite sum of shifted and scaled unit impulses. A
digital compact disc, for example, stores whole complex pieces of music as lots of simple numbers
representing very short impulses, and then the CD player adds all the impulses back together one
after another to recreate the complex musical waveform.

This no doubt seems like a lot of trouble to go to, just to get back the same signal that we
originally started with, but in fact, we will very shortly be able to use Eq. 1 to perform a marvelous
trick.

Linear Systems

A system or transform maps an input signal into an output signal :

where denotes the transform, a function from input signals to output signals.

Systems come in a wide variety of types. One important class is known as linear systems. To
see whether a system is linear, we need to test whether it obeys certain rules that all linear systems
obey. The two basic tests of linearity are homogeneity and additivity.

4

To predict response to a particular (e.g., red) photoreceptor, 
we need only know its sensitivty to single-wavelength signals 



I(�) ⇡ I(0)�(�) + I(1)�(�� 1) + I(2)�(�� 2) + . . .

=

Z 1

0
I(u)�(�� u)du

Write any spectra as a linear combination of single-wavelength signals

= ++... + + ...

Figure 1: Staircase approximation to a continuous-time signal.

Representing signals with impulses. Any signal can be expressed as a sum of scaled and
shifted unit impulses. We begin with the pulse or “staircase” approximation to a continuous
signal , as illustrated in Fig. 1. Conceptually, this is trivial: for each discrete sample of the
original signal, we make a pulse signal. Then we add up all these pulse signals to make up the
approximate signal. Each of these pulse signals can in turn be represented as a standard pulse
scaled by the appropriate value and shifted to the appropriate place. In mathematical notation:

As we let approach zero, the approximation becomes better and better, and the in the limit
equals . Therefore,

Also, as , the summation approaches an integral, and the pulse approaches the unit impulse:

(1)

In other words, we can represent any signal as an infinite sum of shifted and scaled unit impulses. A
digital compact disc, for example, stores whole complex pieces of music as lots of simple numbers
representing very short impulses, and then the CD player adds all the impulses back together one
after another to recreate the complex musical waveform.

This no doubt seems like a lot of trouble to go to, just to get back the same signal that we
originally started with, but in fact, we will very shortly be able to use Eq. 1 to perform a marvelous
trick.

Linear Systems

A system or transform maps an input signal into an output signal :

where denotes the transform, a function from input signals to output signals.

Systems come in a wide variety of types. One important class is known as linear systems. To
see whether a system is linear, we need to test whether it obeys certain rules that all linear systems
obey. The two basic tests of linearity are homogeneity and additivity.

4

vi[I(�)] ⇡ I(0)Ri(0) + I(1)Ri(1) + . . .

=

Z 1

0
I(�)Ri(�)d�

Ri(�), i = {1, 2, 3}

photoreceptor sensitivity function



Spectral locus

RGB color matching function RGB values

Range of RGB values encountered for single-wavelength stimulus



RGB cube

© Marc Levoy

✦ choose three primaries R,G,B, pure wavelengths or not

✦ adjust scaling applied to (R,G,B) = (255,255,255)
to obtain a desired reference white

✦ this yields an RGB cube

✦ programmers like RGB as a way of selecting colors
• but artists don’t

Use red, green, and blue primaries 
Define RGB = (255,255,255) to be a reference white and (0,0,0) to be reference black 

Cannot represent colors with requiring negative R,G,B values



 Computer Vision - A Modern Approach
Set:  Color 

Slides by D.A. Forsyth

HSV hexcone

Alternative parameterization: HSV

Nonlinear color spaces: HSV 

• Perceptually meaningful dimensions:  
Hue, Saturation, Value (Intensity) 

• RGB cube on its vertex 



Separate out luminance (brightness) 
versus chrominance (color)

r =
R

R+G+B

g =
G

R+G+B

© Marc Levoy

✦ choose three primaries R,G,B, pure wavelengths or not

✦ adjust R=1,G=1,B=1 to obtain a desired reference white

✦ this yields an RGB cube

✦ points in the RGB cube having the same
chromaticity but varying brightness
lie along lines emanating from black

✦ by projecting along these lines to a plane
(by convention the triangle connecting
the R,G,B corners), one creates a 2D
representation of chromaticity alone r

g

(Flash demo)
http://graphics.stanford.edu/courses/
cs178/applets/threedgamut.html

r =
R

R +G + B

g =
G

R +G + B

Points in the RGB cube having the same chromaticity but varying brightness lie along lines 
emanating from black (0,0,0)



Chrominance view of spectral locus

© Marc Levoy

✦ this triangle is called the rgb chromaticity 
diagram for the chosen RGB primaries

• mixtures of colors lie along straight lines
• neutral (black to white) lies at W (⅓, ⅓)
• r>0, g>0 does not enclose spectral locus

✦ the same construction can be performed 
using any set of 3 vectors as primaries, even 
impossible ones (with ρ < 0 or γ < 0 or β < 0) 

✦ the CIE has defined a set of primaries XYZ, 
and the associated xyz chromaticity diagram

• x>0, y>0 does enclose spectral locus
• one can connect red and blue on the locus 

with a line of extra-spectral purples
• x,y is a standardized way to denote colors

r

g rgb
chromaticity

diagram

neutral (black to white) = (1/3,1/3)

r>0,g>0 does not enclose spectral locus

r =
R

R+G+B

g =
G

R+G+B

http://graphics.stanford.edu/courses/cs178/applets/threedgamut.html

http://graphics.stanford.edu/courses/cs178/applets/threedgamut.html


CIE XYZ color space

Define positive color matching functions (no real primaries)
x>0,y>0 does include all spectral colors

© Marc Levoy

✦ this triangle is called the rgb chromaticity 
diagram for the chosen RGB primaries

• mixtures of colors lie along straight lines
• neutral (black to white) lies at W (⅓, ⅓)
• r>0, g>0 does not enclose spectral locus

✦ the same construction can be performed 
using any set of 3 vectors as primaries, even 
impossible ones (with ρ < 0 or γ < 0 or β < 0) 

✦ the CIE has defined a set of primaries XYZ, 
and the associated xyz chromaticity diagram

• x>0, y>0 does enclose spectral locus
• one can connect red and blue on the locus 

with a line of extra-spectral purples
• x,y is a standardized way to denote colors

(Hunt)

CIE xyz
chromaticity

diagram

x

y
x =

X

X + Y + Z

y =
Y

X + Y + Z

http://graphics.stanford.edu/courses/cs178/applets/threedgamut.html

CIE = “International Commission on Illumination”

http://graphics.stanford.edu/courses/cs178/applets/threedgamut.html


CIE xy



CIE Luv (or Lab)

 Computer Vision - A Modern Approach
Set:  Color 

Slides by D.A. Forsyth

CIE u’v’ which is a 
projective transform
of x, y. We transform 
x,y so that ellipses are 
most like one another.  
Figure shows the 
transformed ellipses.

McAdam ellipses:  
just-noticeable differences in color

XYZ Lab

Nonlinear (projective) 
transformation

Ellipses are more circular

Luv,Lab is a nice color space to work with when measuring pixel differences (e.g., SSD)

Uniform color spaces 
• Unfortunately, differences in x,y coordinates do not 

reflect perceptual color differences 
• CIE u’v’ is a projective transform of x,y to make the 

ellipses more uniform 

McAdam ellipses: Just 
noticeable differences in color 

L measures luminance (brightness) and u,v (or a,b) measures chrominance



Color constancyImage Formation 

Digital Camera 

The Eye 

Film 
Appearance of surface = product of surface reflectance + illumination

Color constancy: an illumination-independent representation of the scene - 
what would it look like under white light?



Human color constancy

• Human visual system changes its sensitivity depending on the 
prevailing colors in the visual field 

•  Iris changes size (walking into a building from sunshine) 

• If scene has lots of red light, red sensitivity of receptors decrease 
until scene looks white



Color constancy algorithms
Von Kries adaption model: multiple each RGB channel by gain factor

Easy approach: 
1. Take a picture of  a reference object (white or grey) 
2. If object color is (rw,gw,bw), use gains of (1/rw,1/gw,1/bw),

White balance 
• Von Kries adaptation 

• Multiply each channel by a gain factor 
 

• Best way: gray card 
• Take a picture of a neutral object  (white or gray) 
• Deduce the weight of each channel 

– If the object is recoded as rw, gw, bw  
use weights 1/rw, 1/gw, 1/bw 



Color constancy algorithms
Statistically infer grey value from image

1. Grey-world assumption: assume average RGB color is grey 
2. Assume brightest pixel value is a highlight with illuminant color 
3. Gamut mapping: transform convex hull of all pixels in an image to gamut under “typical” white light

So far: lightÆsurfaceÆcamera
• Called a local illumination model
• But much light comes from surrounding surfaces

From Koenderink slides on image texture and the flow of light

Mixed illumination 
• When there are several types of illuminants in the 

scene, different reference points will yield different 
results 

http://www.cambridgeincolour.com/tutorials/white-balance.htm 

Reference: moon Reference: stone 

Mixed illumination 
• When there are several types of illuminants in the 

scene, different reference points will yield different 
results 

http://www.cambridgeincolour.com/tutorials/white-balance.htm 

Reference: moon Reference: stone grey value = moon grey value = stone



Color as a cue for recognition

Usually gets clobbered by within-class variation



Color histograms for instance-level matching
Uses of color in computer vision 
Color histograms for image matching 

Swain and Ballard, Color Indexing, IJCV 1991. 
Swain & Ballard, “Color Indexing” IJCV 91



Skin detectionUses of color in computer vision 
Skin detection 

M. Jones and J. Rehg, Statistical Color Models with 
Application to Skin Detection, IJCV 2002. 

Jones & Rehg “Statistical Color Models with Application to Skin Detection” IJCV 02

(a) 2-D rendering of 3-D histogram model

viewed along the green-magenta axis.

(b) Surface plot of the marginal density formed by integrating

along the viewing direction in (a).

  Red

  Blue

Full Color Model, Green−Magenta Axis Marginal

Black White

(c) Equiprobability contours from the surface plot in

(b).

Red 

Blue 

Green 

Full Color Model, Gray Axis Marginal

(d) Contour plot for an integration of (a) along the

gray axis.

Figure 1: Four visualizations of a full color RGB histogram model constructed from nearly 2 billion Web image pixels.

4

Color histogram on RGB. Why not Lab?



SSD matching
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Figure 7: Image features. We show how the choice of im-
age feature affects the pose estimation accuracy. Overall,
with the exception of RGB, less invariant features performs
better than standard image features. Particularly, raw pixel
values in perceptually uniform color space such as LUV and
LAB significantly outperform standard edge-based features
(HOG). Color-augmented HOG (oHOG, [32]) with no con-
trast normalization performs better than HOG.

arts. Of the 18 test clips in the dataset, we use only 13 con-
taining frontal view of humans. These 13 clips are grouped
and concatenated to form 5 longer videos, each of which
contains a single character and background scene. (5 takes
are split into 13 clips in the dataset.) The length of videos
range from 50 to 120 frames. Background scenes are mostly
stable, but there exists mild motion due to movement of
camera and/or objects. The target task is to accurately pre-
dict joint locations of arms (elbows and wrists), which is
known to be notoriously hard compared with other body
parts.

Evaluation: In all diagnostic experiments, we use as
a scalar evaluation metric, the percentage of correctly pre-
dicted joints with 25-pixel threshold in a normalized scale.
This radius roughly corresponds to the width of fist of given
character. We consider 4 joints; two elbows and wrists.
When comparing with other approaches, we present the re-
sult with full range of thresholds as in [38] and [28].

Feature invariance: We first compare features of var-
ious degree of invariance (Fig.7). HOG has rich machin-
ery to generate invariant feature space, such as spatial and
orientation pooling and contrast normalization [6]. We at-
tempted to alleviate its invariance by building 3-channel
color histograms (inspired by OpponentSift in [32]) and re-
moving contrast normalization (oHOG). This modification
yields 3% improvement in accuracy. We explored different
sizes of spatial/orientation bin, and report the best one.

We also evaluate the simplest and the least invariant type
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Figure 8: Low resolution color features and training data. In
(a), we show the accuracy of pose estimation with respect to
the resolution of features. The number of synthesized train-
ing images is fixed (⇠280k). The x-values are scales repre-
sented by the length of full upper arm (See Fig. 6). In (b),
we plot performance as a function of the number of training
images (i.e sampling rate in pose space) for each resolution
of LUV features. “ub” denotes an upper bound obtained by
reporting the training pose closest to the ground truth test
pose, measured in high-resolution image coordinates. This
plot reveals that high accuracy (85%) can be theoretically
obtained with a small number of rendered training images
(⇠4k). The “x” denotes the number of unique quantized
poses that are resolvable at a fixed resolution (only shown
for s = 2 and s = 4). It may appear strange that one can
continue to improve accuracy for s = 2 by adding addi-
tional poses. This additional performance comes from ren-
dering “subpixel” poses, as discussed in Sec. 3.3.

of features, pixel-value features. Interestingly, these fea-

6

Park & Ramanan, 2015



Take-home points for color

• True “color” is represented as a continuous distribution over wavelengths 

• Humans perceive color by projecting wavelength onto 3 color receptors types 
(implying metamers do exist, and they depend on the person/organism). 

• As a consequence, color responses behave linearly. One convenient 
representation is a (trichromatic) color matching function.  

• Lab,Luv are better color spaces for measuring euclidean distance


