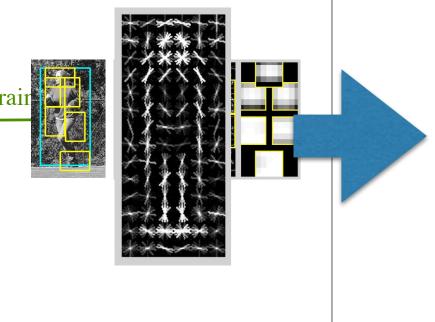
Parts

Limits of templates

ng

vith labeled bounding boxes

filters and deformation costs



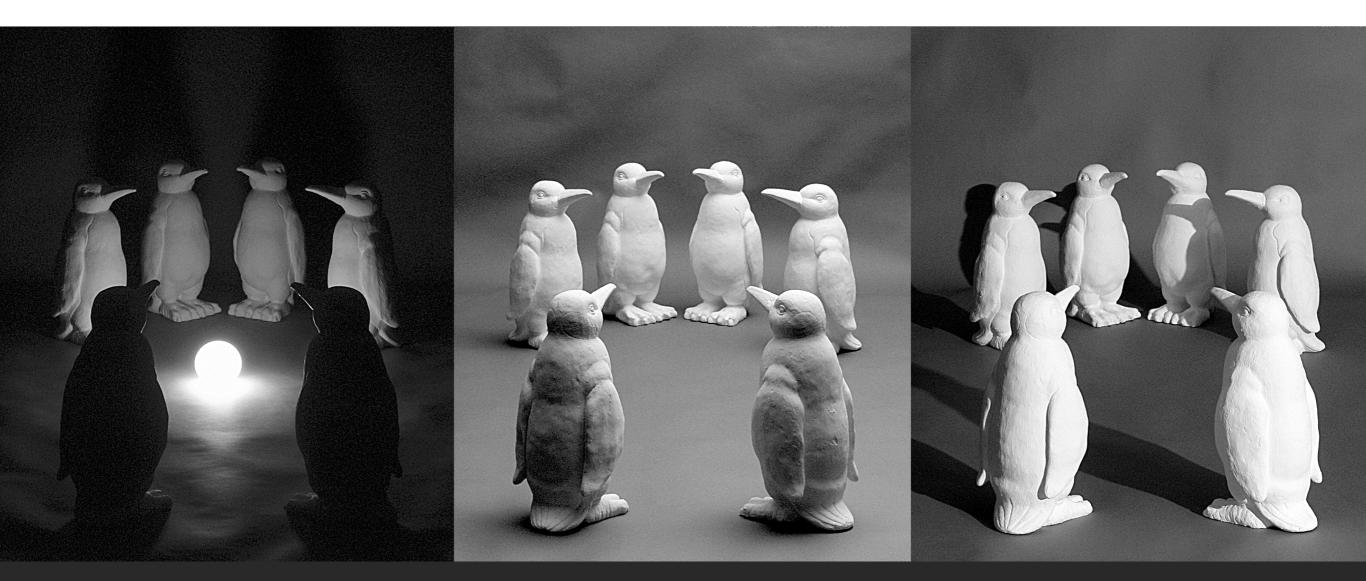
How to model large variations in appearance?

This is generally regarded as a "central challenge" for recognition

Challenges: viewpoint variation

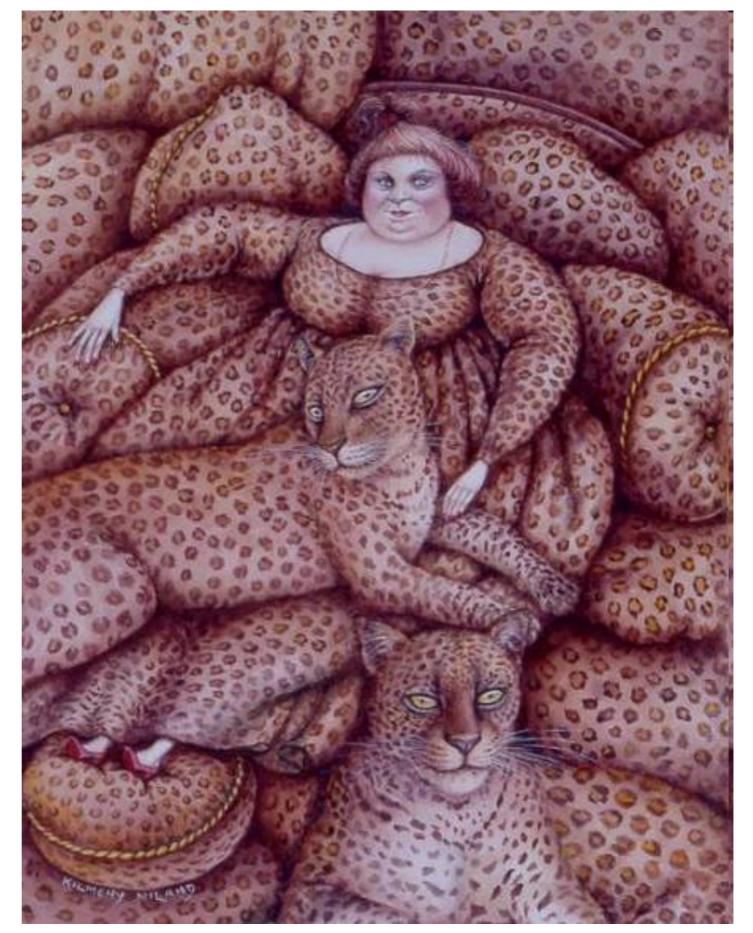
Michelangelo 1475-1564

Challenges: illumination



Challenges: scale

Challenges: background clutter



Kilmeny Niland. 1995

Challenges: intra-class variation

Why is finding people difficult?

variation in illumination

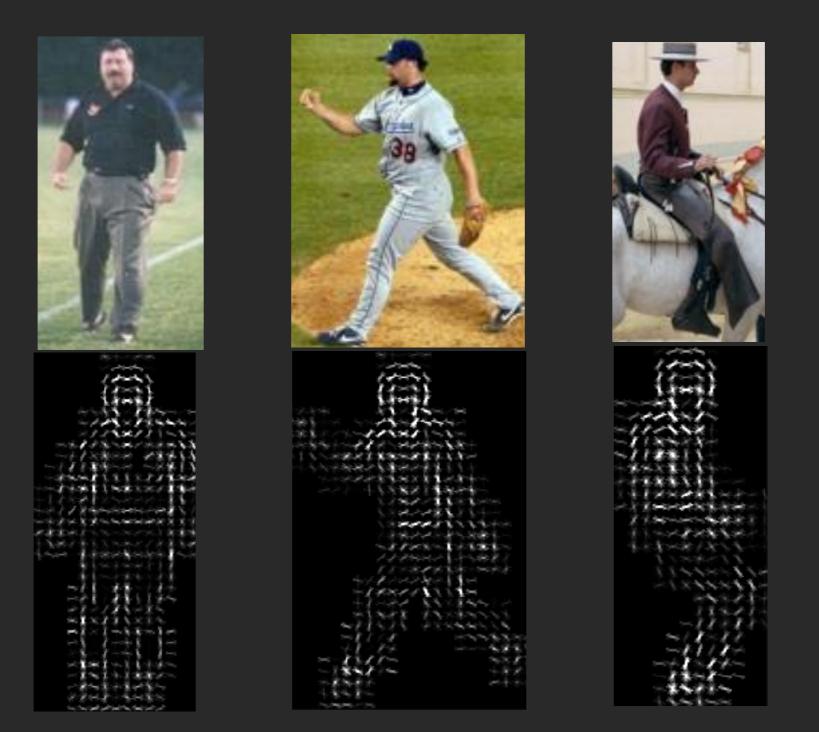
variation in appearance

variation in pose, viewpoint

occlusion & clutter

Classic "nuisance factors" for general object recognition

"Sub" categories

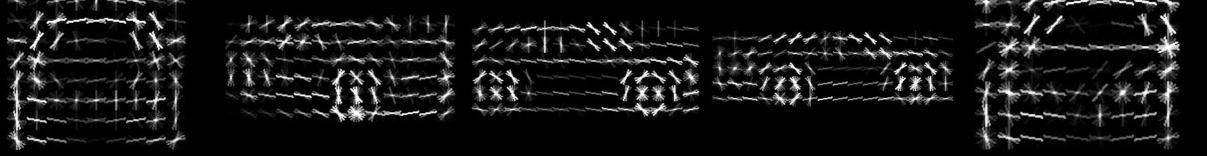


Train sub-category templates for each type of pose, body-shape, etc.

TIAL Why web treat each positive example as a unique subcategory?

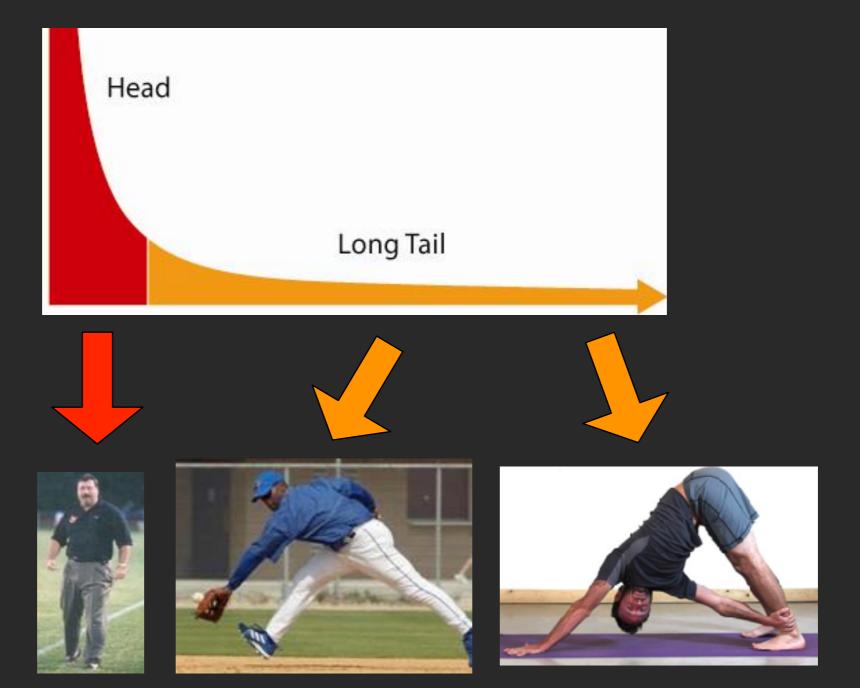
v initial exemplar models trained

TIAL REVIEW COPY. DO NOT DISTRIBUTE.



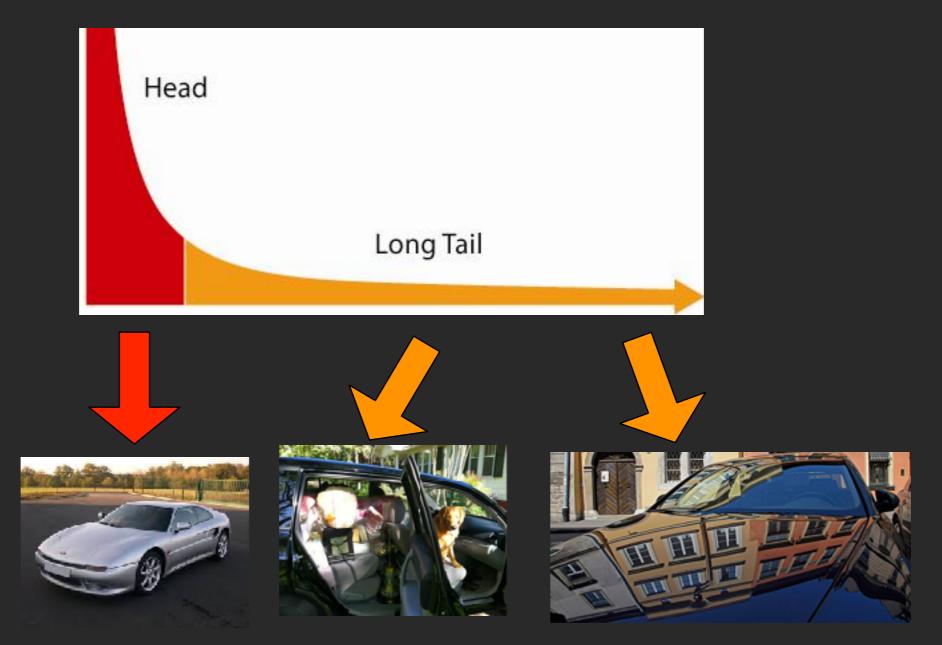
Average of 50 closest

But how to handle...



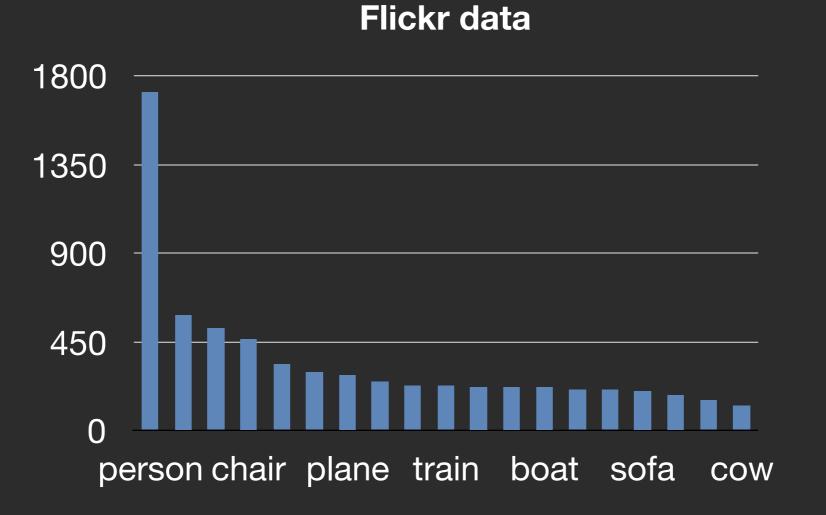
We need lots of templates, but will likely have little data of 'twisted' poses

But how to handle...

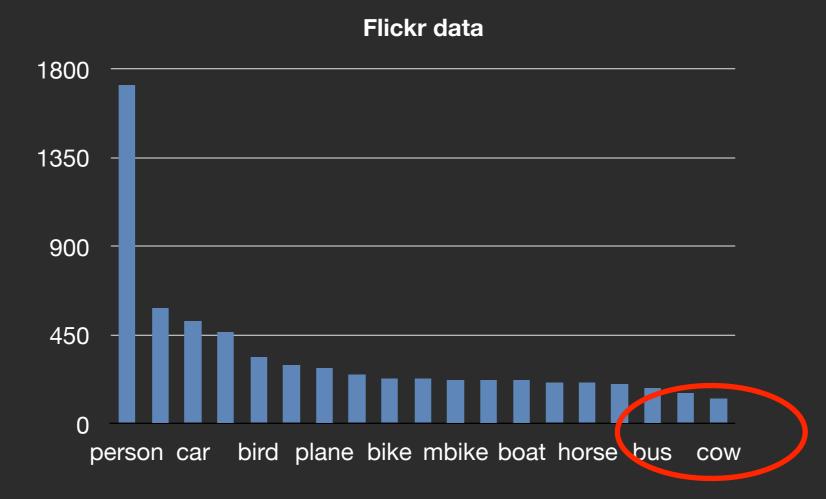


We need lots of templates, but will likely have little data of 'rare' car-appearances

Difficulties: long tails

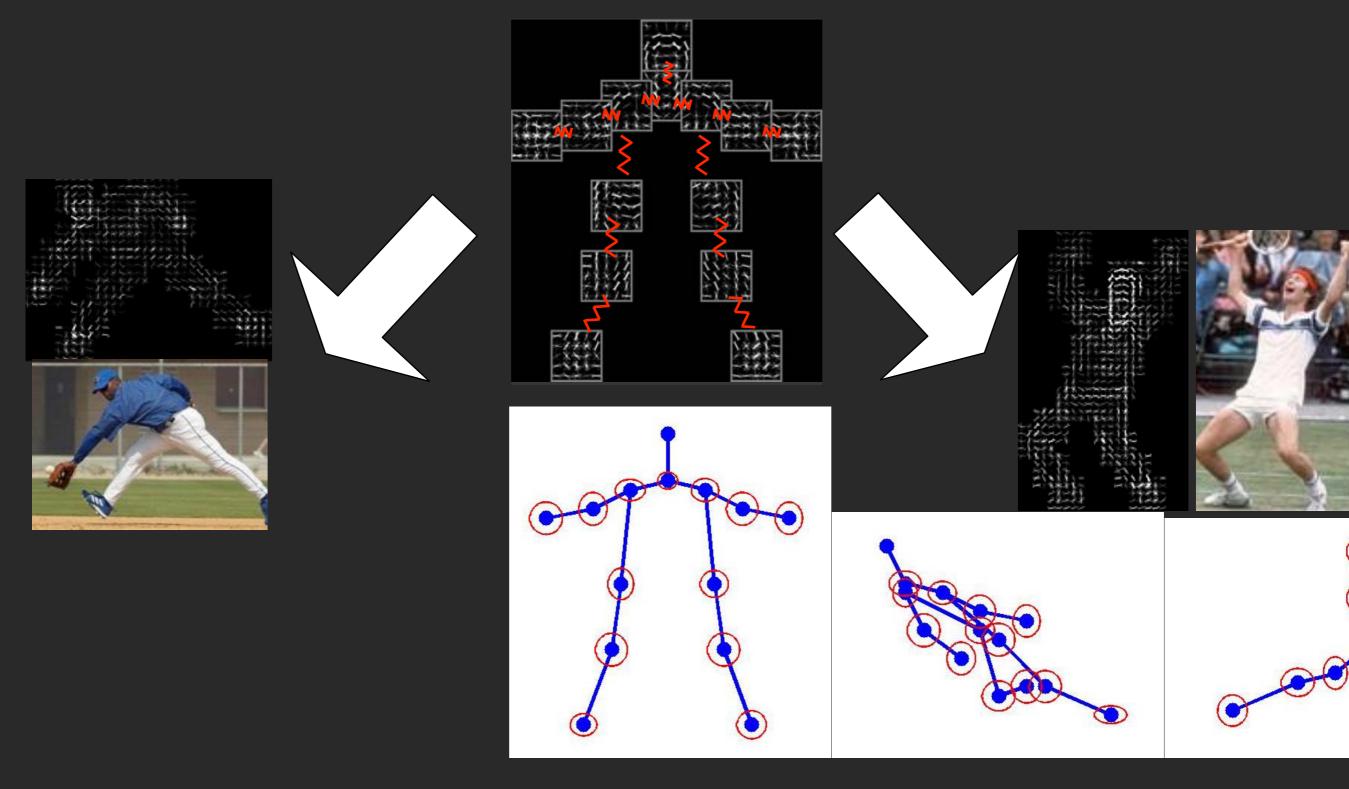


Difficulties: long tails

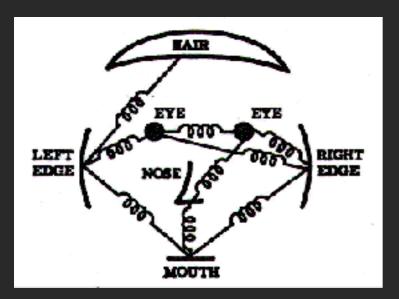


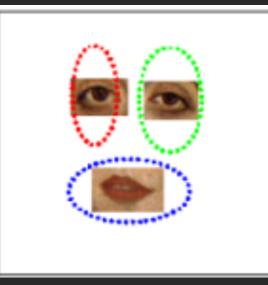
"One-shot learning": sharing

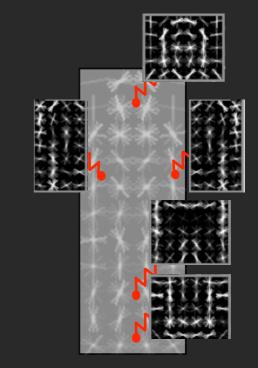
Parts to the rescue!



History over 40 years







Pictorial structures

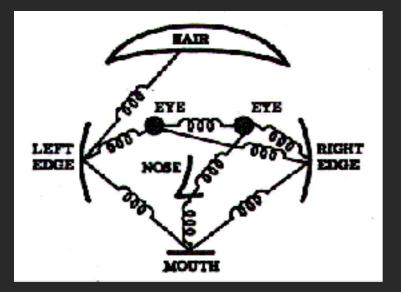
Constellation models

Deformable part models

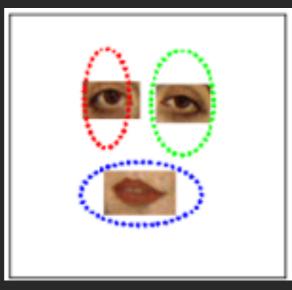
Model encodes local appearance + pairwise geometry

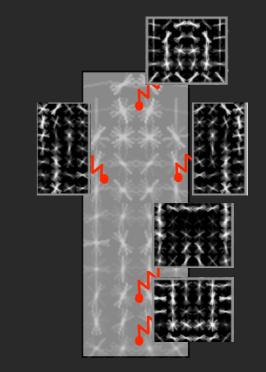
Pictorial Structures (Fischler & Elschlager 73, Felzenswalb and Huttenlocher 00) Cardboard People (Yu et al 96) Body Plans (Forsyth & Fleck 97) Active Appearance Models (Cootes & Taylor 98) Constellation Models (Burl et all 98, Fergus et al 03)

Part models



Pictorial structures

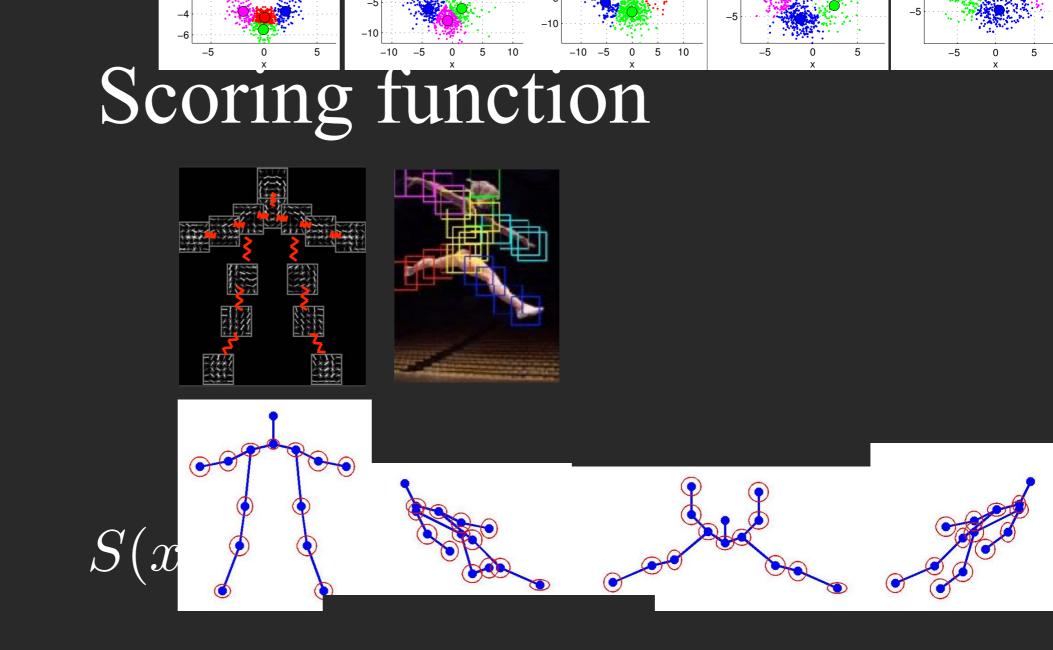




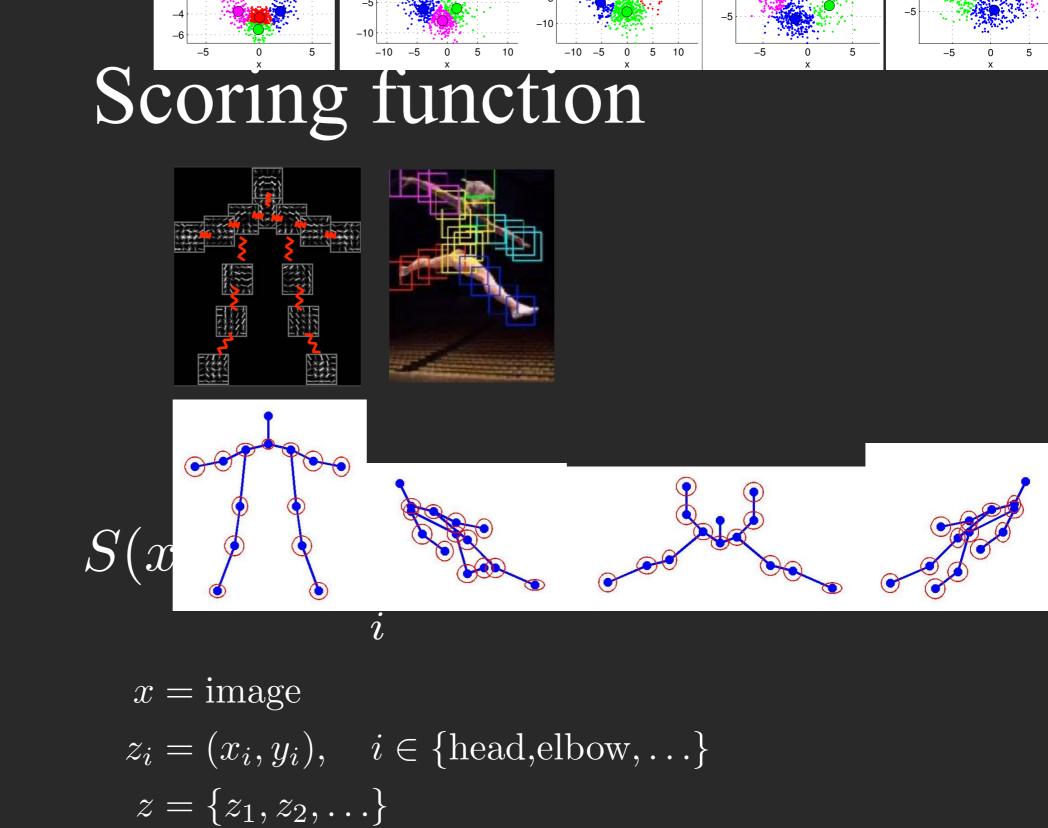
Constellation models

Deformable part models

I'll talk about DPMs, but give an alternate "long tail" perspective Felzenszwalb, Girshick, McAllester, Ramanan CACM 2013



$$x = \text{image}$$
$$z_i = (x_i, y_i)$$
$$z = \{z_1, z_2, \ldots\}$$



(often the scoring function includes an additional "spring term"; let's ignore for now)

Alternative formulations

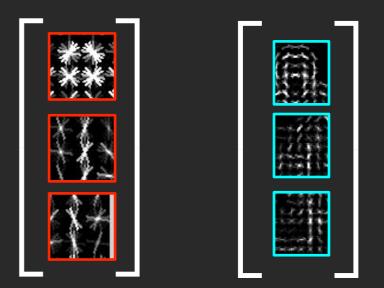
$$S(x,z) = \sum_{i} w_i \cdot \phi(x,z_i)$$



$$S(x,z) = w(z) \cdot \Phi(x)$$

[Useful for visualizing model]

 $\Phi(x,z)$



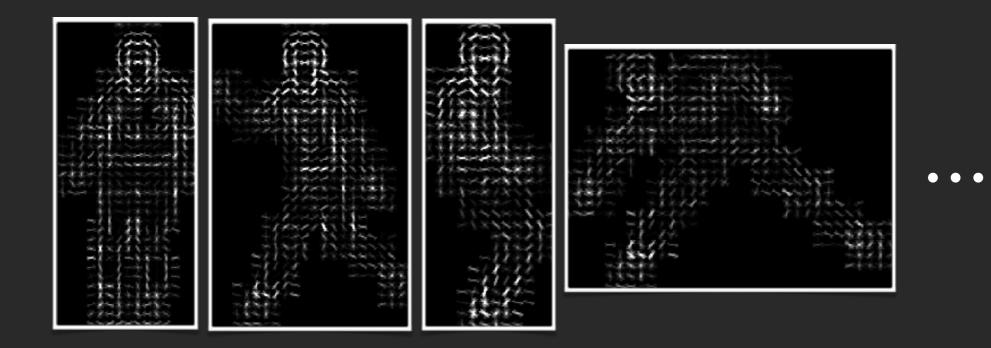
W

 $S(x,z) = w \cdot \Phi(x,z)$

[Useful for learning model parameters]

Visualizing family of classifiers

 $S(x,z) = w(z) \cdot \Phi(x)$

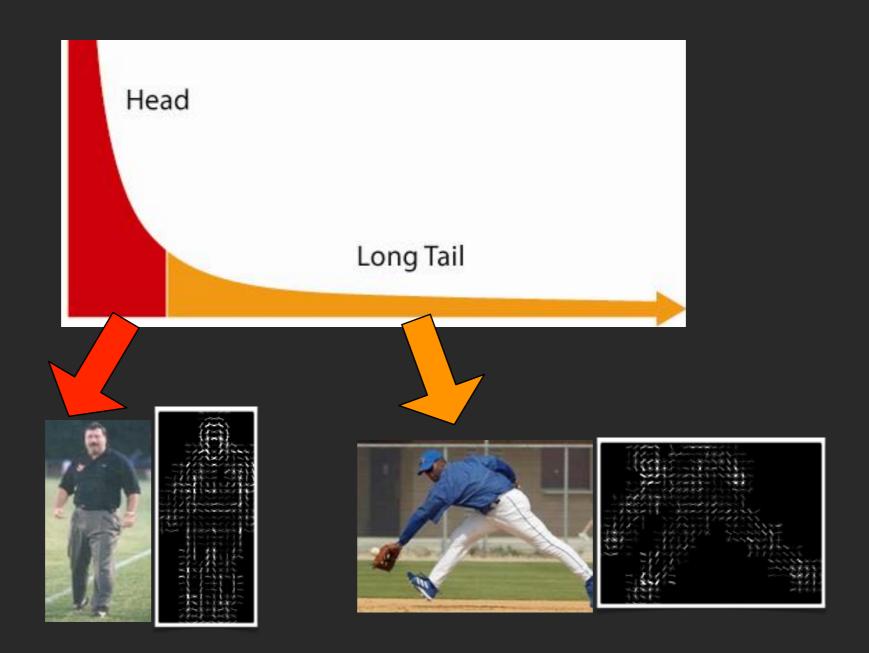


How do we define set of valid $z \in \Omega$?

One option: just use set of poses observed in training set

Sharing

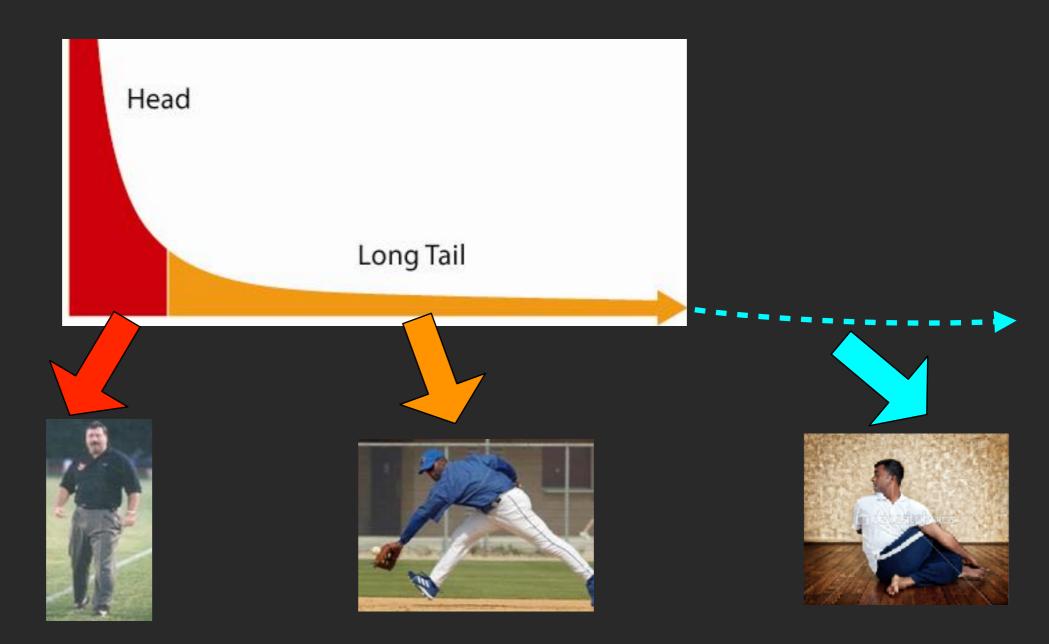
Helps address "one-shot" learning (subcategory seen at least once)



Use parts from common poses to help model rare poses

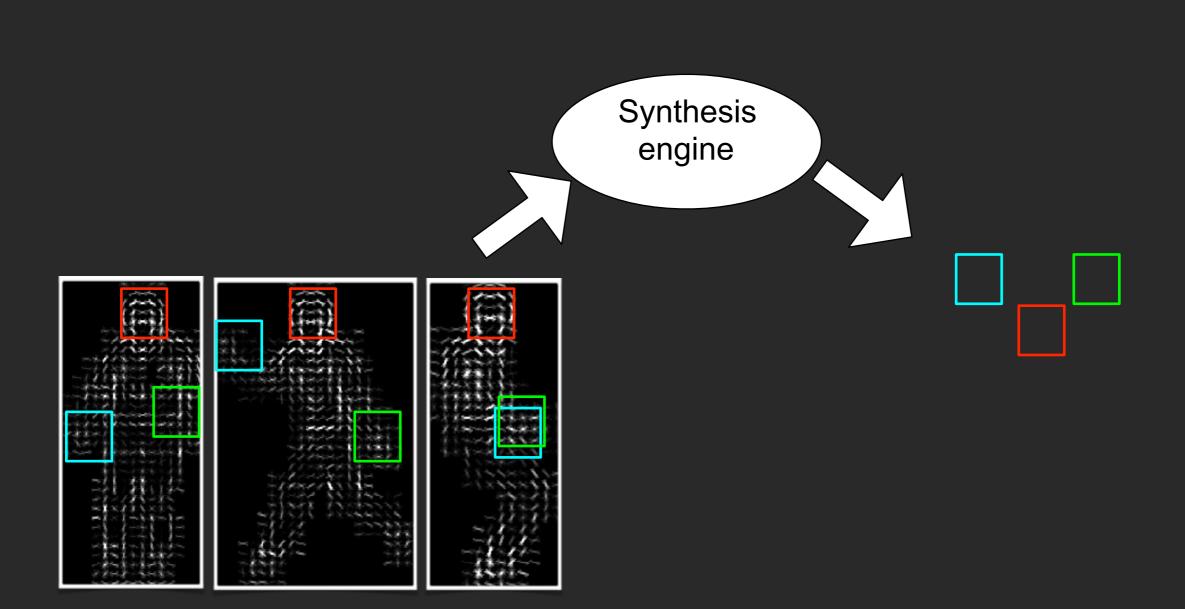
Sharing

Helps address "one-shot" learning (subcategory seen at least once)

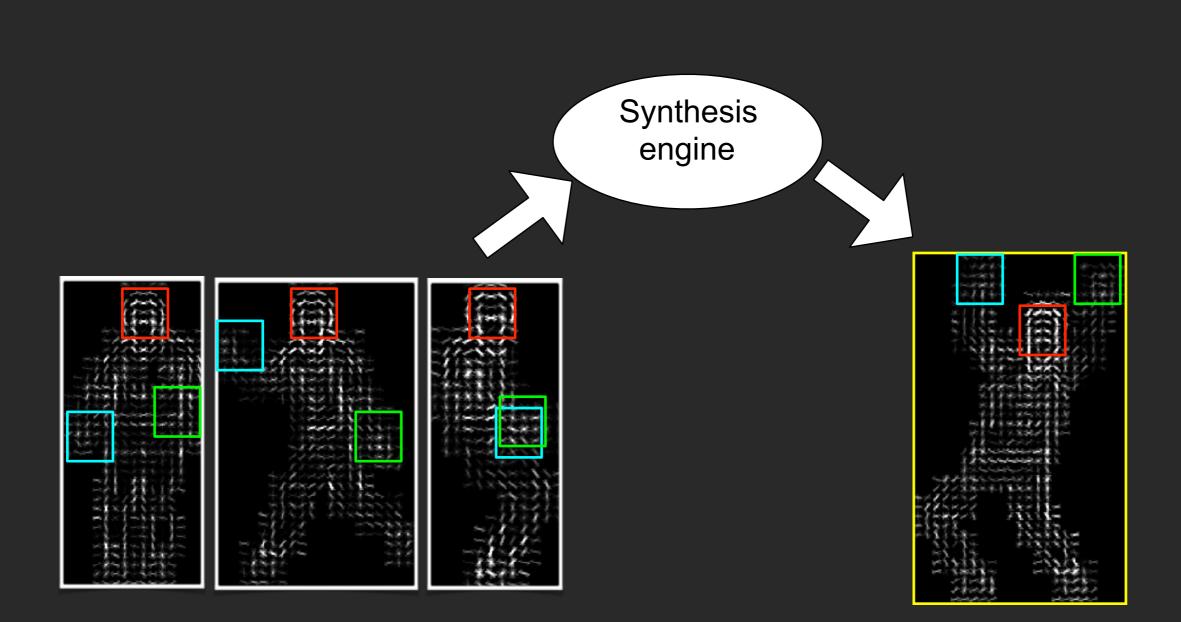


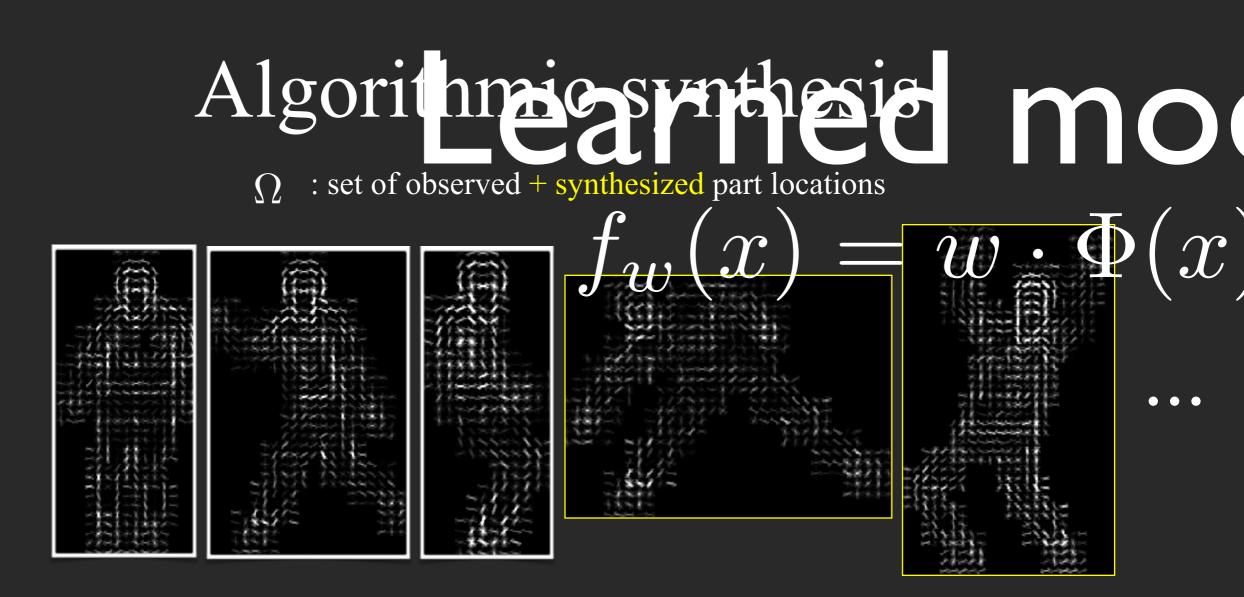
What about poses that are never seen ("zero-shot" learning)?

Shape synthesis



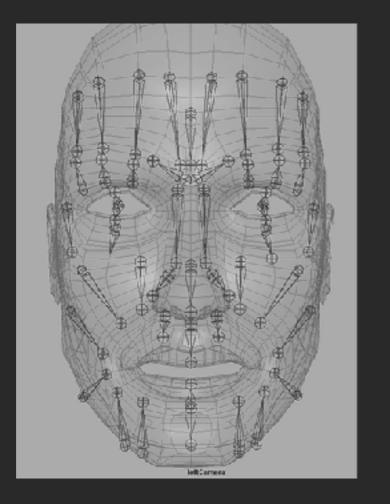
Shape synthesis

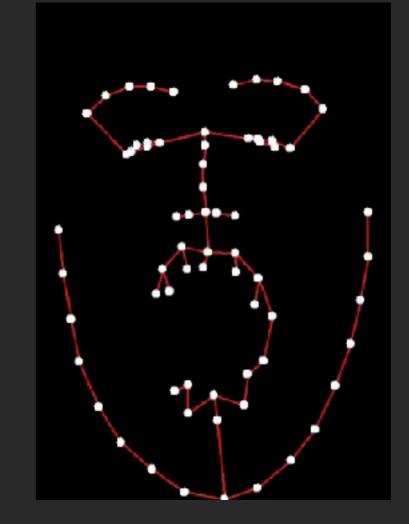






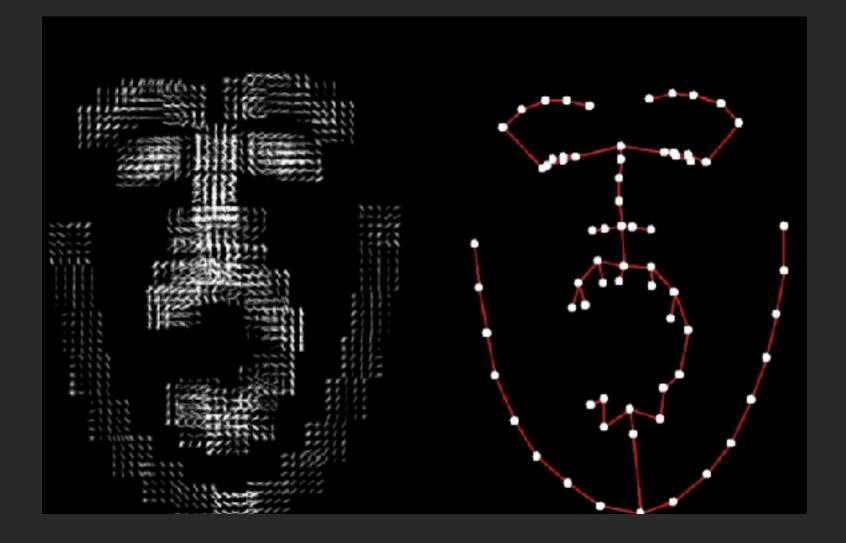
Shape synthesis $S(z) = (z - \mu)\Sigma^{-1}(z - \mu)$



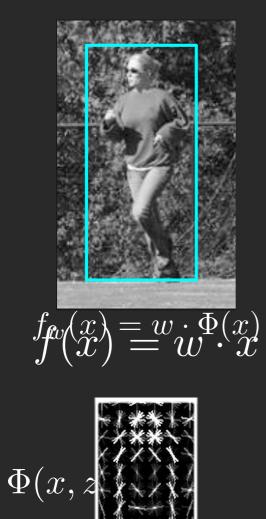


Graphics engine

Parametric family of classifiers



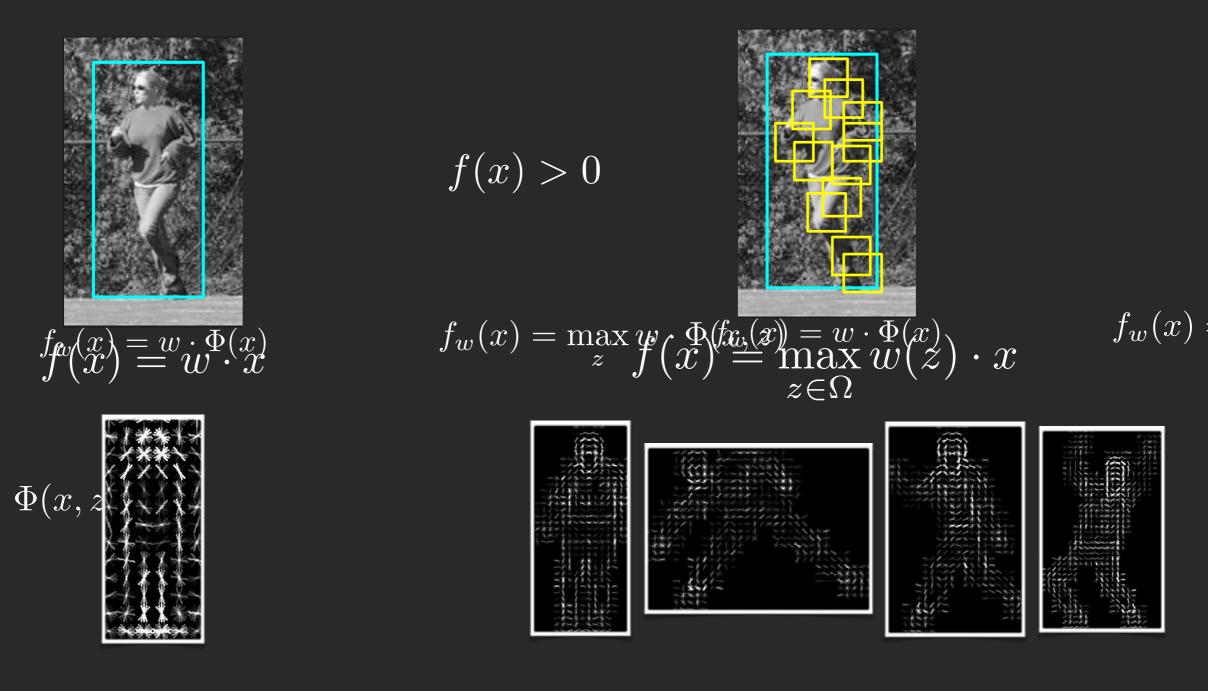
Recognition



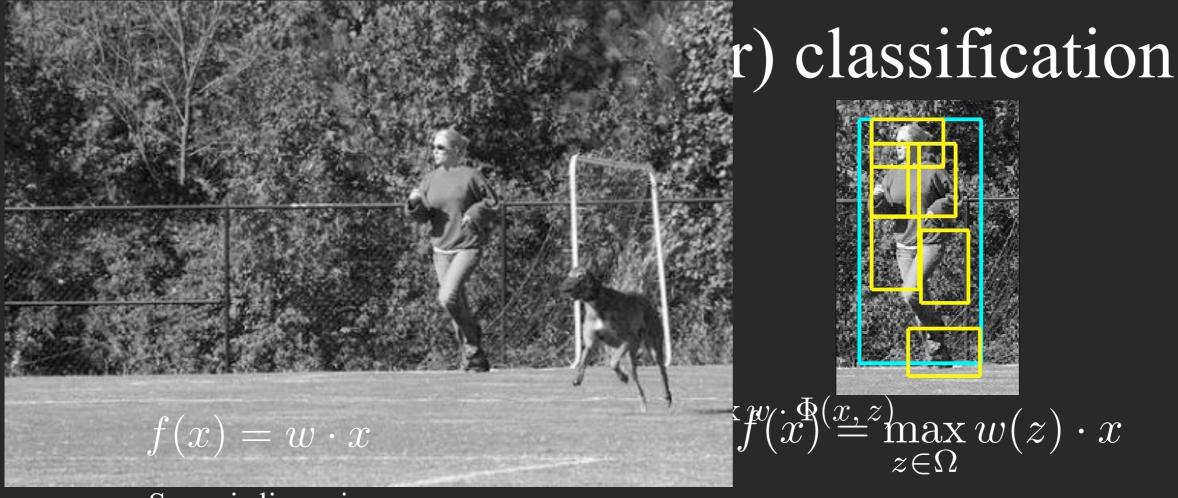
f(x) > 0

$$f_w(x) = \max_z w \cdot \Phi(x, z)$$

Recognition as reconstruction

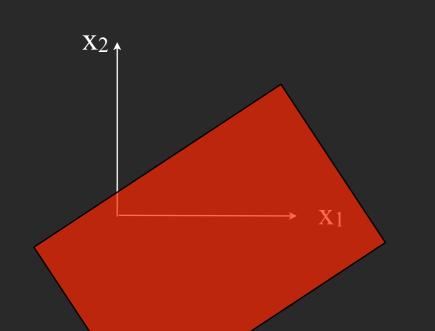


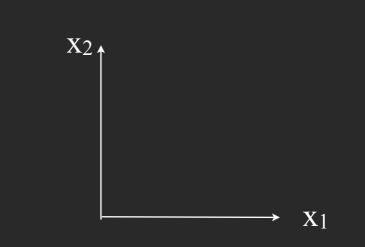
 Ω : set of observed + synthesized part locations Argmax (z*) reveals pose



Score is linear in x

Positive set $\{x: f_w(x) > 0\}$ is $\Phi(x, \tilde{z})$ half-spa $\Phi(x, z)$ Score is ? Positive set is ?

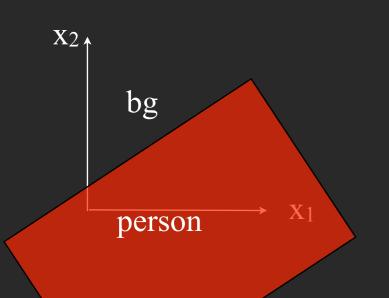


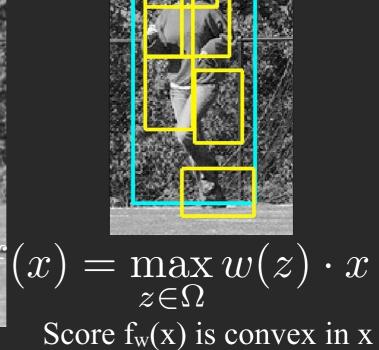


Revisit latent (vs linear) classification

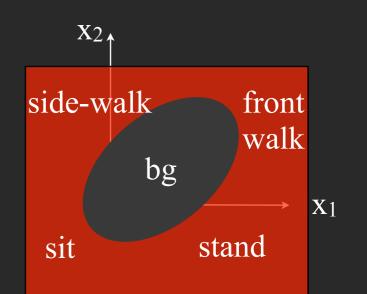
Score $f_w(x)$ is linear in x

Positive set
$$\{x: f_w(x) > 0\}$$
 is
 $\Phi(x, \tilde{z})$ half-space $\Phi(x, z)$

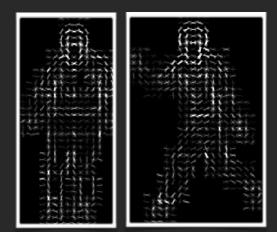




Score $f_w(x)$ is convex in x Negative set $\{x:f_w(x) \le 0\}$ is convex

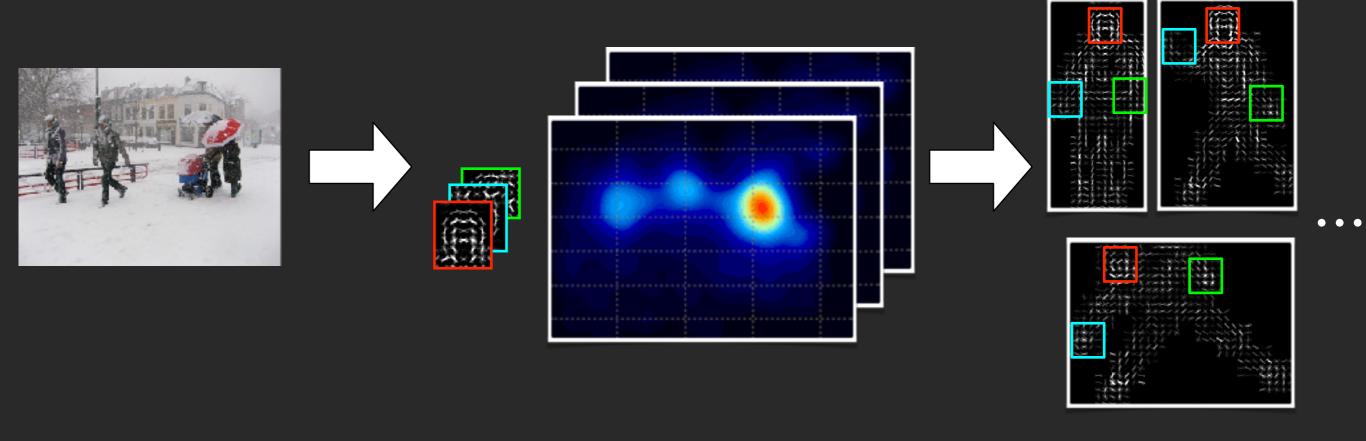


Inference



 \bullet \bullet

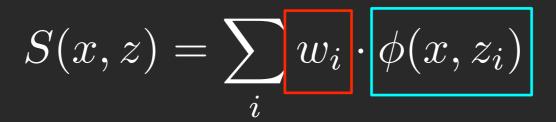
Inference

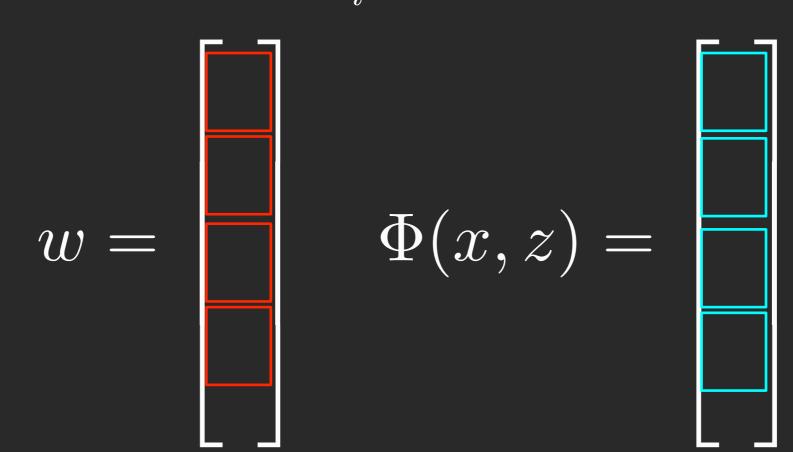


(1) Pre-compute tables of part responses (2) Score each template with lookup table (LUT) queries

Can be implemented as a two-layer convolution

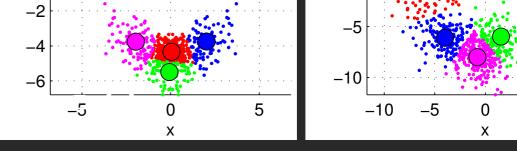
Learning

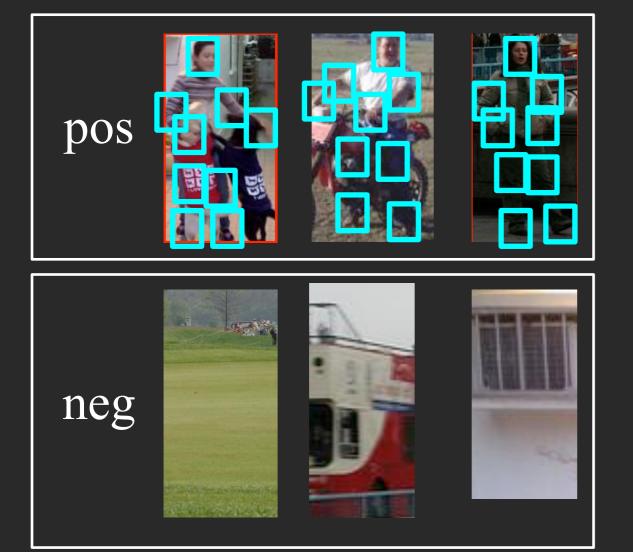


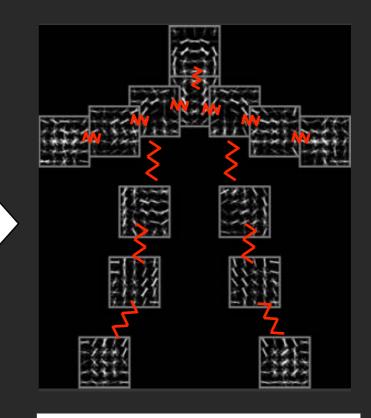


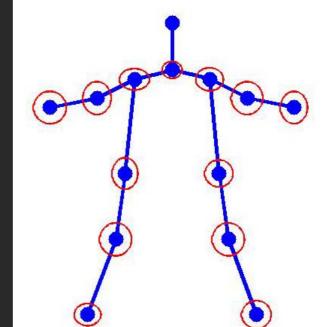
$$S(x,z) = w \cdot \Phi(x,z)$$

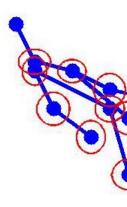
Supervised lear $S(x, z) = w \cdot \Phi(x, z),$

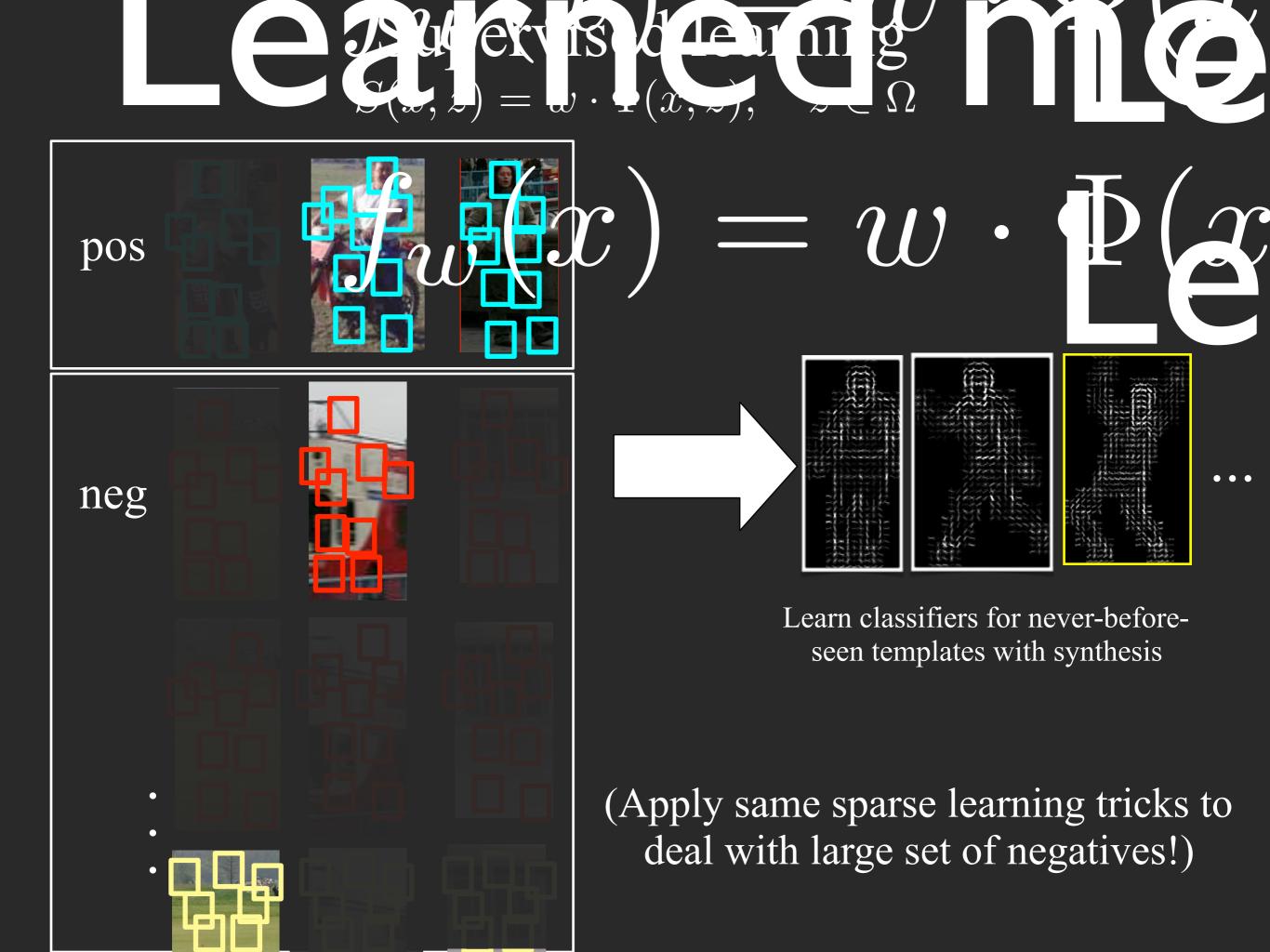




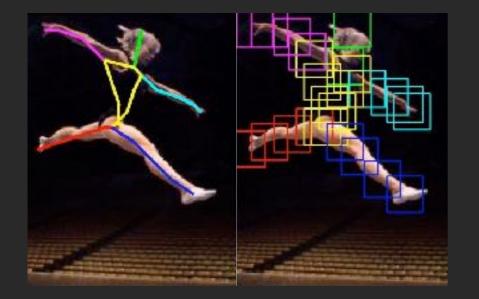


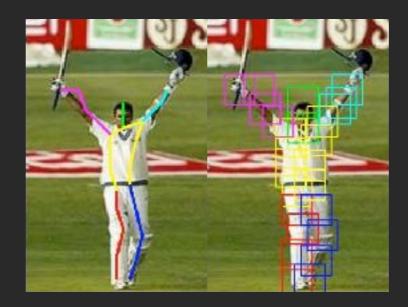


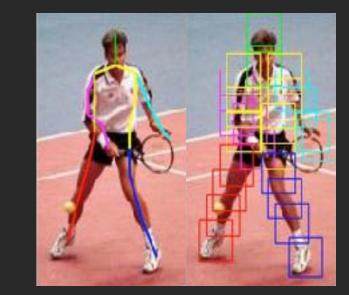


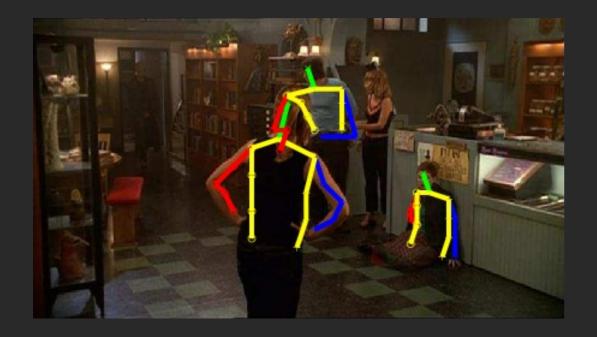


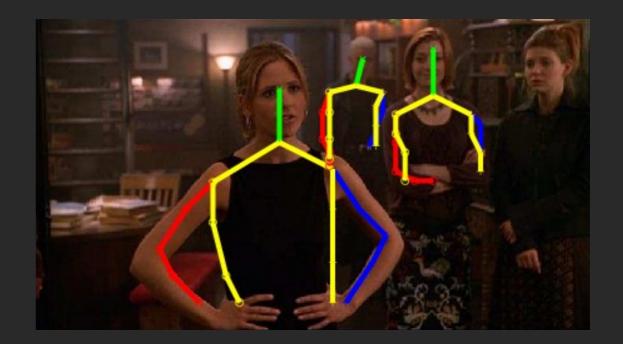
Joint recognition + (2D) reconstruction

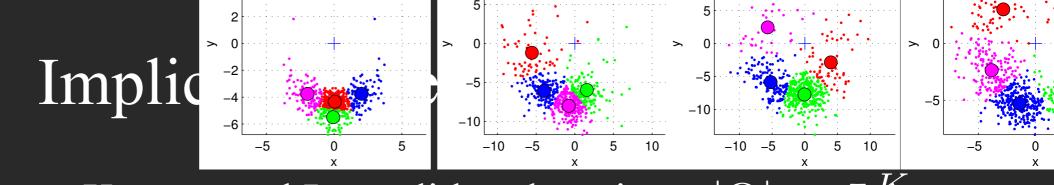




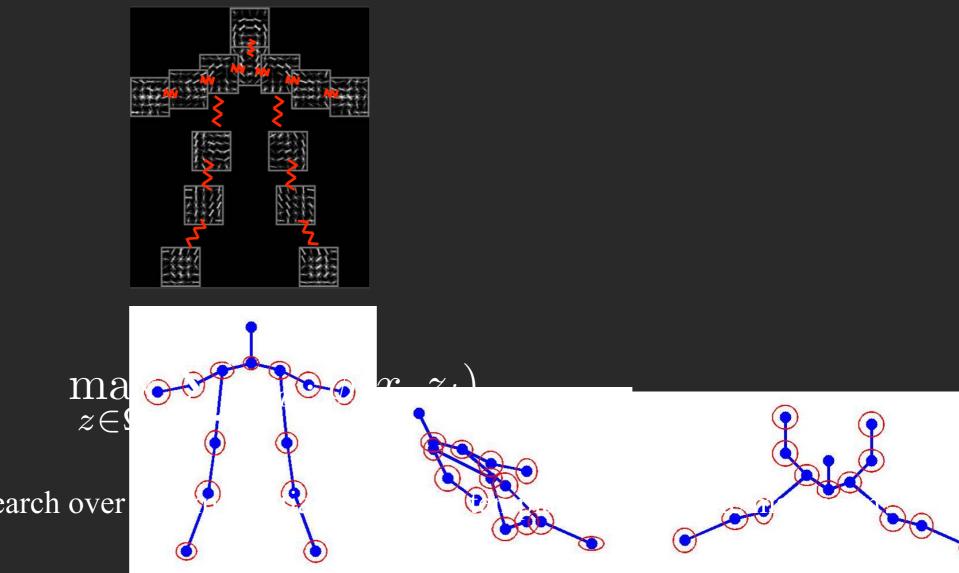




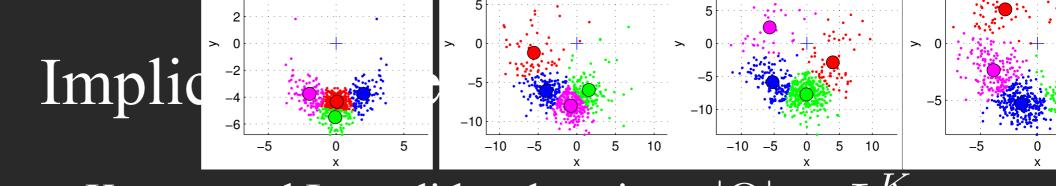




Assume K parts and L candidate locations: $|\Omega| = L^{K}$



Do we really need to search over



Assume K parts and L candidate locations: $|\Omega| = L^K$



No! Independently find best location of each part. Allows us to *implicitly* synthesize Ω

Generalize approach to marker inducts

temporal markov model

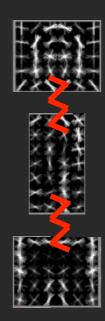
spatial mark

•For each candidate torso, independently estimate best arm and

•Allows us to model (and learn) priors over exponentially-larg

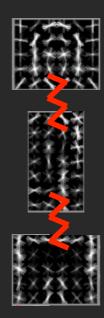
$$S(x,z) = \sum_{i \in V} w_i \cdot \phi(x,z_i) + \sum_{ij \in E} w_{ij} \cdot \psi(z_i,z_j)$$

General case



$\max_{z_1, z_2, z_3} \left[\phi(z_1) + \phi(z_2) + \phi(z_3) + \psi(z_1, z_2) + \overline{\psi(z_2, z_3)} \right]$

General case

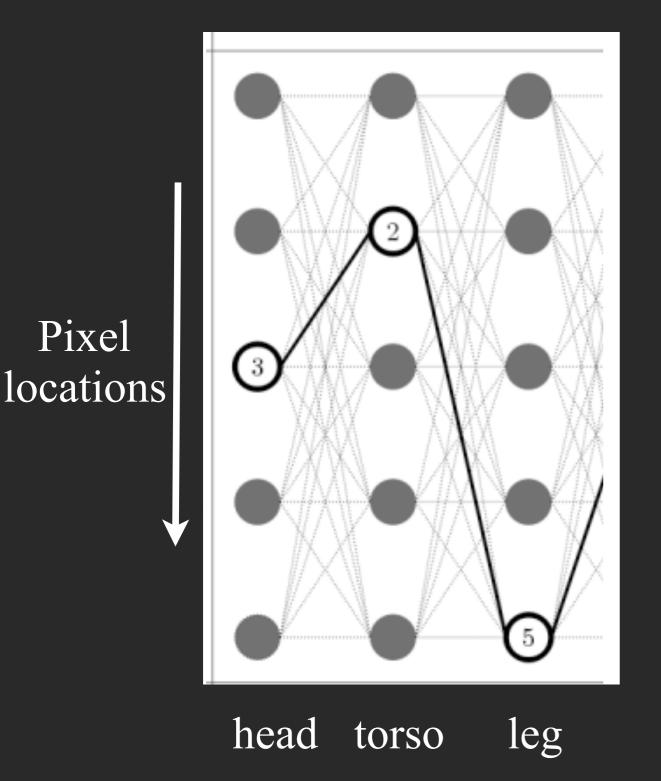


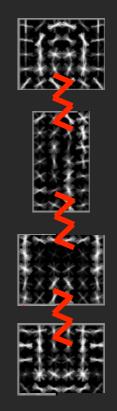
$$\max_{z_1, z_2, z_3} \left[\phi(z_1) + \phi(z_2) + \phi(z_3) + \psi(z_1, z_2) + \psi(z_2, z_3) \right]$$

$$= \max_{z_2, z_3} \left(\psi(z_2) + \psi(z_2, z_3) + \max_{z_1} \left[\phi(z_1) + \psi(z_1, z_2) \right] \right)$$
$$= \max_{z_2, z_3} \left(\psi(z_2) + \psi(z_2, z_3) + m(z_2) \right)$$

Use simple variable elimination to reduce inference to $O(KL^2)$

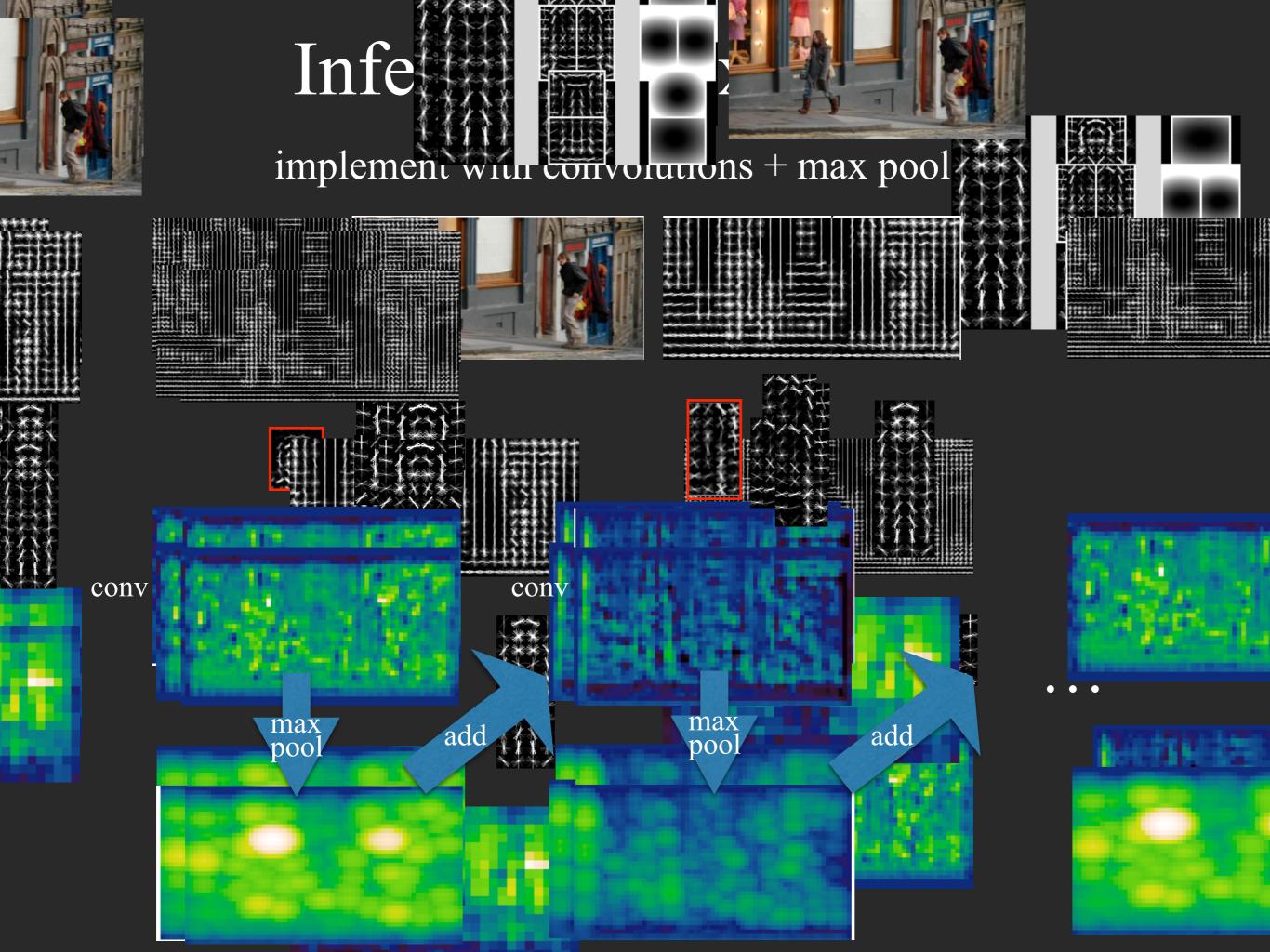
Inference: max_z S(x,z)





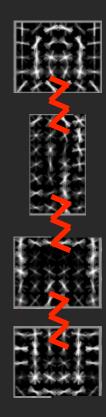
Initialize nodes with match score
 Initialize edges with spring score
 Find best path from left to right

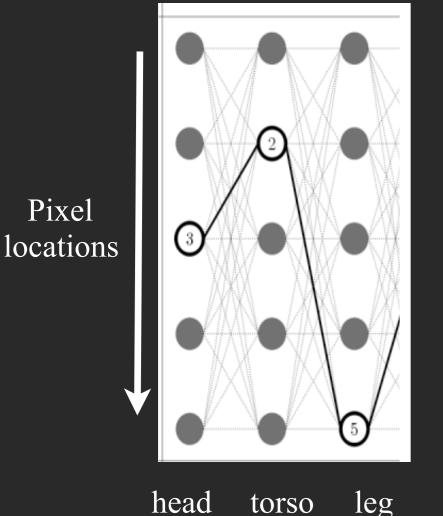
In practice, (1) is bottleneck



General formulation: inference

$$S(x,z) = \sum_{i} \phi_i(z_i,x) + \sum_{ij \in E} \psi_{ij}(z_i,z_j,x)$$





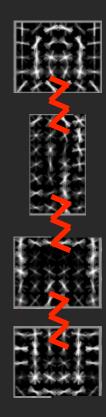
torso

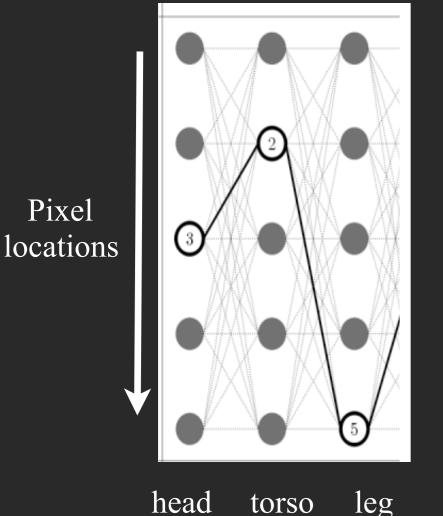
Local and pairwise potentials can be arbitrary nonlinear functions of image and position

(e.g., neural net part model) (e.g., intervening contour cue on part pairs)

General formulation: inference

$$S(x,z) = \sum_{i} \phi_i(z_i,x) + \sum_{ij \in E} \psi_{ij}(z_i,z_j,x)$$

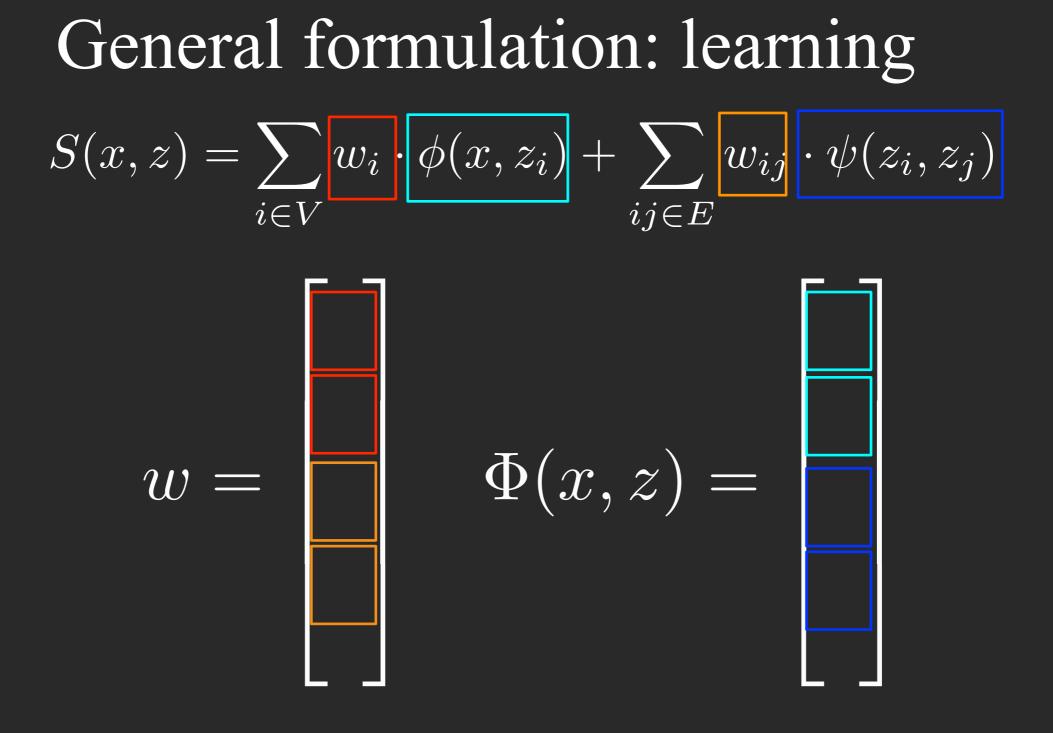




torso

Local and pairwise potentials can be arbitrary nonlinear functions of image and position

(e.g., neural net part model) (e.g., intervening contour cue on part pairs)



$$S(x,z) = w \cdot \Phi(x,z)$$

Jointly learn appearance and geometry with linear classification!

Aside: structural SVM learning

$$\{(x_n, y_n)\} \\ x_n \in R^{H \times W} \\ y_n \in \{0, 1, \dots K\}^{H \times W}$$

$$E(x, y) = w \cdot \Phi(x, y) \\ E(x, y) = \sum_{i \in V} w_{local} \cdot \phi(x, y_i) + \sum_{ij \in \mathcal{E}} w_{pair} \cdot \psi(y_i, y_j, x)$$

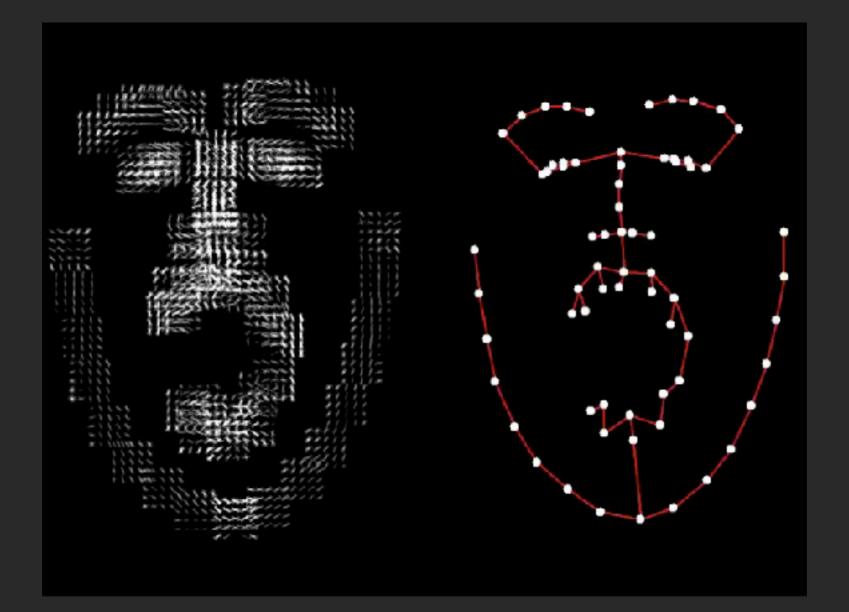
source

Appears in European Conference on Computer Vision (ECCV) 2008

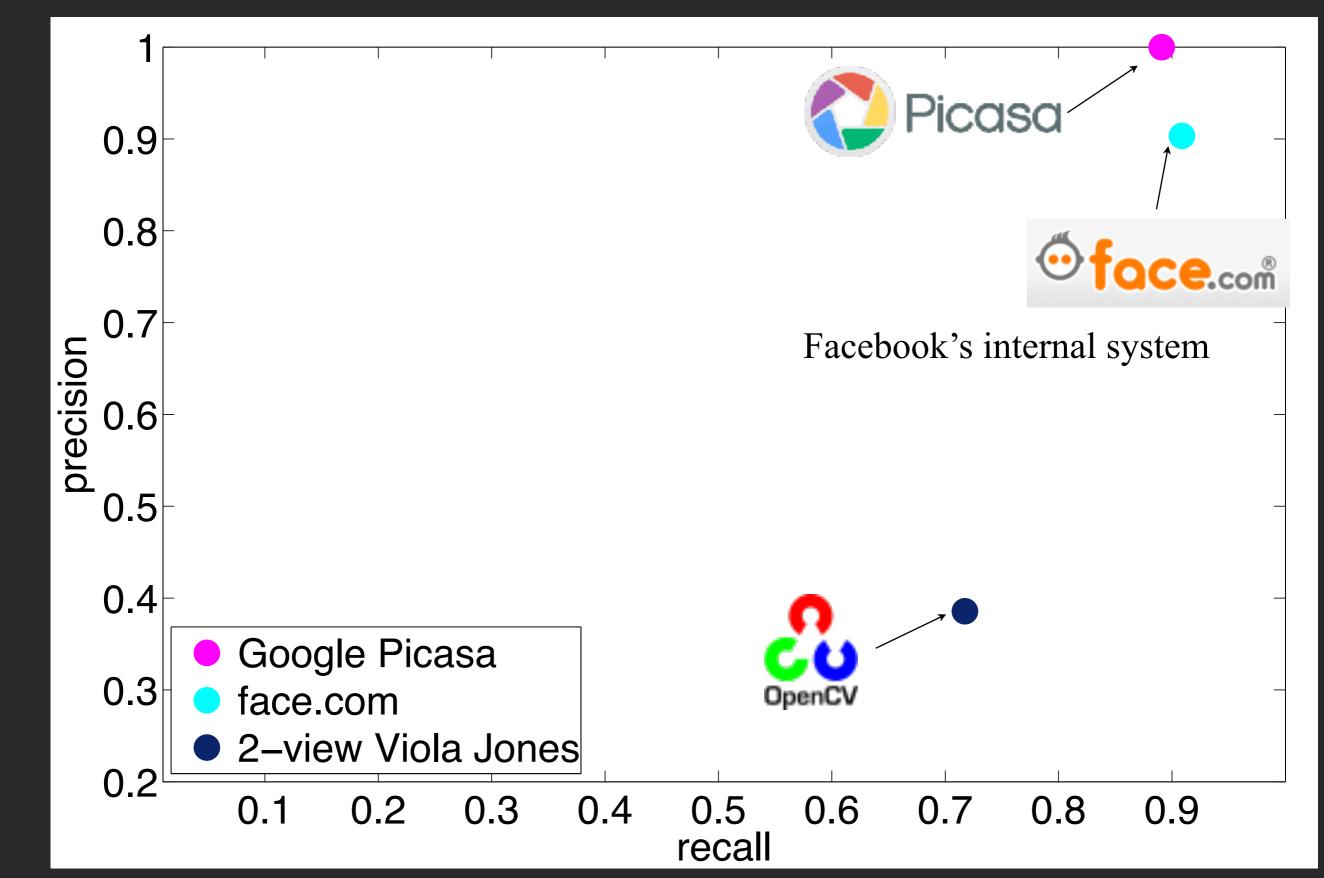
Learning CRFs using Graph Cuts

Martin Szummer¹, Pushmeet Kohli¹, and Derek Hoiem²

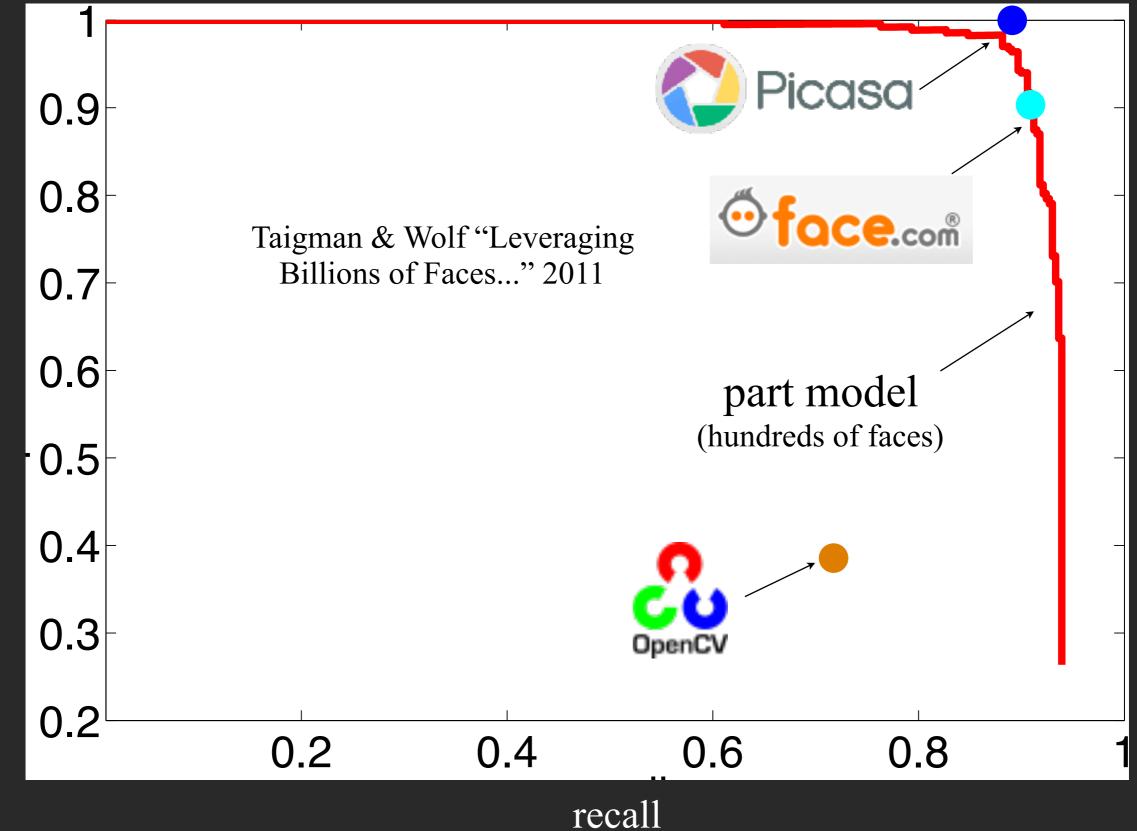
Modeling faces



Face detection

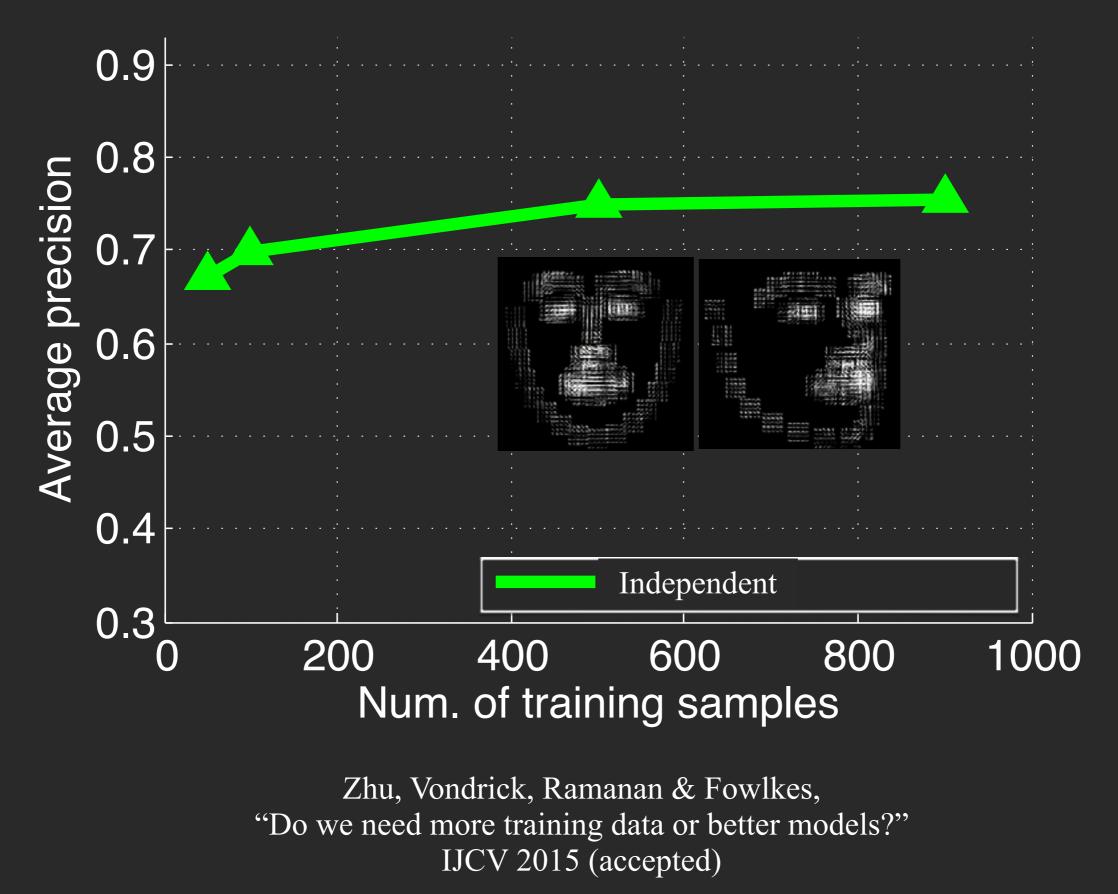


Face detection

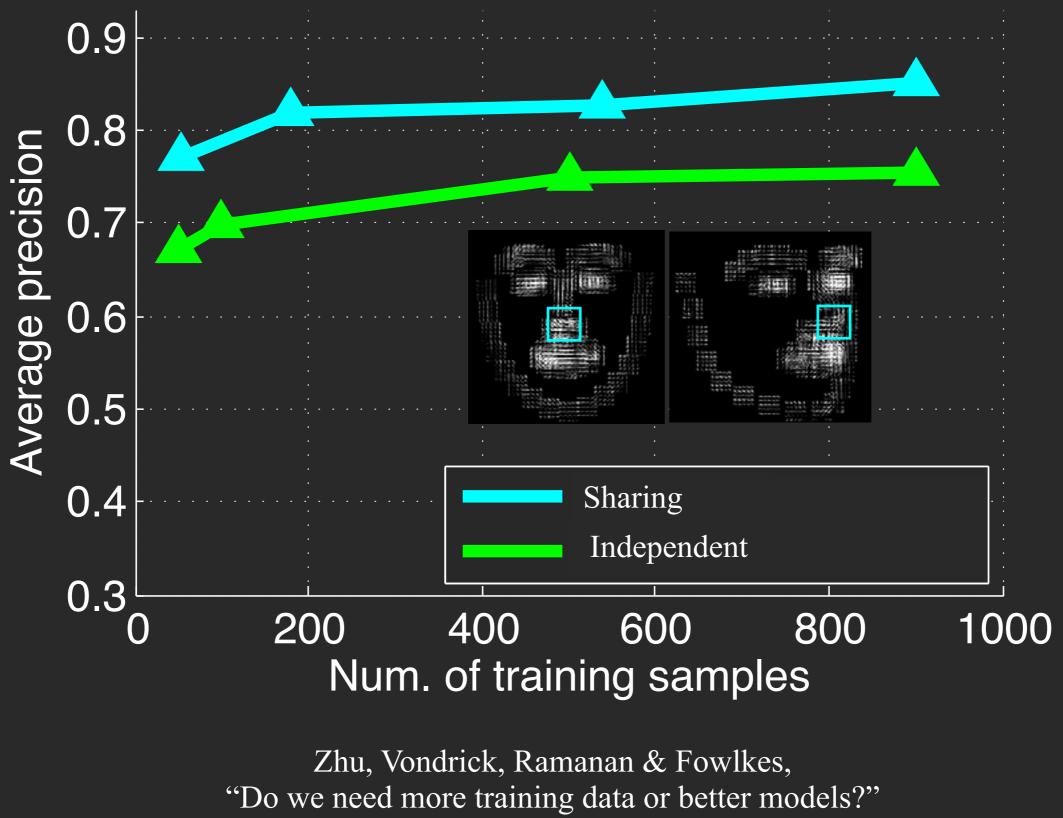


precision

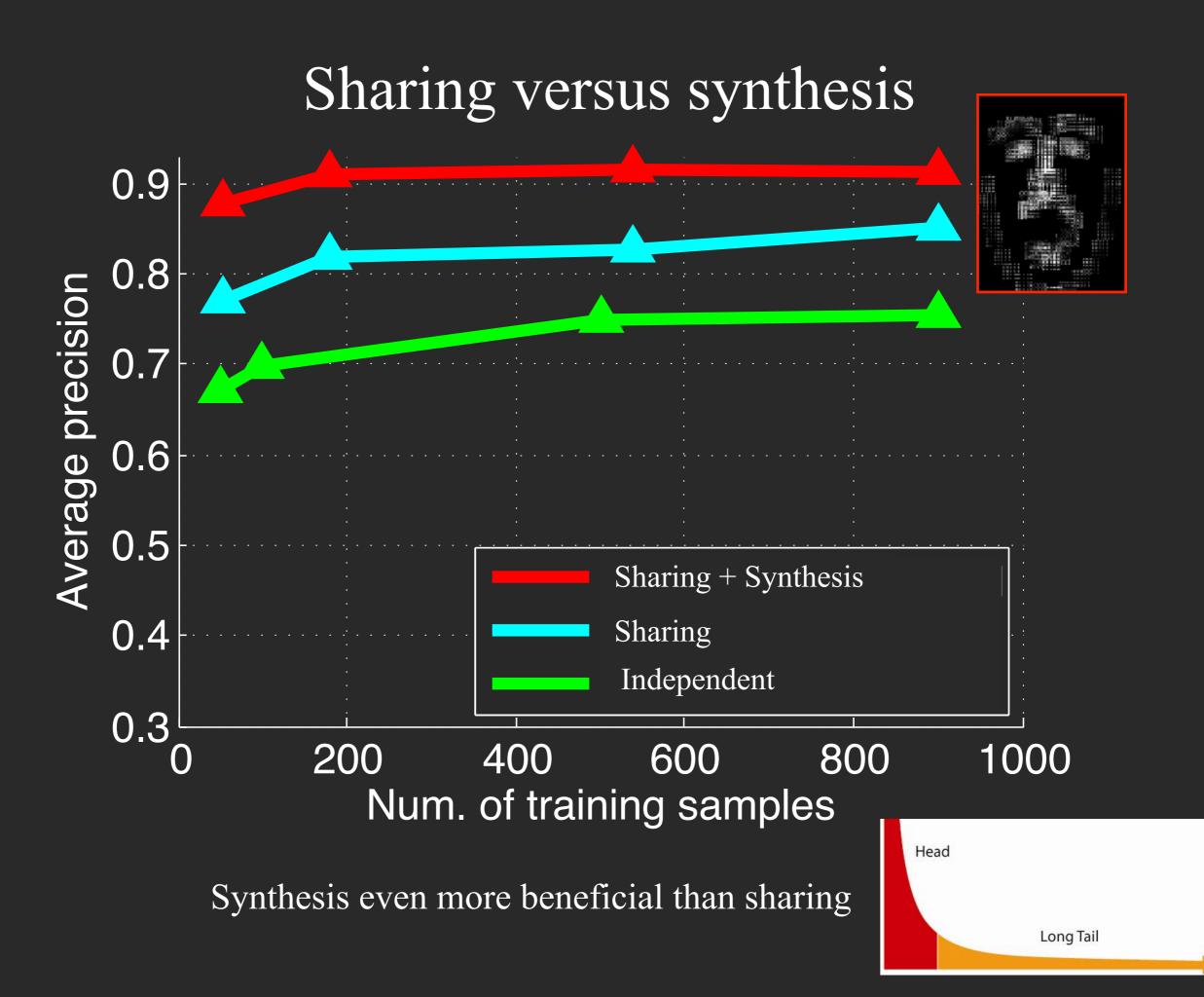
Could we do better with more data?



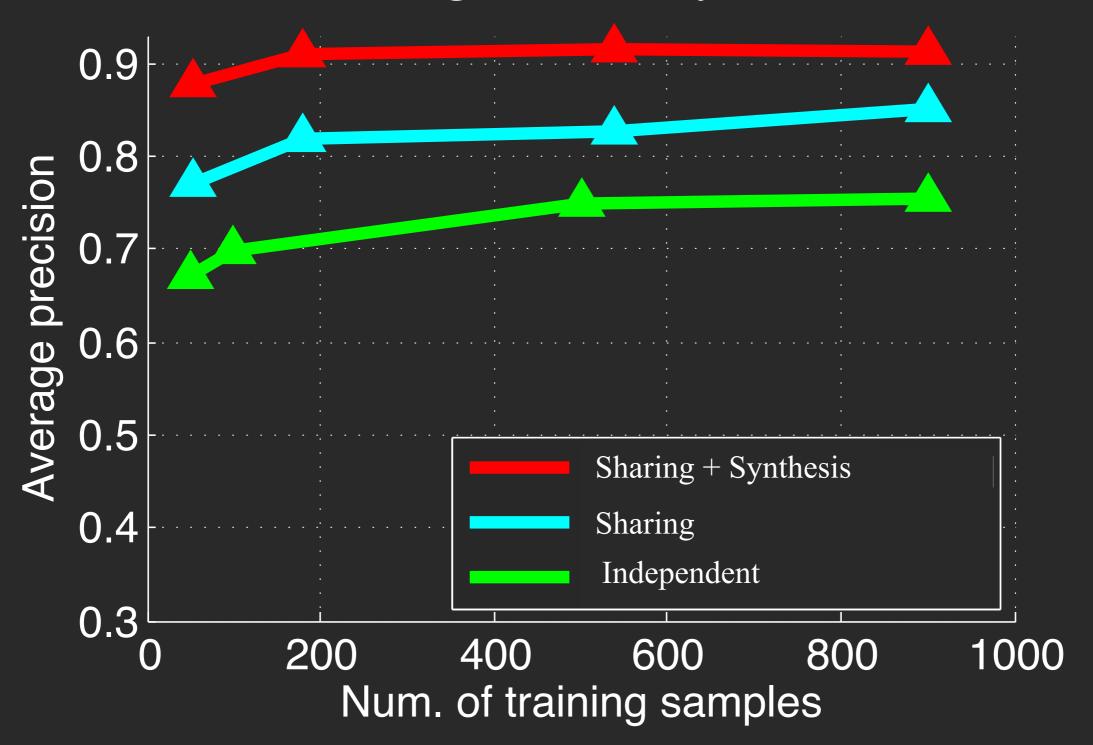
Indepedant subcategories vs sharing



IJCV 2015 (accepted)



Sharing versus synthesis



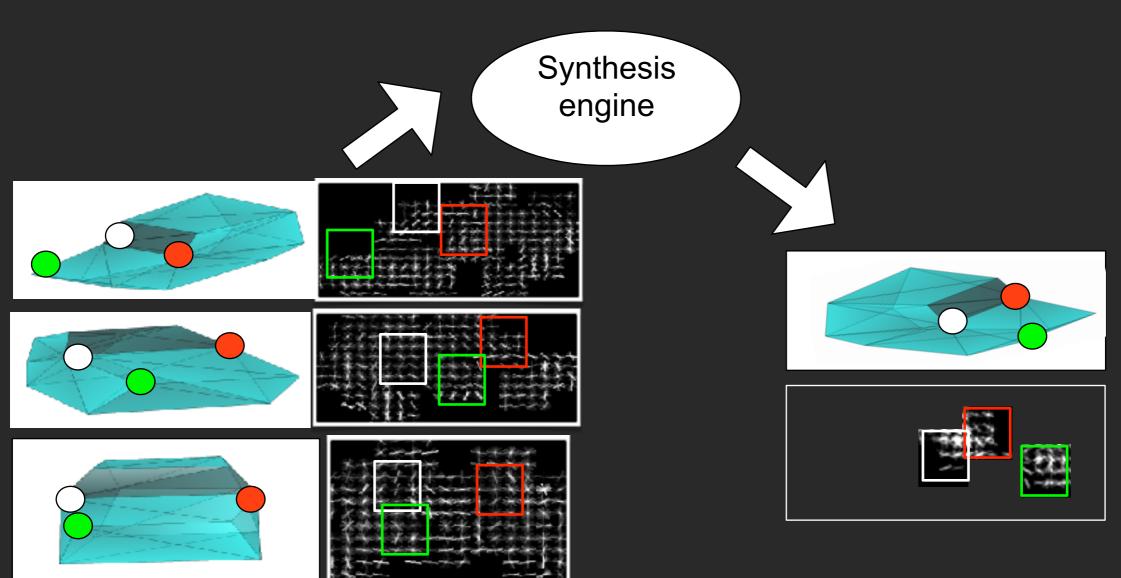
One can train a state-of-art face detector (*c.f.* Google Picassa & Facebook's face.com) with 100 faces!

What if we want to recognize 3D shapes?

Input: 2D image

Output: 3D shape camera viewpoint

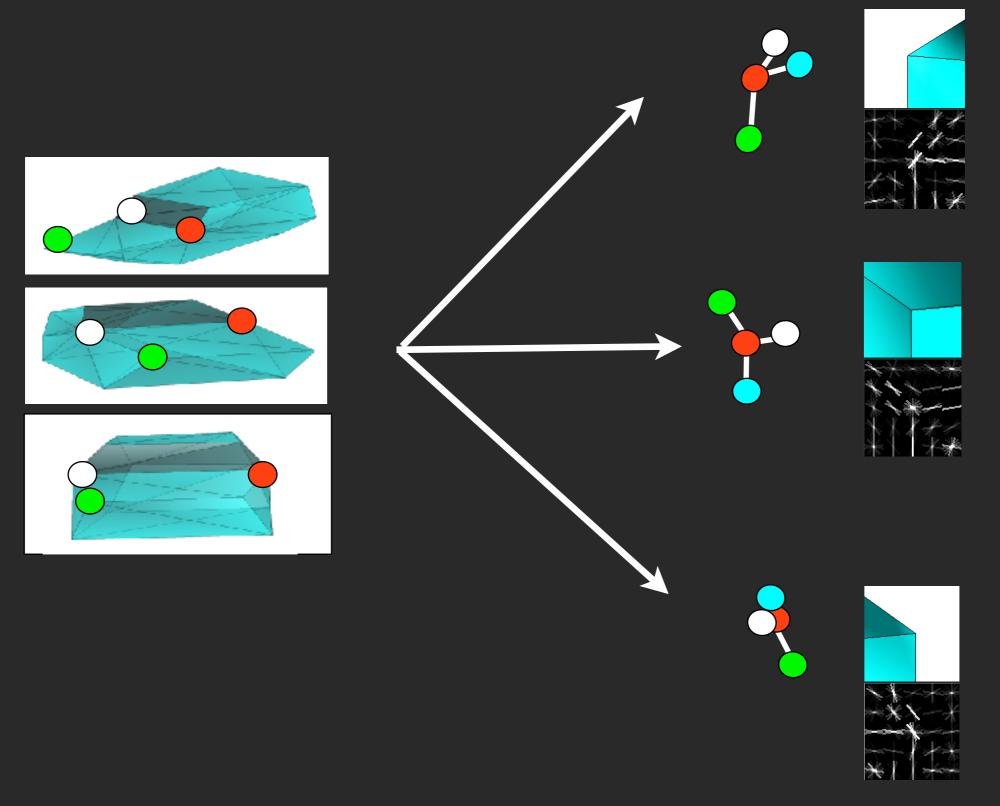
Shape synthesis



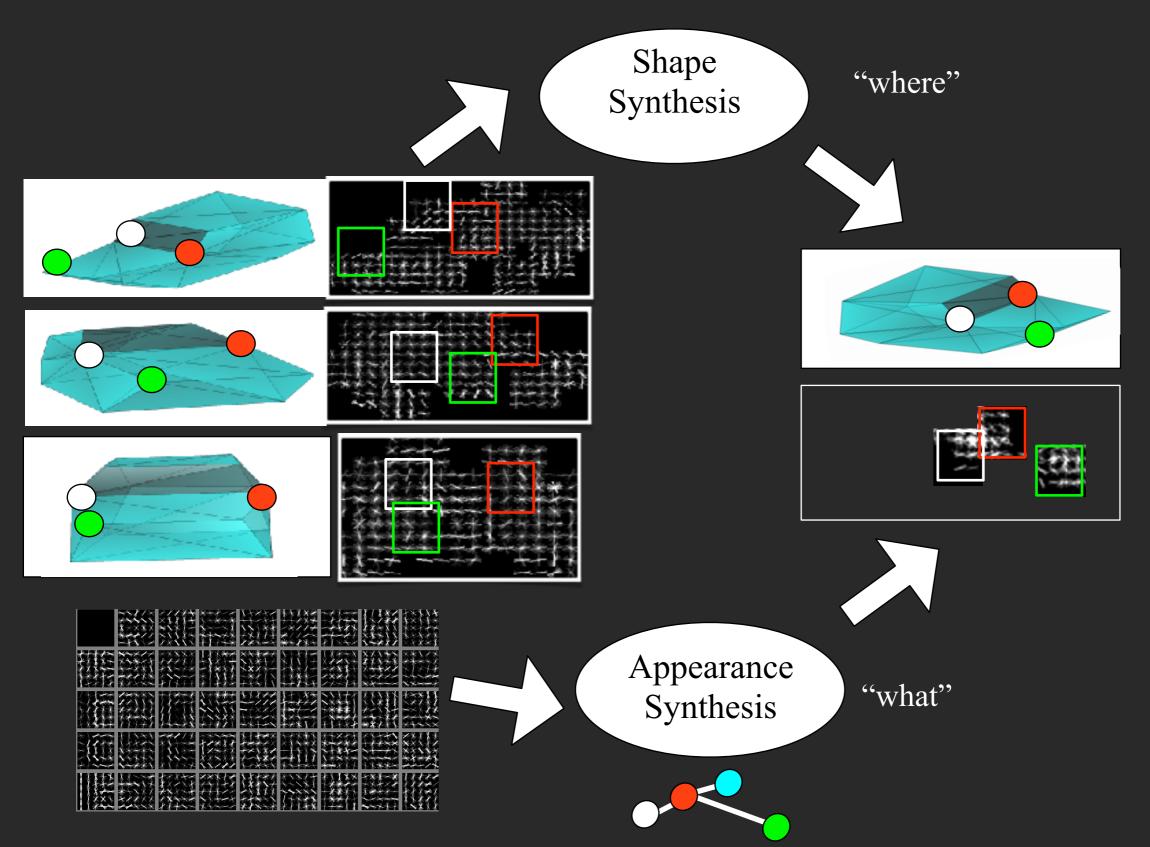
Problem... local appearances depend on global geometry (foreshortened or occluded wheels look very different)

Geometry-conditioned appearance

Enlarge part dictionary to include parts with different local geometries (learned by clustering)



Shape and appearance synthesis



Explicit set of synthesized templates

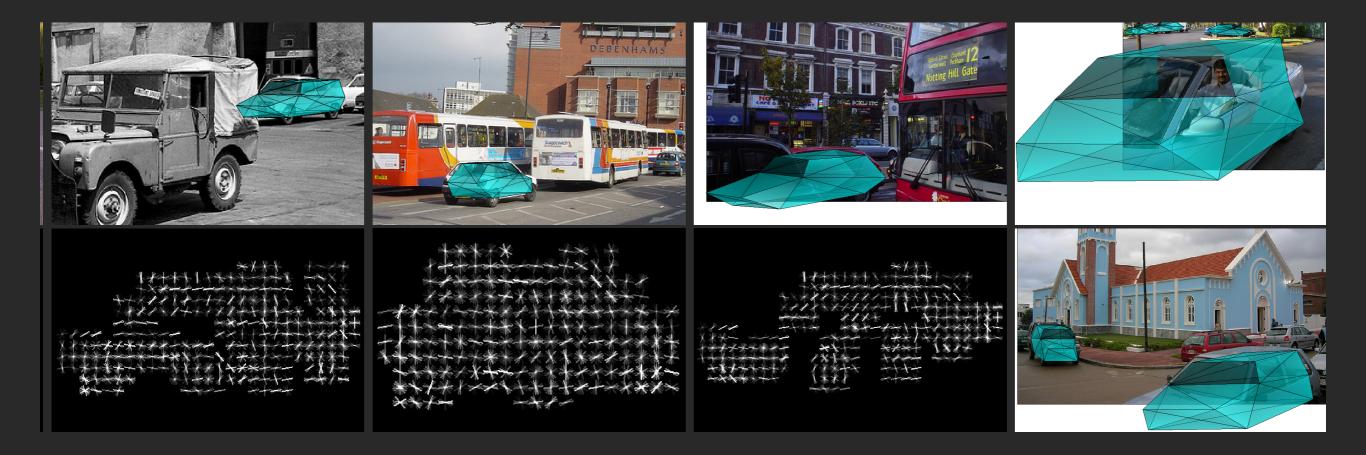
(Most viewpoints never seen during training)

Example detections

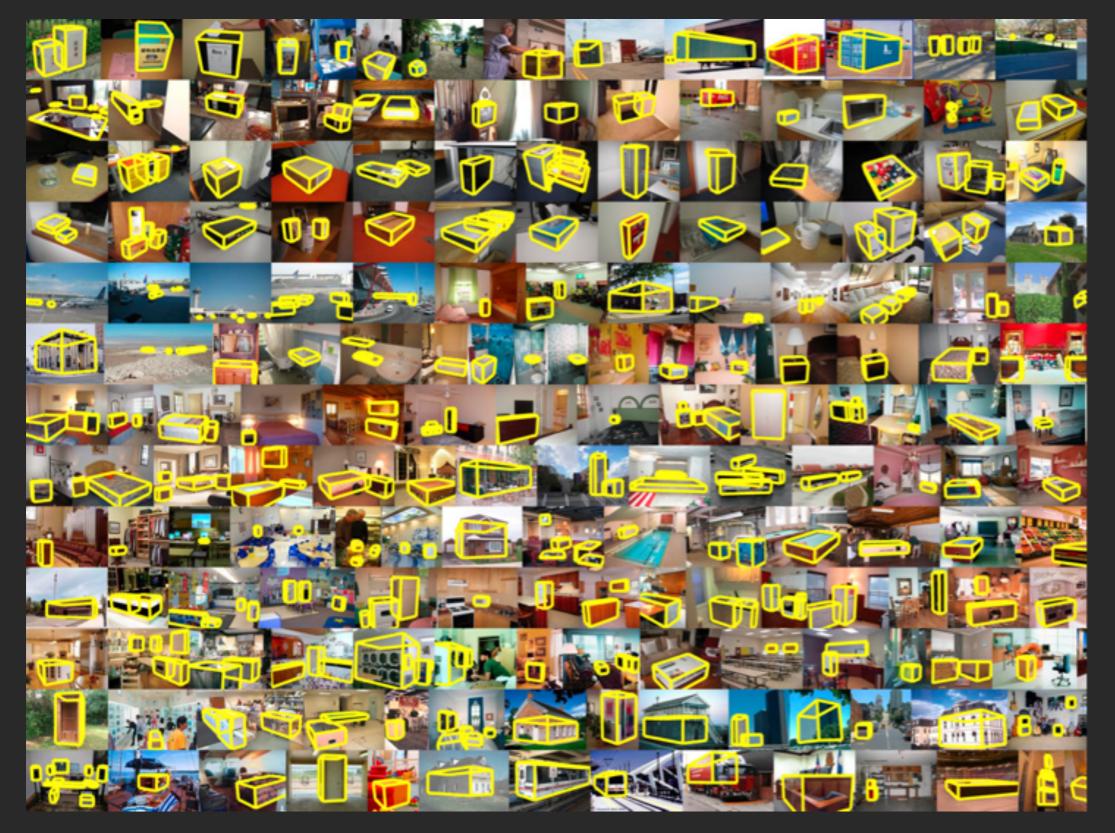
Azimuth : -70 . Elevation	n : 0 , f : 0.125 Alpha : [0.0,0.0]			
			+1++++++++++++++++++++++++++++++++++++	
<image/>				
● · · · · · · · · · · · · · · · · · · ·			·班 · 账	

Car detection + reconstruction

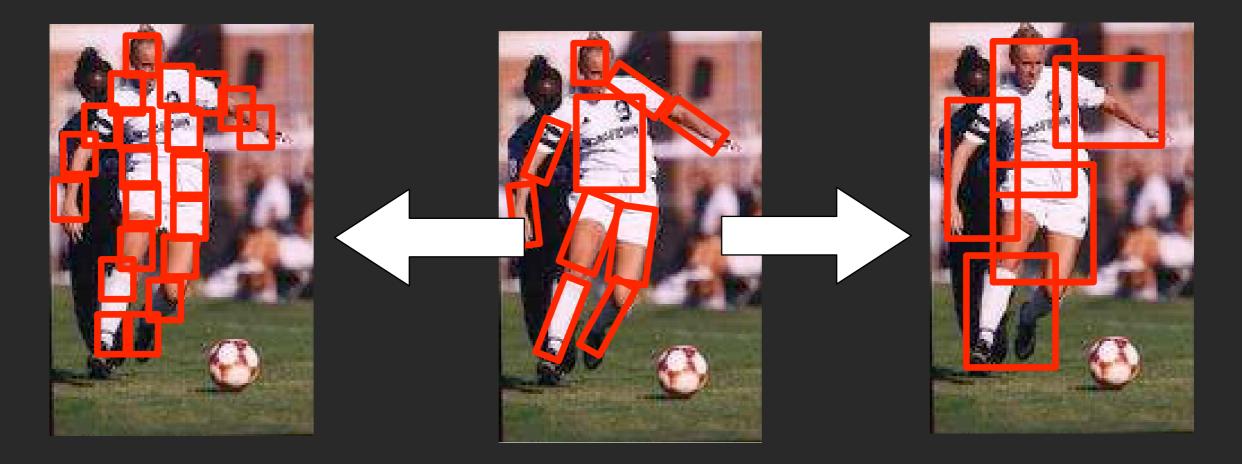
parts are beign spatially moved and swapped out



Evaluation: MIT Geometric Primitive Dataset



Semantic vs learned representations What are the right units for sharing and synthesis?



Patches

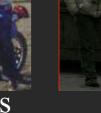
Skeleton

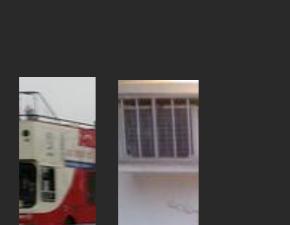
"Poselets"

For general objects?

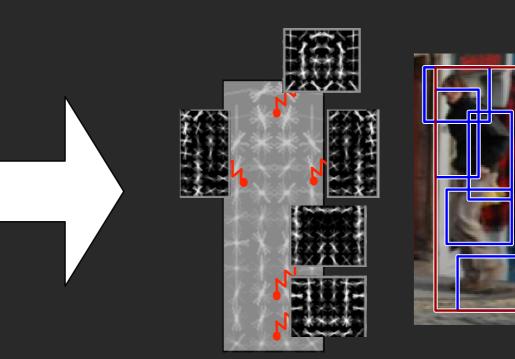


pos





neg



Felzenszwalb, Girshick, McAllester, and Ramanan PAMI 2010

SVMs

Given positive and negative training windows $\{x_n\}$

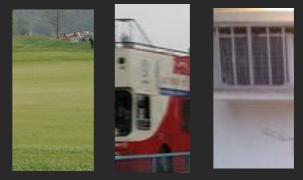
$$L(w) = ||w||^2 + \sum_{n \in \text{pos}} \max(0, 1 - f_w(x_n)) + \sum_{n \in \text{neg}} \max(0, 1 + f_w(x_n))$$

$$f_w(x) = w \cdot \Phi(x)$$

L(w) is convex (Quadratic Program)

Latent SVMs

Felzenszwalb, McAllester, Ramanan CVPR 2008



neg

Given positive and negative training windows $\{x_n\}$

$$L(w) = ||w||^2 + \sum_{n \in \text{pos}} \max(0, 1 - f_w(x_n)) + \sum_{n \in \text{neg}} \max(0, 1 + f_w(x_n))$$

$$f_w(x) = \max_z w \cdot \Phi(x, z)$$

L(w) is "almost" convex

Coordinate descent

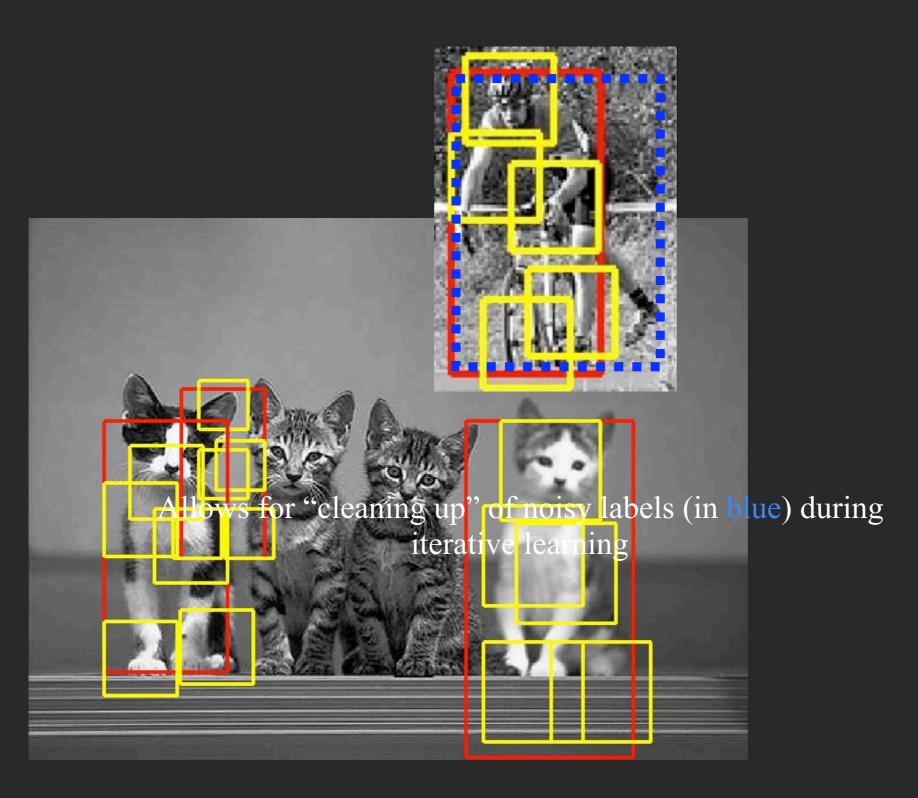
1) Given positive part locations, learn w with a convex program $w = \operatorname*{argmin}_{w} L(w) \quad \text{with fixed} \quad \{z_n : n \in \text{pos}\}$

2) Given w, estimate part locations on positives

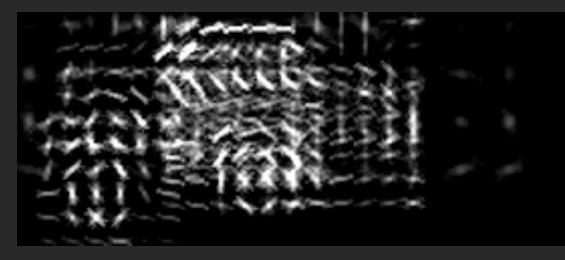
$$z_n = \operatorname*{argmax}_{z} w \cdot \Phi(x_n, z) \quad \forall n \in \mathrm{pos}$$

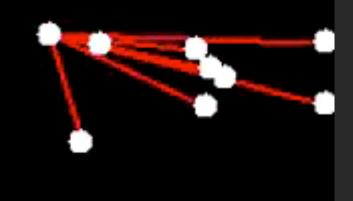
The above steps perform coordinate descent on a joint loss Can be seen as an instance of the CCCP algorithm (Yuille)

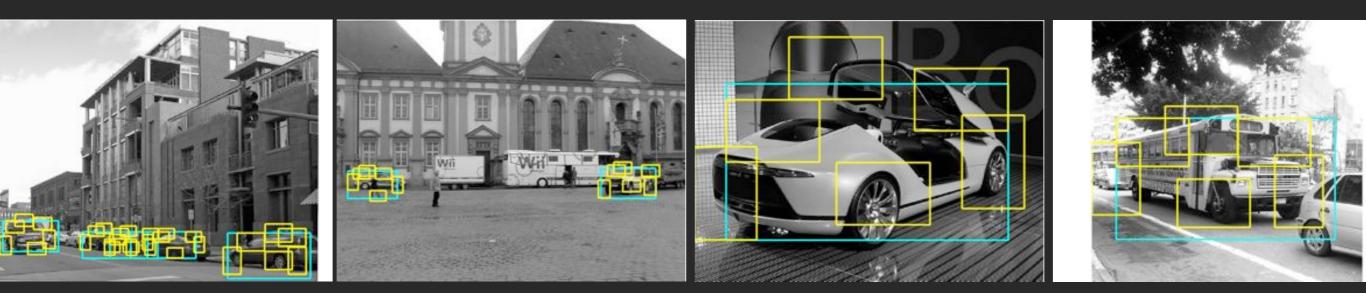
Treat ground-truth labels as partially latent



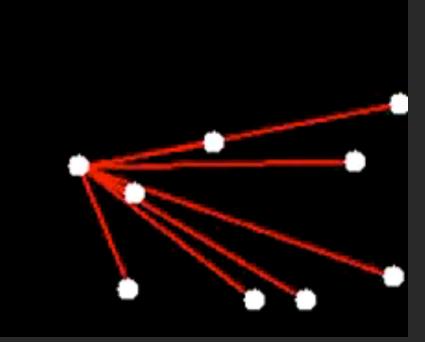
Example models

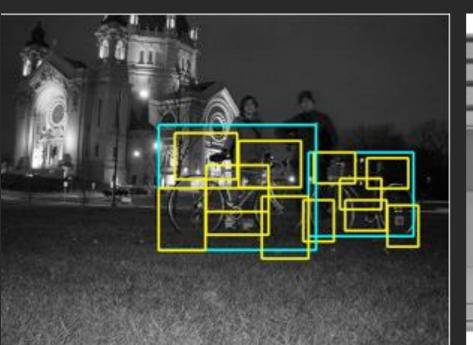


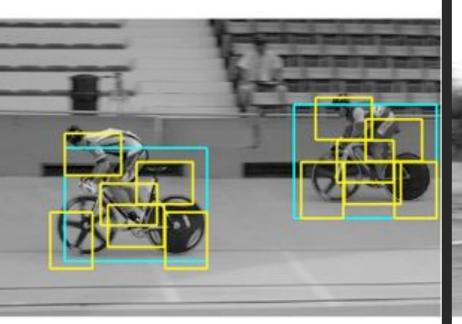




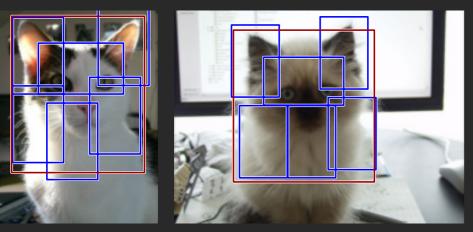
Example models

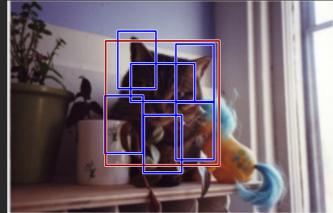


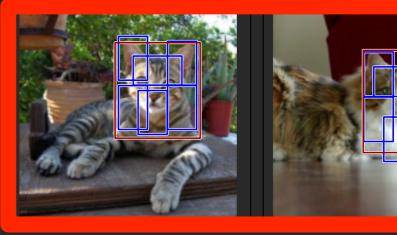




8 1 AUG VE JINIA 07 False positive due to imprecise bounding box

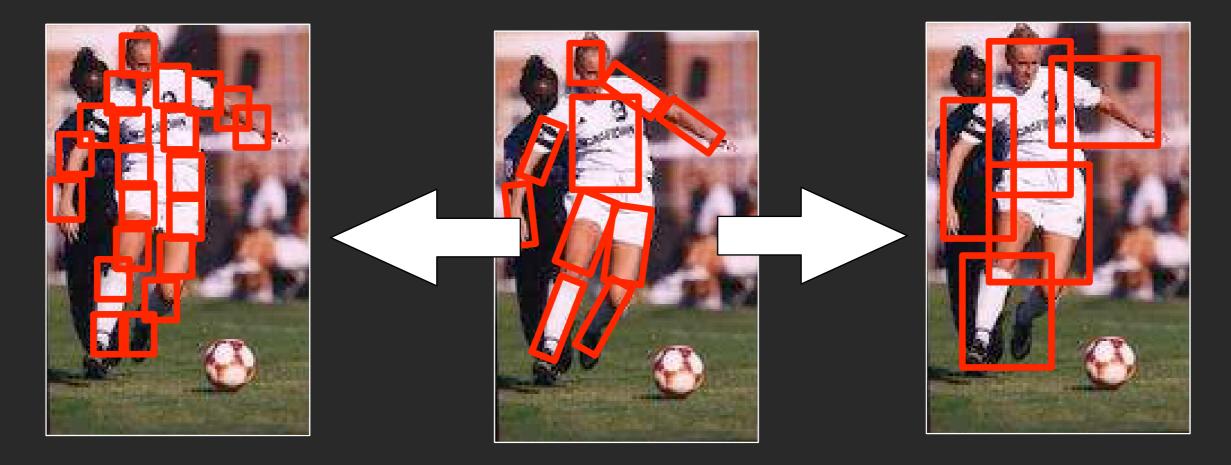






Challenge 1:

What are the right parts?



Patches

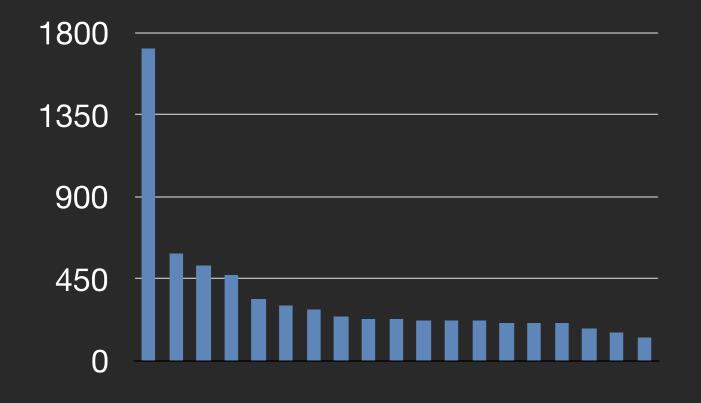
Skeleton

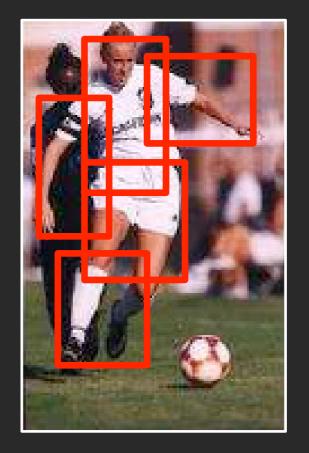
"Poselets"

Are "computer graphics" primitives the right choice?

Challenge 2:

How to deal with long-tail distribution of part types?

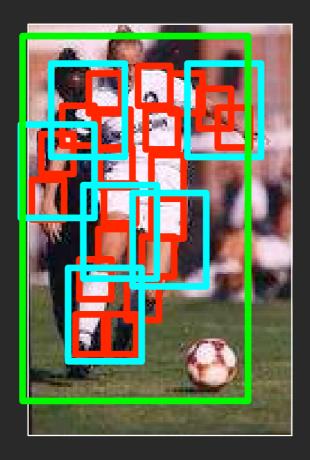




Solution 1+2: latent hierarchical (or "deep") models

Inference on such models requires layers of convolution and max-pooling (we've *almost* derived a convolutional neural net)

Latent hierarchical models



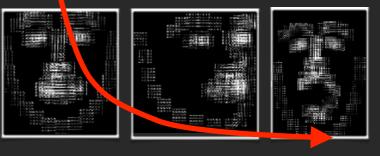
$$S(x,z) = \sum_{i \in V} w_i \cdot \phi(x,z_i) + \sum_{ij \in E} w_{ij} \cdot \psi(z_i,z_j)$$

Next lecture (deep models): define zin to be binary variable that specify if (sub)part i is found at location n

Parts: a look back

Recognition through reconstruction: latent-variable classification

Sharing + synthesis: zero & one-shot learning for tails



Representation learning:

part discovery

