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Limits of templates
Learned model

fw(x) = w · �(x)Training

• Training data consists of images with labeled bounding boxes

• Need to learn the model structure, filters and deformation costs

Training

positive
weights

negative
weights



How to model large variations in appearance?



This is generally regarded as a 
“central challenge” for recognition
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Why is finding people difficult? 

variation in pose, viewpointvariation in appearance

occlusion & clutter

Classic “nuisance factors” for general object recognition

variation in illumination



“Sub”categories

Train sub-category templates for each type of pose, body-shape, etc.



Why not treat each positive example as a unique 
subcategory?
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Figure 3: Our overall pipeline. We learn a massive num-
ber of candidate subcategory models in parallel, each ini-
tialized with its own training example and particular clus-
ter size. We train each subcategory with a discriminative
meanshift algorithm that iterates between selecting exam-
ples for sharing and learning detectors given those exam-
ples. Finally, we select a subset of candidate subcategory
detectors for each object class as to maximize recognition
accuracy. We show that this selection naturally produces
subcategories with long-tail distribution of sizes.

with a single-mixture deformable part model (DPM) [14].
Our overall pipeline is summarized in Fig. 3. We explain
each step in detail in the following.

3.1. Initialization

We begin by training a large “overcomplete” set of tens
of thousands of candidate subcategory models in parallel.
This large set of models will later be pruned. We initialize
our subcategory models by learning a discriminative tem-
plate for each positive example using exemplar SVMs [20].
We visualize exemplar root templates in Fig. 4. In terms of
category detection accuracy, they perform reasonably well
(25% AP). But because it easy to overfit to a single exam-
ple, many templates include noisy features from the back-
ground.

Regularization: To help smooth out noisy gradients,
let us retrain subcategory model m with the N

m

highest-
scoring positive examples under the exemplar model. We
visualize these templates for N

m

= 50 in Fig. 4. They
almost double performance, producing an AP of 42%. Intu-
itively, the N

m

neighbors act as a regularizer for each exem-
plar, smoothing out the noisy gradients. Indeed, averaging
across N

m

similar training examples maybe more natural
than penalizing the squared norm of a template, as is typ-
ically done to prevent overfiting. This motivating example
suggests that subcategory clusters need not be mutually ex-
clusive and may overlap. In fact, we find that some positive
examples are shared by many subcategories, a phenomena
that we will investigate further.

Iteration: We make two further observations. First, one
can iterate the procedure and find the N

m

highest scoring
examples with the retrained subcategory model and repeat.
The optimal choice of neighbors for one cluster is indepen-

Iter0

Iter1

Figure 4: We visualize examples training images on the
top. We show initial exemplar models trained with them
in the middle. These templates perform well (25% AP on
VOC2007), but sometimes emphasize gradients in the back-
ground, such as the tree in the top-left corner of the top-left
image. Retraining with the N

m

= 50 highest-scoring ex-
amples (bottom) smooths out the template, de-emphasizing
such noisy gradients (since they tend not be found in the
N

m

neighbors). This significantly improves performance
to 42%. This suggests that optimal subcategory clusters
may be overlapping, and maybe computed independantly
for each subcategory. [Deva: Remake figure with larger
templates]

dant of the choice of another cluster, suggesting these iter-
ations can be performed independantly and in parallel. We
show that such a distributed, iterative algorithm is garuan-
teed to converge since it can be formalized as joint optimiza-
tion of a well-defined (discriminative) objective function.
We call the resulting algorithm discriminative meanshift-
clustering.

Cluster-size: Selecting the optimal cluster size N

m

is
tricky. We want large N

m

for common cases. Rare clus-
ters are particularly hard to model; from one perspective,
they should use a small N

m

so that learned detectors aren’t
polluted by visually dissimilar examples. On the other
hand, models learned from very small clusters may tend
to overfit because they are trained with less data. As ar-
gued above, we treat N

m

as a subcategory-specific regu-
larization parameter that is tuned on validation data (much
as one tunes the C regularization parameter for SVMs).
Specifically, we learn models for a range of N

m

2 N =

{50, 100, 200, 400, 800, 1600} values. Given a dataset with
P positives, we learn a total of K = |N |P candidate sub-
categories mixtures in parallel, spanning both examples and
cluster sizes. After training this large redundant set, we se-
lect a subset on validation data.

3.2. Discriminative meanshift-clustering
We formalize the iterative algorithm introduced in the

previous section. We do so by writing a objective function
for jointly training all K subcategory models, and describe
a coordinate descent optimization produce that naturally de-
couples across subcategories.
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Figure 3: Our overall pipeline. We learn a massive number
of candidate subcategory models in parallel, each initialized
with its own training example (an exemplar) and particu-
lar cluster size. We train each subcategory with a discrim-
inative clustering algorithm that iterates between selecting
examples for sharing and learning detectors given those ex-
amples. Finally, we select a subset of candidate subcategory
detectors for each object class as to maximize recognition
accuracy. We show that this selection naturally produces
subcategories with long-tail distribution of sizes.

based mixtures of an object [28, 33]. Typically, subcate-
gory mixtures are supervised, but not always [21]. We share
global examples rather an local parts, as the former is more
amenable to brute-force distributed optimization.

3. Learning long-tail subcategory models
In this section, we describe our approach for learning

long-tail subcategory models. We model each subcategory
with a single-mixture deformable part model (DPM) [14].
Our overall pipeline is summarized in Fig. 3. We explain
each step in detail in the following.

3.1. Initialization
We begin by training a large “overcomplete” set of thou-

sands to tens of thousands of candidate subcategory models
in parallel. This large set of models will later be pruned.
We initialize our subcategory models by learning a discrim-
inative template for each positive example using exemplar
SVMs [20]. We visualize exemplar root templates for cars
in Fig. 4. In terms of category detection accuracy, they per-
form reasonably well (25% AP). But because it is easy to
overfit to a single example, many templates include noisy
features from the background.

Sharing as regularization: To help learning more re-
liable templates for the rare examples, we retrain subcate-
gory model m with the n

m

highest-scoring positive exam-
ples under the exemplar model. We consider the sharing as
a form of “regularization” that prevents overfitting to noisy
gradients. To demonstrate the effect of sharing, we visual-
ize the exemplar templates and the retrained templates for
n

m

= 50 in Fig. 4. The templates “regularized” by shared
examples have less noisy gradients and almost double per-
formance, producing an AP of 42%. Indeed, “averaging”

Figure 4: We visualize examples training images on the
top. We show initial exemplar models trained with them
in the middle. These templates perform well (25% AP on
VOC2007), but sometimes emphasize incorrect gradients,
such as the foreground tree in the center image. Retrain-
ing with the n

m

= 50 highest-scoring examples (bottom)
smooths out the template, de-emphasizing such noisy gra-
dients (since they tend not be found in the n

m

neighbors).
This significantly improves performance to 42%. This sug-
gests that optimal subcategory clusters may be overlapping,
and maybe computed independently for each subcategory.

across n

m

similar training examples maybe more natural
than penalizing the squared norm of a template, as is typi-
cally done to prevent overfitting. This motivating example
suggests that subcategory clusters need not be mutually ex-
clusive and may overlap. In fact, we find that some positive
examples are shared by many subcategories, a phenomenon
that we will investigate later in Fig. 9.

Iteration: We make two further observations. First, one
can iterate the procedure and find the n

m

highest scoring
examples with the retrained subcategory model and repeat.
The optimal choice of neighbors for one cluster is inde-
pendent of the choice of another cluster, suggesting these
iterations can be performed independently and in parallel.
We show in Sec. 3.2 that such a distributed, iterative algo-
rithm is guaranteed to converge since it can be formalized
as joint optimization of a well-defined (discriminative) ob-
jective function.

Cluster-size: Selecting the optimal cluster size n

m

is
tricky. We want large n

m

for common cases. Rare clus-
ters are particularly hard to model; from one perspective,
they should use a small n

m

so that learned detectors aren’t
polluted by visually dissimilar examples. On the other
hand, models learned from very small clusters may tend
to overfit because they are trained with less data. As ar-
gued above, we treat n

m

as a subcategory-specific regular-
ization parameter that is tuned on validation data. Specifi-
cally, we learn models for a log-linear range of n

m

2 N =

{50, 100, 200, 400, 800, 1600} values. Given a dataset of
positives P , we learn a large set of candidate subcategories
mixtures M (|M | = |N ||P |) in parallel, spanning both ex-
amples and cluster sizes. After training this large redundant
set, we select a subset on validation data.
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Figure 3: Our overall pipeline. We learn a massive num-
ber of candidate subcategory models in parallel, each ini-
tialized with its own training example and particular clus-
ter size. We train each subcategory with a discriminative
meanshift algorithm that iterates between selecting exam-
ples for sharing and learning detectors given those exam-
ples. Finally, we select a subset of candidate subcategory
detectors for each object class as to maximize recognition
accuracy. We show that this selection naturally produces
subcategories with long-tail distribution of sizes.

with a single-mixture deformable part model (DPM) [14].
Our overall pipeline is summarized in Fig. 3. We explain
each step in detail in the following.

3.1. Initialization

We begin by training a large “overcomplete” set of tens
of thousands of candidate subcategory models in parallel.
This large set of models will later be pruned. We initialize
our subcategory models by learning a discriminative tem-
plate for each positive example using exemplar SVMs [20].
We visualize exemplar root templates in Fig. 4. In terms of
category detection accuracy, they perform reasonably well
(25% AP). But because it easy to overfit to a single exam-
ple, many templates include noisy features from the back-
ground.

Regularization: To help smooth out noisy gradients,
let us retrain subcategory model m with the N

m

highest-
scoring positive examples under the exemplar model. We
visualize these templates for N

m

= 50 in Fig. 4. They
almost double performance, producing an AP of 42%. Intu-
itively, the N

m

neighbors act as a regularizer for each exem-
plar, smoothing out the noisy gradients. Indeed, averaging
across N

m

similar training examples maybe more natural
than penalizing the squared norm of a template, as is typ-
ically done to prevent overfiting. This motivating example
suggests that subcategory clusters need not be mutually ex-
clusive and may overlap. In fact, we find that some positive
examples are shared by many subcategories, a phenomena
that we will investigate further.

Iteration: We make two further observations. First, one
can iterate the procedure and find the N

m

highest scoring
examples with the retrained subcategory model and repeat.
The optimal choice of neighbors for one cluster is indepen-

Iter0

Iter1

Figure 4: We visualize examples training images on the
top. We show initial exemplar models trained with them
in the middle. These templates perform well (25% AP on
VOC2007), but sometimes emphasize gradients in the back-
ground, such as the tree in the top-left corner of the top-left
image. Retraining with the N

m

= 50 highest-scoring ex-
amples (bottom) smooths out the template, de-emphasizing
such noisy gradients (since they tend not be found in the
N

m

neighbors). This significantly improves performance
to 42%. This suggests that optimal subcategory clusters
may be overlapping, and maybe computed independantly
for each subcategory. [Deva: Remake figure with larger
templates]

dant of the choice of another cluster, suggesting these iter-
ations can be performed independantly and in parallel. We
show that such a distributed, iterative algorithm is garuan-
teed to converge since it can be formalized as joint optimiza-
tion of a well-defined (discriminative) objective function.
We call the resulting algorithm discriminative meanshift-
clustering.

Cluster-size: Selecting the optimal cluster size N

m

is
tricky. We want large N

m

for common cases. Rare clus-
ters are particularly hard to model; from one perspective,
they should use a small N

m

so that learned detectors aren’t
polluted by visually dissimilar examples. On the other
hand, models learned from very small clusters may tend
to overfit because they are trained with less data. As ar-
gued above, we treat N

m

as a subcategory-specific regu-
larization parameter that is tuned on validation data (much
as one tunes the C regularization parameter for SVMs).
Specifically, we learn models for a range of N

m

2 N =

{50, 100, 200, 400, 800, 1600} values. Given a dataset with
P positives, we learn a total of K = |N |P candidate sub-
categories mixtures in parallel, spanning both examples and
cluster sizes. After training this large redundant set, we se-
lect a subset on validation data.

3.2. Discriminative meanshift-clustering
We formalize the iterative algorithm introduced in the

previous section. We do so by writing a objective function
for jointly training all K subcategory models, and describe
a coordinate descent optimization produce that naturally de-
couples across subcategories.
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Figure 3: Our overall pipeline. We learn a massive number
of candidate subcategory models in parallel, each initialized
with its own training example (an exemplar) and particu-
lar cluster size. We train each subcategory with a discrim-
inative clustering algorithm that iterates between selecting
examples for sharing and learning detectors given those ex-
amples. Finally, we select a subset of candidate subcategory
detectors for each object class as to maximize recognition
accuracy. We show that this selection naturally produces
subcategories with long-tail distribution of sizes.

based mixtures of an object [28, 33]. Typically, subcate-
gory mixtures are supervised, but not always [21]. We share
global examples rather an local parts, as the former is more
amenable to brute-force distributed optimization.

3. Learning long-tail subcategory models
In this section, we describe our approach for learning

long-tail subcategory models. We model each subcategory
with a single-mixture deformable part model (DPM) [14].
Our overall pipeline is summarized in Fig. 3. We explain
each step in detail in the following.

3.1. Initialization
We begin by training a large “overcomplete” set of thou-

sands to tens of thousands of candidate subcategory models
in parallel. This large set of models will later be pruned.
We initialize our subcategory models by learning a discrim-
inative template for each positive example using exemplar
SVMs [20]. We visualize exemplar root templates for cars
in Fig. 4. In terms of category detection accuracy, they per-
form reasonably well (25% AP). But because it is easy to
overfit to a single example, many templates include noisy
features from the background.

Sharing as regularization: To help learning more re-
liable templates for the rare examples, we retrain subcate-
gory model m with the n

m

highest-scoring positive exam-
ples under the exemplar model. We consider the sharing as
a form of “regularization” that prevents overfitting to noisy
gradients. To demonstrate the effect of sharing, we visual-
ize the exemplar templates and the retrained templates for
n

m

= 50 in Fig. 4. The templates “regularized” by shared
examples have less noisy gradients and almost double per-
formance, producing an AP of 42%. Indeed, “averaging”

Figure 4: We visualize examples training images on the
top. We show initial exemplar models trained with them
in the middle. These templates perform well (25% AP on
VOC2007), but sometimes emphasize incorrect gradients,
such as the foreground tree in the center image. Retrain-
ing with the n

m

= 50 highest-scoring examples (bottom)
smooths out the template, de-emphasizing such noisy gra-
dients (since they tend not be found in the n

m

neighbors).
This significantly improves performance to 42%. This sug-
gests that optimal subcategory clusters may be overlapping,
and maybe computed independently for each subcategory.

across n

m

similar training examples maybe more natural
than penalizing the squared norm of a template, as is typi-
cally done to prevent overfitting. This motivating example
suggests that subcategory clusters need not be mutually ex-
clusive and may overlap. In fact, we find that some positive
examples are shared by many subcategories, a phenomenon
that we will investigate later in Fig. 9.

Iteration: We make two further observations. First, one
can iterate the procedure and find the n

m

highest scoring
examples with the retrained subcategory model and repeat.
The optimal choice of neighbors for one cluster is inde-
pendent of the choice of another cluster, suggesting these
iterations can be performed independently and in parallel.
We show in Sec. 3.2 that such a distributed, iterative algo-
rithm is guaranteed to converge since it can be formalized
as joint optimization of a well-defined (discriminative) ob-
jective function.

Cluster-size: Selecting the optimal cluster size n

m

is
tricky. We want large n

m

for common cases. Rare clus-
ters are particularly hard to model; from one perspective,
they should use a small n

m

so that learned detectors aren’t
polluted by visually dissimilar examples. On the other
hand, models learned from very small clusters may tend
to overfit because they are trained with less data. As ar-
gued above, we treat n

m

as a subcategory-specific regular-
ization parameter that is tuned on validation data. Specifi-
cally, we learn models for a log-linear range of n

m

2 N =

{50, 100, 200, 400, 800, 1600} values. Given a dataset of
positives P , we learn a large set of candidate subcategories
mixtures M (|M | = |N ||P |) in parallel, spanning both ex-
amples and cluster sizes. After training this large redundant
set, we select a subset on validation data.
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Figure 3: Our overall pipeline. We learn a massive num-
ber of candidate subcategory models in parallel, each ini-
tialized with its own training example and particular clus-
ter size. We train each subcategory with a discriminative
meanshift algorithm that iterates between selecting exam-
ples for sharing and learning detectors given those exam-
ples. Finally, we select a subset of candidate subcategory
detectors for each object class as to maximize recognition
accuracy. We show that this selection naturally produces
subcategories with long-tail distribution of sizes.

with a single-mixture deformable part model (DPM) [14].
Our overall pipeline is summarized in Fig. 3. We explain
each step in detail in the following.

3.1. Initialization

We begin by training a large “overcomplete” set of tens
of thousands of candidate subcategory models in parallel.
This large set of models will later be pruned. We initialize
our subcategory models by learning a discriminative tem-
plate for each positive example using exemplar SVMs [20].
We visualize exemplar root templates in Fig. 4. In terms of
category detection accuracy, they perform reasonably well
(25% AP). But because it easy to overfit to a single exam-
ple, many templates include noisy features from the back-
ground.

Regularization: To help smooth out noisy gradients,
let us retrain subcategory model m with the N

m

highest-
scoring positive examples under the exemplar model. We
visualize these templates for N

m

= 50 in Fig. 4. They
almost double performance, producing an AP of 42%. Intu-
itively, the N

m

neighbors act as a regularizer for each exem-
plar, smoothing out the noisy gradients. Indeed, averaging
across N

m

similar training examples maybe more natural
than penalizing the squared norm of a template, as is typ-
ically done to prevent overfiting. This motivating example
suggests that subcategory clusters need not be mutually ex-
clusive and may overlap. In fact, we find that some positive
examples are shared by many subcategories, a phenomena
that we will investigate further.

Iteration: We make two further observations. First, one
can iterate the procedure and find the N

m

highest scoring
examples with the retrained subcategory model and repeat.
The optimal choice of neighbors for one cluster is indepen-

Iter0

Iter1

Figure 4: We visualize examples training images on the
top. We show initial exemplar models trained with them
in the middle. These templates perform well (25% AP on
VOC2007), but sometimes emphasize gradients in the back-
ground, such as the tree in the top-left corner of the top-left
image. Retraining with the N

m

= 50 highest-scoring ex-
amples (bottom) smooths out the template, de-emphasizing
such noisy gradients (since they tend not be found in the
N

m

neighbors). This significantly improves performance
to 42%. This suggests that optimal subcategory clusters
may be overlapping, and maybe computed independantly
for each subcategory. [Deva: Remake figure with larger
templates]

dant of the choice of another cluster, suggesting these iter-
ations can be performed independantly and in parallel. We
show that such a distributed, iterative algorithm is garuan-
teed to converge since it can be formalized as joint optimiza-
tion of a well-defined (discriminative) objective function.
We call the resulting algorithm discriminative meanshift-
clustering.

Cluster-size: Selecting the optimal cluster size N

m

is
tricky. We want large N

m

for common cases. Rare clus-
ters are particularly hard to model; from one perspective,
they should use a small N

m

so that learned detectors aren’t
polluted by visually dissimilar examples. On the other
hand, models learned from very small clusters may tend
to overfit because they are trained with less data. As ar-
gued above, we treat N

m

as a subcategory-specific regu-
larization parameter that is tuned on validation data (much
as one tunes the C regularization parameter for SVMs).
Specifically, we learn models for a range of N

m

2 N =

{50, 100, 200, 400, 800, 1600} values. Given a dataset with
P positives, we learn a total of K = |N |P candidate sub-
categories mixtures in parallel, spanning both examples and
cluster sizes. After training this large redundant set, we se-
lect a subset on validation data.

3.2. Discriminative meanshift-clustering
We formalize the iterative algorithm introduced in the

previous section. We do so by writing a objective function
for jointly training all K subcategory models, and describe
a coordinate descent optimization produce that naturally de-
couples across subcategories.
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Figure 3: Our overall pipeline. We learn a massive number
of candidate subcategory models in parallel, each initialized
with its own training example (an exemplar) and particu-
lar cluster size. We train each subcategory with a discrim-
inative clustering algorithm that iterates between selecting
examples for sharing and learning detectors given those ex-
amples. Finally, we select a subset of candidate subcategory
detectors for each object class as to maximize recognition
accuracy. We show that this selection naturally produces
subcategories with long-tail distribution of sizes.

based mixtures of an object [28, 33]. Typically, subcate-
gory mixtures are supervised, but not always [21]. We share
global examples rather an local parts, as the former is more
amenable to brute-force distributed optimization.

3. Learning long-tail subcategory models
In this section, we describe our approach for learning

long-tail subcategory models. We model each subcategory
with a single-mixture deformable part model (DPM) [14].
Our overall pipeline is summarized in Fig. 3. We explain
each step in detail in the following.

3.1. Initialization
We begin by training a large “overcomplete” set of thou-

sands to tens of thousands of candidate subcategory models
in parallel. This large set of models will later be pruned.
We initialize our subcategory models by learning a discrim-
inative template for each positive example using exemplar
SVMs [20]. We visualize exemplar root templates for cars
in Fig. 4. In terms of category detection accuracy, they per-
form reasonably well (25% AP). But because it is easy to
overfit to a single example, many templates include noisy
features from the background.

Sharing as regularization: To help learning more re-
liable templates for the rare examples, we retrain subcate-
gory model m with the n

m

highest-scoring positive exam-
ples under the exemplar model. We consider the sharing as
a form of “regularization” that prevents overfitting to noisy
gradients. To demonstrate the effect of sharing, we visual-
ize the exemplar templates and the retrained templates for
n

m

= 50 in Fig. 4. The templates “regularized” by shared
examples have less noisy gradients and almost double per-
formance, producing an AP of 42%. Indeed, “averaging”

Figure 4: We visualize examples training images on the
top. We show initial exemplar models trained with them
in the middle. These templates perform well (25% AP on
VOC2007), but sometimes emphasize incorrect gradients,
such as the foreground tree in the center image. Retrain-
ing with the n

m

= 50 highest-scoring examples (bottom)
smooths out the template, de-emphasizing such noisy gra-
dients (since they tend not be found in the n

m

neighbors).
This significantly improves performance to 42%. This sug-
gests that optimal subcategory clusters may be overlapping,
and maybe computed independently for each subcategory.

across n

m

similar training examples maybe more natural
than penalizing the squared norm of a template, as is typi-
cally done to prevent overfitting. This motivating example
suggests that subcategory clusters need not be mutually ex-
clusive and may overlap. In fact, we find that some positive
examples are shared by many subcategories, a phenomenon
that we will investigate later in Fig. 9.

Iteration: We make two further observations. First, one
can iterate the procedure and find the n

m

highest scoring
examples with the retrained subcategory model and repeat.
The optimal choice of neighbors for one cluster is inde-
pendent of the choice of another cluster, suggesting these
iterations can be performed independently and in parallel.
We show in Sec. 3.2 that such a distributed, iterative algo-
rithm is guaranteed to converge since it can be formalized
as joint optimization of a well-defined (discriminative) ob-
jective function.

Cluster-size: Selecting the optimal cluster size n

m

is
tricky. We want large n

m

for common cases. Rare clus-
ters are particularly hard to model; from one perspective,
they should use a small n

m

so that learned detectors aren’t
polluted by visually dissimilar examples. On the other
hand, models learned from very small clusters may tend
to overfit because they are trained with less data. As ar-
gued above, we treat n

m

as a subcategory-specific regular-
ization parameter that is tuned on validation data. Specifi-
cally, we learn models for a log-linear range of n

m

2 N =

{50, 100, 200, 400, 800, 1600} values. Given a dataset of
positives P , we learn a large set of candidate subcategories
mixtures M (|M | = |N ||P |) in parallel, spanning both ex-
amples and cluster sizes. After training this large redundant
set, we select a subset on validation data.

Single positive example

Average of 50 closest



But how to handle...

We need lots of templates, but will likely have little data of ‘twisted’ poses



But how to handle...

We need lots of templates, but will likely have little data of ‘rare’ car-appearances
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Parts to the rescue!
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Figure 3: We take a “data-driven” approach to orientation-modeling by clustering the relative locations of parts with respect
to their parents. These clusters are used to generate mixture labels for parts during training. For example, heads tend to
be upright, and so the associated mixture models focus on upright orientations. Because hands articulate to a large degree,
mixture models for the hand are spread apart to capture a larger variety of relative orientations.

������ ������ ������ �

�
Figure 5: A visualization of our full-body model for T = 4, trained on the Parse dataset. Note that we show them as 4
separate models, but we emphasize that our representation allows for the composition of any part type with any other part
type, where the score associated with each combination decomposes into a tree (and so is efficient to search over) and is
learned from training data.

Image Parse Testset
Method Torso Head Upper legs Lower legs Upper arms Lower arms Total
R Gradient[?] 39.5 21.4 20.7 20.7 12.7 11.7 19.2
R Gradient+RGB[?] 52.1 37.5 31.0 29.0 17.5 13.6 27.2
ARS HOG [?] 81.4 75.6 63.2 55.1 47.6 31.7 55.2
JE HOG [?] 73.2 62.4 58.6 52.2 47.8 32.5 51.8
JE HOG+RGB [?] 77.6 68.8 61.5 54.9 53.2 39.3 56.4
SNH ROG [?] 54.8
SNH ROG+RGB [?] 91.2 76.6 71.5 64.9 50.0 34.2 60.9
Our Model HOG 89.8 87.8 78.5 69.0 64.4 36.1 67.4

Table 1: We compare our model to all previous published results on the Parse dataset, using the standard criteria of PCP [?].
Our total performance of 67.4% compares favorably to the best previous result of 60.9%. We also beat all previous results
on a per-part basis, except for torso and lower arm detection, for which we are second. [?] uses the same HOG feature set as
us, but embedded in a classic articulated pictorial structure. The relative improvement of our approach is 20%, indicating the
quality of our flexible part-mixture representation.
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Fig. 1. Detections obtained with a single component person model. The model is defined by a coarse root filter (a), several

higher resolution part filters (b) and a spatial model for the location of each part relative to the root (c). The filters specify

weights for histogram of oriented gradients features. Their visualization show the positive weights at different orientations. The

visualization of the spatial models reflects the “cost” of placing the center of a part at different locations relative to the root.

To train models using partially labeled data we use a latent variable formulation of MI-SVM

[3] that we call latent SVM (LSVM). In a latent SVM each example x is scored by a function

of the following form,

f�(x) = max
z�Z(x)

� · �(x, z). (1)

Here � is a vector of model parameters, z are latent values, and �(x, z) is a feature vector.

In the case of one of our star models � is the concatenation of the root filter, the part filters,

and deformation cost weights, z is a specification of the object configuration, and �(x, z) is a

concatenation of subwindows from a feature pyramid and part deformation features.

We note that (1) can handle very general forms of latent information. For example, z could

specify a derivation under a rich visual grammar.

Our second class of models represents each object category by a mixture of star models.

The score of one of our mixture models at a given position and scale is the maximum over

components, of the score of that component model at the given location. In this case the latent

information, z, specifies a component label and a configuration for that component. Figure 2

shows a mixture model for the bicycle category.

To obtain high performance using discriminative training it is often important to use large

training sets. In the case of object detection the training problem is highly unbalanced because

there is vastly more background than objects. This motivates a process of searching through

the background to find a relatively small number of potential false positives. A methodology of
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Figure 3: We take a “data-driven” approach to orientation-modeling by clustering the relative locations of parts with respect
to their parents. These clusters are used to generate mixture labels for parts during training. For example, heads tend to
be upright, and so the associated mixture models focus on upright orientations. Because hands articulate to a large degree,
mixture models for the hand are spread apart to capture a larger variety of relative orientations.
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Figure 5: A visualization of our full-body model for T = 4, trained on the Parse dataset. Note that we show them as 4
separate models, but we emphasize that our representation allows for the composition of any part type with any other part
type, where the score associated with each combination decomposes into a tree (and so is efficient to search over) and is
learned from training data.

Image Parse Testset
Method Torso Head Upper legs Lower legs Upper arms Lower arms Total
R Gradient[?] 39.5 21.4 20.7 20.7 12.7 11.7 19.2
R Gradient+RGB[?] 52.1 37.5 31.0 29.0 17.5 13.6 27.2
ARS HOG [?] 81.4 75.6 63.2 55.1 47.6 31.7 55.2
JE HOG [?] 73.2 62.4 58.6 52.2 47.8 32.5 51.8
JE HOG+RGB [?] 77.6 68.8 61.5 54.9 53.2 39.3 56.4
SNH ROG [?] 54.8
SNH ROG+RGB [?] 91.2 76.6 71.5 64.9 50.0 34.2 60.9
Our Model HOG 89.8 87.8 78.5 69.0 64.4 36.1 67.4

Table 1: We compare our model to all previous published results on the Parse dataset, using the standard criteria of PCP [?].
Our total performance of 67.4% compares favorably to the best previous result of 60.9%. We also beat all previous results
on a per-part basis, except for torso and lower arm detection, for which we are second. [?] uses the same HOG feature set as
us, but embedded in a classic articulated pictorial structure. The relative improvement of our approach is 20%, indicating the
quality of our flexible part-mixture representation.

x = image

zi = (xi, yi), i 2 {head,elbow, . . .}
z = {z1, z2, . . .}



Scoring function

S(x, z) =
X
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Figure 3: We take a “data-driven” approach to orientation-modeling by clustering the relative locations of parts with respect
to their parents. These clusters are used to generate mixture labels for parts during training. For example, heads tend to
be upright, and so the associated mixture models focus on upright orientations. Because hands articulate to a large degree,
mixture models for the hand are spread apart to capture a larger variety of relative orientations.
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Figure 5: A visualization of our full-body model for T = 4, trained on the Parse dataset. Note that we show them as 4
separate models, but we emphasize that our representation allows for the composition of any part type with any other part
type, where the score associated with each combination decomposes into a tree (and so is efficient to search over) and is
learned from training data.

Image Parse Testset
Method Torso Head Upper legs Lower legs Upper arms Lower arms Total
R Gradient[?] 39.5 21.4 20.7 20.7 12.7 11.7 19.2
R Gradient+RGB[?] 52.1 37.5 31.0 29.0 17.5 13.6 27.2
ARS HOG [?] 81.4 75.6 63.2 55.1 47.6 31.7 55.2
JE HOG [?] 73.2 62.4 58.6 52.2 47.8 32.5 51.8
JE HOG+RGB [?] 77.6 68.8 61.5 54.9 53.2 39.3 56.4
SNH ROG [?] 54.8
SNH ROG+RGB [?] 91.2 76.6 71.5 64.9 50.0 34.2 60.9
Our Model HOG 89.8 87.8 78.5 69.0 64.4 36.1 67.4

Table 1: We compare our model to all previous published results on the Parse dataset, using the standard criteria of PCP [?].
Our total performance of 67.4% compares favorably to the best previous result of 60.9%. We also beat all previous results
on a per-part basis, except for torso and lower arm detection, for which we are second. [?] uses the same HOG feature set as
us, but embedded in a classic articulated pictorial structure. The relative improvement of our approach is 20%, indicating the
quality of our flexible part-mixture representation.

x = image

zi = (xi, yi), i 2 {head,elbow, . . .}
z = {z1, z2, . . .}

(often the scoring function includes an additional “spring term”; let’s ignore for now)



Learned model
fw(x) = w · �(x)Training

• Training data consists of images with labeled bounding boxes

• Need to learn the model structure, filters and deformation costs
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Visualizing family of classifiers

...

How do we  define set of valid z 2 ⌦ ?

One option: just use set of poses observed in training set

S(x, z) = w(z) · �(x)



Sharing
Helps address “one-shot” learning (subcategory seen at least once)

Use parts from common poses to help model rare poses



What about poses that are never seen (“zero-shot” learning)?

Sharing
Helps address “one-shot” learning (subcategory seen at least once)



Shape synthesis

Synthesis 
engine
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Algorithmic synthesis
: set of observed + synthesized part locations⌦

...
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Shape synthesis
S(z) = (z � µ)⌃�1(z � µ)

Graphics engine



Parametric family of classifiers



Formal model

z = vector of part offsets

= concatenation of HOG features & part offsets

fw(x) = max
z

w · �(x, z)fw(x) = w · �(x)

w = concatenation of filters & deformation parameters

�(x, z)

Learned model
fw(x) = w · �(x)Training

• Training data consists of images with labeled bounding boxes

• Need to learn the model structure, filters and deformation costs

Training

positive
weights

negative
weights

f(x) = w · x

f(x) > 0

Recognition



Recognition as reconstruction
Formal model

z = vector of part offsets

= concatenation of HOG features & part offsets

fw(x) = max
z

w · �(x, z)fw(x) = w · �(x)

w = concatenation of filters & deformation parameters

�(x, z)

Formal model

z = vector of part offsets

= concatenation of HOG features & part offsets

fw(x) = max
z

w · �(x, z)fw(x) = w · �(x)

w = concatenation of filters & deformation parameters

�(x, z)

Learned model
fw(x) = w · �(x)Training

• Training data consists of images with labeled bounding boxes

• Need to learn the model structure, filters and deformation costs

Training

positive
weights

negative
weights

f(x) = w · x

Argmax (z*) reveals pose

f(x) = max

z2⌦
w(z) · x

: set of observed + synthesized part locations⌦

f(x) > 0



Revisit latent (vs linear) classificationFormal model

z = vector of part offsets

= concatenation of HOG features & part offsets

fw(x) = max
z

w · �(x, z)fw(x) = w · �(x)

w = concatenation of filters & deformation parameters

�(x, z)

Score is linear in x
Positive set {x:fw(x) > 0} is 

half-space

x1

x2

x1

x2

Formal model

z = vector of part offsets

= concatenation of HOG features & part offsets

fw(x) = max
z

w · �(x, z)fw(x) = w · �(x)

w = concatenation of filters & deformation parameters

�(x, z)

Score  is ?

Positive set is ?

f(x) = max

z2⌦
w(z) · x

f(x) = w · x



Formal model

z = vector of part offsets

= concatenation of HOG features & part offsets

fw(x) = max
z

w · �(x, z)fw(x) = w · �(x)

w = concatenation of filters & deformation parameters

�(x, z)

Score fw(x) is linear in x
Positive set {x:fw(x) > 0} is 

half-space

x1

x2

x1

x2

Formal model

z = vector of part offsets

= concatenation of HOG features & part offsets

fw(x) = max
z

w · �(x, z)fw(x) = w · �(x)

w = concatenation of filters & deformation parameters

�(x, z)

Score fw(x) is convex in x
Negative set {x:fw(x) <= 0} is 

convex

Revisit latent (vs linear) classification

f(x) = max

z2⌦
w(z) · x

f(x) = w · x

person stand

side-walk front 
walk
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bg
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Inference 

...



Inference 

(2) Score each template with 
lookup table (LUT) queries

Can be implemented as a two-layer convolution

(1) Pre-compute tables 
of part responses 

...



Learning

w =

2
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Supervised learning
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Figure 3: We take a “data-driven” approach to orientation-modeling by clustering the relative locations of parts with respect
to their parents. These clusters are used to generate mixture labels for parts during training. For example, heads tend to
be upright, and so the associated mixture models focus on upright orientations. Because hands articulate to a large degree,
mixture models for the hand are spread apart to capture a larger variety of relative orientations.
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Figure 5: A visualization of our full-body model for T = 4, trained on the Parse dataset. Note that we show them as 4
separate models, but we emphasize that our representation allows for the composition of any part type with any other part
type, where the score associated with each combination decomposes into a tree (and so is efficient to search over) and is
learned from training data.

Image Parse Testset
Method Torso Head Upper legs Lower legs Upper arms Lower arms Total
R Gradient[?] 39.5 21.4 20.7 20.7 12.7 11.7 19.2
R Gradient+RGB[?] 52.1 37.5 31.0 29.0 17.5 13.6 27.2
ARS HOG [?] 81.4 75.6 63.2 55.1 47.6 31.7 55.2
JE HOG [?] 73.2 62.4 58.6 52.2 47.8 32.5 51.8
JE HOG+RGB [?] 77.6 68.8 61.5 54.9 53.2 39.3 56.4
SNH ROG [?] 54.8
SNH ROG+RGB [?] 91.2 76.6 71.5 64.9 50.0 34.2 60.9
Our Model HOG 89.8 87.8 78.5 69.0 64.4 36.1 67.4

Table 1: We compare our model to all previous published results on the Parse dataset, using the standard criteria of PCP [?].
Our total performance of 67.4% compares favorably to the best previous result of 60.9%. We also beat all previous results
on a per-part basis, except for torso and lower arm detection, for which we are second. [?] uses the same HOG feature set as
us, but embedded in a classic articulated pictorial structure. The relative improvement of our approach is 20%, indicating the
quality of our flexible part-mixture representation.

S(x, z) = w · �(x, z), z 2 ⌦
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(Apply same sparse learning tricks to 
deal with large set of negatives!)

Learn classifiers for never-before-
seen templates with synthesis

S(x, z) = w · �(x, z), z 2 ⌦
Supervised learning



Joint recognition + (2D) reconstruction

14

Fig. 13: Results on the Buffy dataset. We visualize all skeletons (instead of boxes) reported by our algorithm
for a given image, after non-maximum suppression (NMS). Our model hence serves as both an articulated
detector and pose estimation algorithm, as evidenced by our average-precision of keypoints (APK) measure.
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Implicit synthesis of 
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Figure 3: We take a “data-driven” approach to orientation-modeling by clustering the relative locations of parts with respect
to their parents. These clusters are used to generate mixture labels for parts during training. For example, heads tend to
be upright, and so the associated mixture models focus on upright orientations. Because hands articulate to a large degree,
mixture models for the hand are spread apart to capture a larger variety of relative orientations.
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Figure 5: A visualization of our full-body model for T = 4, trained on the Parse dataset. Note that we show them as 4
separate models, but we emphasize that our representation allows for the composition of any part type with any other part
type, where the score associated with each combination decomposes into a tree (and so is efficient to search over) and is
learned from training data.

Image Parse Testset
Method Torso Head Upper legs Lower legs Upper arms Lower arms Total
R Gradient[?] 39.5 21.4 20.7 20.7 12.7 11.7 19.2
R Gradient+RGB[?] 52.1 37.5 31.0 29.0 17.5 13.6 27.2
ARS HOG [?] 81.4 75.6 63.2 55.1 47.6 31.7 55.2
JE HOG [?] 73.2 62.4 58.6 52.2 47.8 32.5 51.8
JE HOG+RGB [?] 77.6 68.8 61.5 54.9 53.2 39.3 56.4
SNH ROG [?] 54.8
SNH ROG+RGB [?] 91.2 76.6 71.5 64.9 50.0 34.2 60.9
Our Model HOG 89.8 87.8 78.5 69.0 64.4 36.1 67.4

Table 1: We compare our model to all previous published results on the Parse dataset, using the standard criteria of PCP [?].
Our total performance of 67.4% compares favorably to the best previous result of 60.9%. We also beat all previous results
on a per-part basis, except for torso and lower arm detection, for which we are second. [?] uses the same HOG feature set as
us, but embedded in a classic articulated pictorial structure. The relative improvement of our approach is 20%, indicating the
quality of our flexible part-mixture representation.
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be upright, and so the associated mixture models focus on upright orientations. Because hands articulate to a large degree,
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Fig. 1. Detections obtained with a single component person model. The model is defined by a coarse root filter (a), several

higher resolution part filters (b) and a spatial model for the location of each part relative to the root (c). The filters specify

weights for histogram of oriented gradients features. Their visualization show the positive weights at different orientations. The

visualization of the spatial models reflects the “cost” of placing the center of a part at different locations relative to the root.

To train models using partially labeled data we use a latent variable formulation of MI-SVM

[3] that we call latent SVM (LSVM). In a latent SVM each example x is scored by a function

of the following form,

f�(x) = max
z�Z(x)

� · �(x, z). (1)

Here � is a vector of model parameters, z are latent values, and �(x, z) is a feature vector.

In the case of one of our star models � is the concatenation of the root filter, the part filters,

and deformation cost weights, z is a specification of the object configuration, and �(x, z) is a

concatenation of subwindows from a feature pyramid and part deformation features.

We note that (1) can handle very general forms of latent information. For example, z could

specify a derivation under a rich visual grammar.

Our second class of models represents each object category by a mixture of star models.

The score of one of our mixture models at a given position and scale is the maximum over

components, of the score of that component model at the given location. In this case the latent

information, z, specifies a component label and a configuration for that component. Figure 2

shows a mixture model for the bicycle category.

To obtain high performance using discriminative training it is often important to use large

training sets. In the case of object detection the training problem is highly unbalanced because

there is vastly more background than objects. This motivates a process of searching through

the background to find a relatively small number of potential false positives. A methodology of
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Example: assume a “chain” part model

Pixel
locations

eye nose mouth

Pictorial structures

Part-based representation:

• Each part models local visual properties.

• “Springs” model spatial relationships.

• Joint estimation of part locations.

– No hard detection of parts or features.

– No initialization parameters.

1

-Initialize nodes with match cost
-Initalize edges with spring cost
-Find lowest-cost path from left to right 
with dynamic progamming

If we have n parts and k pixel
locations, what is the complexity? 

What is complexity when we truncate spring cost 
(eg, there are only v valid eye offsets for each 
nose)?

“Secret”: In practice, truncation can reduce 
computation so that local match cost dominateshead torso leg

2) Initialize edges with spring score

Pixel 
locations 1) Initialize nodes with match score

3) Find best path from left to right

In practice, (1) is bottleneck
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The score of one of our mixture models at a given position and scale is the maximum over

components, of the score of that component model at the given location. In this case the latent
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We note that (1) can handle very general forms of latent information. For example, z could
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components, of the score of that component model at the given location. In this case the latent

information, z, specifies a component label and a configuration for that component. Figure 2

shows a mixture model for the bicycle category.
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there is vastly more background than objects. This motivates a process of searching through

the background to find a relatively small number of potential false positives. A methodology of

June 1, 2009 DRAFT

4

(a) (b) (c)

Fig. 1. Detections obtained with a single component person model. The model is defined by a coarse root filter (a), several

higher resolution part filters (b) and a spatial model for the location of each part relative to the root (c). The filters specify

weights for histogram of oriented gradients features. Their visualization show the positive weights at different orientations. The

visualization of the spatial models reflects the “cost” of placing the center of a part at different locations relative to the root.

To train models using partially labeled data we use a latent variable formulation of MI-SVM

[3] that we call latent SVM (LSVM). In a latent SVM each example x is scored by a function

of the following form,

f�(x) = max
z�Z(x)

� · �(x, z). (1)

Here � is a vector of model parameters, z are latent values, and �(x, z) is a feature vector.

In the case of one of our star models � is the concatenation of the root filter, the part filters,

and deformation cost weights, z is a specification of the object configuration, and �(x, z) is a

concatenation of subwindows from a feature pyramid and part deformation features.

We note that (1) can handle very general forms of latent information. For example, z could

specify a derivation under a rich visual grammar.

Our second class of models represents each object category by a mixture of star models.

The score of one of our mixture models at a given position and scale is the maximum over

components, of the score of that component model at the given location. In this case the latent

information, z, specifies a component label and a configuration for that component. Figure 2

shows a mixture model for the bicycle category.

To obtain high performance using discriminative training it is often important to use large

training sets. In the case of object detection the training problem is highly unbalanced because

there is vastly more background than objects. This motivates a process of searching through

the background to find a relatively small number of potential false positives. A methodology of

June 1, 2009 DRAFT

4

(a) (b) (c)

Fig. 1. Detections obtained with a single component person model. The model is defined by a coarse root filter (a), several

higher resolution part filters (b) and a spatial model for the location of each part relative to the root (c). The filters specify

weights for histogram of oriented gradients features. Their visualization show the positive weights at different orientations. The

visualization of the spatial models reflects the “cost” of placing the center of a part at different locations relative to the root.

To train models using partially labeled data we use a latent variable formulation of MI-SVM

[3] that we call latent SVM (LSVM). In a latent SVM each example x is scored by a function

of the following form,

f�(x) = max
z�Z(x)

� · �(x, z). (1)

Here � is a vector of model parameters, z are latent values, and �(x, z) is a feature vector.

In the case of one of our star models � is the concatenation of the root filter, the part filters,

and deformation cost weights, z is a specification of the object configuration, and �(x, z) is a

concatenation of subwindows from a feature pyramid and part deformation features.

We note that (1) can handle very general forms of latent information. For example, z could

specify a derivation under a rich visual grammar.

Our second class of models represents each object category by a mixture of star models.

The score of one of our mixture models at a given position and scale is the maximum over

components, of the score of that component model at the given location. In this case the latent

information, z, specifies a component label and a configuration for that component. Figure 2

shows a mixture model for the bicycle category.

To obtain high performance using discriminative training it is often important to use large

training sets. In the case of object detection the training problem is highly unbalanced because

there is vastly more background than objects. This motivates a process of searching through

the background to find a relatively small number of potential false positives. A methodology of

June 1, 2009 DRAFT

Inference: maxz S(x,z)



Inference: maxz S(x,z)
implement with convolutions + max pooling

7

+

x

xx

...

...

...

model

response of root filter

transformed responses

response of part filters

feature map feature map at twice the resolution

combined score of 

root locationslow value high value

color encoding of filter 

response values

Fig. 4. The matching process at one scale. Responses from the root and part filters are computed a different
resolutions in the feature pyramid. The transformed responses are combined to yield a final score for each root
location. We show the responses and transformed responses for the “head” and “right shoulder” parts. Note how the
“head” filter is more discriminative. The combined scores clearly show two good hypothesis for the object at this scale.

7

+

x

xx

...

...

...

model

response of root filter

transformed responses

response of part filters

feature map feature map at twice the resolution

combined score of 

root locationslow value high value

color encoding of filter 

response values

Fig. 4. The matching process at one scale. Responses from the root and part filters are computed a different
resolutions in the feature pyramid. The transformed responses are combined to yield a final score for each root
location. We show the responses and transformed responses for the “head” and “right shoulder” parts. Note how the
“head” filter is more discriminative. The combined scores clearly show two good hypothesis for the object at this scale.

4

(a) (b) (c)

Fig. 1. Detections obtained with a single component person model. The model is defined by a coarse root filter (a), several

higher resolution part filters (b) and a spatial model for the location of each part relative to the root (c). The filters specify

weights for histogram of oriented gradients features. Their visualization show the positive weights at different orientations. The

visualization of the spatial models reflects the “cost” of placing the center of a part at different locations relative to the root.

To train models using partially labeled data we use a latent variable formulation of MI-SVM

[3] that we call latent SVM (LSVM). In a latent SVM each example x is scored by a function

of the following form,

f�(x) = max
z�Z(x)

� · �(x, z). (1)

Here � is a vector of model parameters, z are latent values, and �(x, z) is a feature vector.

In the case of one of our star models � is the concatenation of the root filter, the part filters,

and deformation cost weights, z is a specification of the object configuration, and �(x, z) is a

concatenation of subwindows from a feature pyramid and part deformation features.

We note that (1) can handle very general forms of latent information. For example, z could

specify a derivation under a rich visual grammar.

Our second class of models represents each object category by a mixture of star models.

The score of one of our mixture models at a given position and scale is the maximum over

components, of the score of that component model at the given location. In this case the latent

information, z, specifies a component label and a configuration for that component. Figure 2

shows a mixture model for the bicycle category.

To obtain high performance using discriminative training it is often important to use large

training sets. In the case of object detection the training problem is highly unbalanced because

there is vastly more background than objects. This motivates a process of searching through

the background to find a relatively small number of potential false positives. A methodology of

June 1, 2009 DRAFT

4

(a) (b) (c)

Fig. 1. Detections obtained with a single component person model. The model is defined by a coarse root filter (a), several

higher resolution part filters (b) and a spatial model for the location of each part relative to the root (c). The filters specify

weights for histogram of oriented gradients features. Their visualization show the positive weights at different orientations. The

visualization of the spatial models reflects the “cost” of placing the center of a part at different locations relative to the root.

To train models using partially labeled data we use a latent variable formulation of MI-SVM

[3] that we call latent SVM (LSVM). In a latent SVM each example x is scored by a function

of the following form,

f�(x) = max
z�Z(x)

� · �(x, z). (1)

Here � is a vector of model parameters, z are latent values, and �(x, z) is a feature vector.

In the case of one of our star models � is the concatenation of the root filter, the part filters,

and deformation cost weights, z is a specification of the object configuration, and �(x, z) is a

concatenation of subwindows from a feature pyramid and part deformation features.

We note that (1) can handle very general forms of latent information. For example, z could

specify a derivation under a rich visual grammar.

Our second class of models represents each object category by a mixture of star models.

The score of one of our mixture models at a given position and scale is the maximum over

components, of the score of that component model at the given location. In this case the latent

information, z, specifies a component label and a configuration for that component. Figure 2

shows a mixture model for the bicycle category.

To obtain high performance using discriminative training it is often important to use large

training sets. In the case of object detection the training problem is highly unbalanced because

there is vastly more background than objects. This motivates a process of searching through

the background to find a relatively small number of potential false positives. A methodology of

June 1, 2009 DRAFT

4

(a) (b) (c)

Fig. 1. Detections obtained with a single component person model. The model is defined by a coarse root filter (a), several

higher resolution part filters (b) and a spatial model for the location of each part relative to the root (c). The filters specify

weights for histogram of oriented gradients features. Their visualization show the positive weights at different orientations. The

visualization of the spatial models reflects the “cost” of placing the center of a part at different locations relative to the root.

To train models using partially labeled data we use a latent variable formulation of MI-SVM

[3] that we call latent SVM (LSVM). In a latent SVM each example x is scored by a function

of the following form,

f�(x) = max
z�Z(x)

� · �(x, z). (1)

Here � is a vector of model parameters, z are latent values, and �(x, z) is a feature vector.

In the case of one of our star models � is the concatenation of the root filter, the part filters,

and deformation cost weights, z is a specification of the object configuration, and �(x, z) is a

concatenation of subwindows from a feature pyramid and part deformation features.

We note that (1) can handle very general forms of latent information. For example, z could

specify a derivation under a rich visual grammar.

Our second class of models represents each object category by a mixture of star models.

The score of one of our mixture models at a given position and scale is the maximum over

components, of the score of that component model at the given location. In this case the latent

information, z, specifies a component label and a configuration for that component. Figure 2

shows a mixture model for the bicycle category.

To obtain high performance using discriminative training it is often important to use large

training sets. In the case of object detection the training problem is highly unbalanced because

there is vastly more background than objects. This motivates a process of searching through

the background to find a relatively small number of potential false positives. A methodology of

June 1, 2009 DRAFT

4

(a) (b) (c)

Fig. 1. Detections obtained with a single component person model. The model is defined by a coarse root filter (a), several

higher resolution part filters (b) and a spatial model for the location of each part relative to the root (c). The filters specify

weights for histogram of oriented gradients features. Their visualization show the positive weights at different orientations. The

visualization of the spatial models reflects the “cost” of placing the center of a part at different locations relative to the root.

To train models using partially labeled data we use a latent variable formulation of MI-SVM

[3] that we call latent SVM (LSVM). In a latent SVM each example x is scored by a function

of the following form,

f�(x) = max
z�Z(x)

� · �(x, z). (1)

Here � is a vector of model parameters, z are latent values, and �(x, z) is a feature vector.

In the case of one of our star models � is the concatenation of the root filter, the part filters,

and deformation cost weights, z is a specification of the object configuration, and �(x, z) is a

concatenation of subwindows from a feature pyramid and part deformation features.

We note that (1) can handle very general forms of latent information. For example, z could

specify a derivation under a rich visual grammar.

Our second class of models represents each object category by a mixture of star models.

The score of one of our mixture models at a given position and scale is the maximum over

components, of the score of that component model at the given location. In this case the latent

information, z, specifies a component label and a configuration for that component. Figure 2

shows a mixture model for the bicycle category.

To obtain high performance using discriminative training it is often important to use large

training sets. In the case of object detection the training problem is highly unbalanced because

there is vastly more background than objects. This motivates a process of searching through

the background to find a relatively small number of potential false positives. A methodology of

June 1, 2009 DRAFT

4

(a) (b) (c)

Fig. 1. Detections obtained with a single component person model. The model is defined by a coarse root filter (a), several

higher resolution part filters (b) and a spatial model for the location of each part relative to the root (c). The filters specify

weights for histogram of oriented gradients features. Their visualization show the positive weights at different orientations. The

visualization of the spatial models reflects the “cost” of placing the center of a part at different locations relative to the root.

To train models using partially labeled data we use a latent variable formulation of MI-SVM

[3] that we call latent SVM (LSVM). In a latent SVM each example x is scored by a function

of the following form,

f�(x) = max
z�Z(x)

� · �(x, z). (1)

Here � is a vector of model parameters, z are latent values, and �(x, z) is a feature vector.

In the case of one of our star models � is the concatenation of the root filter, the part filters,

and deformation cost weights, z is a specification of the object configuration, and �(x, z) is a

concatenation of subwindows from a feature pyramid and part deformation features.

We note that (1) can handle very general forms of latent information. For example, z could

specify a derivation under a rich visual grammar.

Our second class of models represents each object category by a mixture of star models.

The score of one of our mixture models at a given position and scale is the maximum over

components, of the score of that component model at the given location. In this case the latent

information, z, specifies a component label and a configuration for that component. Figure 2

shows a mixture model for the bicycle category.

To obtain high performance using discriminative training it is often important to use large

training sets. In the case of object detection the training problem is highly unbalanced because

there is vastly more background than objects. This motivates a process of searching through

the background to find a relatively small number of potential false positives. A methodology of

June 1, 2009 DRAFT

4

(a) (b) (c)

Fig. 1. Detections obtained with a single component person model. The model is defined by a coarse root filter (a), several

higher resolution part filters (b) and a spatial model for the location of each part relative to the root (c). The filters specify

weights for histogram of oriented gradients features. Their visualization show the positive weights at different orientations. The

visualization of the spatial models reflects the “cost” of placing the center of a part at different locations relative to the root.

To train models using partially labeled data we use a latent variable formulation of MI-SVM

[3] that we call latent SVM (LSVM). In a latent SVM each example x is scored by a function

of the following form,

f�(x) = max
z�Z(x)

� · �(x, z). (1)

Here � is a vector of model parameters, z are latent values, and �(x, z) is a feature vector.

In the case of one of our star models � is the concatenation of the root filter, the part filters,

and deformation cost weights, z is a specification of the object configuration, and �(x, z) is a

concatenation of subwindows from a feature pyramid and part deformation features.

We note that (1) can handle very general forms of latent information. For example, z could

specify a derivation under a rich visual grammar.

Our second class of models represents each object category by a mixture of star models.

The score of one of our mixture models at a given position and scale is the maximum over

components, of the score of that component model at the given location. In this case the latent

information, z, specifies a component label and a configuration for that component. Figure 2

shows a mixture model for the bicycle category.

To obtain high performance using discriminative training it is often important to use large

training sets. In the case of object detection the training problem is highly unbalanced because

there is vastly more background than objects. This motivates a process of searching through

the background to find a relatively small number of potential false positives. A methodology of

June 1, 2009 DRAFT

7

+

x

xx

...

...

...

model

response of root filter

transformed responses

response of part filters

feature map feature map at twice the resolution

combined score of 

root locationslow value high value

color encoding of filter 

response values

Fig. 4. The matching process at one scale. Responses from the root and part filters are computed a different
resolutions in the feature pyramid. The transformed responses are combined to yield a final score for each root
location. We show the responses and transformed responses for the “head” and “right shoulder” parts. Note how the
“head” filter is more discriminative. The combined scores clearly show two good hypothesis for the object at this scale.

7

+

x

xx

...

...

...

model

response of root filter

transformed responses

response of part filters

feature map feature map at twice the resolution

combined score of 

root locationslow value high value

color encoding of filter 

response values

Fig. 4. The matching process at one scale. Responses from the root and part filters are computed a different
resolutions in the feature pyramid. The transformed responses are combined to yield a final score for each root
location. We show the responses and transformed responses for the “head” and “right shoulder” parts. Note how the
“head” filter is more discriminative. The combined scores clearly show two good hypothesis for the object at this scale.

7

+

x

xx

...

...

...

model

response of root filter

transformed responses

response of part filters

feature map feature map at twice the resolution

combined score of 

root locationslow value high value

color encoding of filter 

response values

Fig. 4. The matching process at one scale. Responses from the root and part filters are computed a different
resolutions in the feature pyramid. The transformed responses are combined to yield a final score for each root
location. We show the responses and transformed responses for the “head” and “right shoulder” parts. Note how the
“head” filter is more discriminative. The combined scores clearly show two good hypothesis for the object at this scale.

7

+

x

xx

...

...

...

model

response of root filter

transformed responses

response of part filters

feature map feature map at twice the resolution

combined score of 

root locationslow value high value

color encoding of filter 

response values

Fig. 4. The matching process at one scale. Responses from the root and part filters are computed a different
resolutions in the feature pyramid. The transformed responses are combined to yield a final score for each root
location. We show the responses and transformed responses for the “head” and “right shoulder” parts. Note how the
“head” filter is more discriminative. The combined scores clearly show two good hypothesis for the object at this scale.

…
conv

max 
pool

conv

add addmax 
pool



Example: assume a “chain” part model

Pixel
locations

eye nose mouth

Pictorial structures

Part-based representation:

• Each part models local visual properties.

• “Springs” model spatial relationships.

• Joint estimation of part locations.

– No hard detection of parts or features.

– No initialization parameters.

1

-Initialize nodes with match cost
-Initalize edges with spring cost
-Find lowest-cost path from left to right 
with dynamic progamming

If we have n parts and k pixel
locations, what is the complexity? 

What is complexity when we truncate spring cost 
(eg, there are only v valid eye offsets for each 
nose)?

“Secret”: In practice, truncation can reduce 
computation so that local match cost dominateshead torso leg

Pixel 
locations

General formulation: inference

S(x, z) =
X

i

�i(zi, x) +
X

ij2E

⇥ij(zi, zj , x)

Local and pairwise potentials can be arbitrary 
nonlinear functions of image and position

(e.g., neural net part model)
(e.g., intervening contour cue on part pairs)
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higher resolution part filters (b) and a spatial model for the location of each part relative to the root (c). The filters specify

weights for histogram of oriented gradients features. Their visualization show the positive weights at different orientations. The

visualization of the spatial models reflects the “cost” of placing the center of a part at different locations relative to the root.

To train models using partially labeled data we use a latent variable formulation of MI-SVM

[3] that we call latent SVM (LSVM). In a latent SVM each example x is scored by a function

of the following form,

f�(x) = max
z�Z(x)

� · �(x, z). (1)

Here � is a vector of model parameters, z are latent values, and �(x, z) is a feature vector.

In the case of one of our star models � is the concatenation of the root filter, the part filters,

and deformation cost weights, z is a specification of the object configuration, and �(x, z) is a

concatenation of subwindows from a feature pyramid and part deformation features.

We note that (1) can handle very general forms of latent information. For example, z could

specify a derivation under a rich visual grammar.

Our second class of models represents each object category by a mixture of star models.

The score of one of our mixture models at a given position and scale is the maximum over

components, of the score of that component model at the given location. In this case the latent

information, z, specifies a component label and a configuration for that component. Figure 2

shows a mixture model for the bicycle category.

To obtain high performance using discriminative training it is often important to use large

training sets. In the case of object detection the training problem is highly unbalanced because

there is vastly more background than objects. This motivates a process of searching through

the background to find a relatively small number of potential false positives. A methodology of
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Learning CRFs using Graph Cuts
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Abstract. Many computer vision problems are naturally formulated as
random fields, specifically MRFs or CRFs. The introduction of graph cuts
has enabled e�cient and optimal inference in associative random fields,
greatly advancing applications such as segmentation, stereo reconstruc-
tion and many others. However, while fast inference is now widespread,
parameter learning in random fields has remained an intractable problem.
This paper shows how to apply fast inference algorithms, in particular
graph cuts, to learn parameters of random fields with similar e�ciency.
We find optimal parameter values under standard regularized objective
functions that ensure good generalization. Our algorithm enables learning
of many parameters in reasonable time, and we explore further speedup
techniques. We also discuss extensions to non-associative and multi-class
problems. We evaluate the method on image segmentation and geometry
recognition.

1 Introduction

The availability of e�cient and provably optimal inference algorithms, such
as graph cuts [1] and its approximate extensions [2], has inspired progress in
many areas of computer vision. For example, the e�ciency of graph cut based
algorithms enables interactive image [3,4] and real-time video segmentation tasks.
The optimality guarantees of these algorithms allow computing the maximum a
posteriori (MAP) solution of the model distribution.

The ability to compute the minimum energy solution has revealed that simple
energy models (e.g., with one unary term and an isotropic smoothing penalty in
grid labeling problems) are insu�cient to model the complex structures inherent
in computer vision problems [5,6]. Despite this knowledge, overly simplistic
hand-tuned random field models continue to be common practice. We believe
that the continued use of such impoverished models reflects, not a belief in
the supremacy of such representations, but the absence of tractable machine
learning techniques for large MRF and CRF problems. Currently, the most widely
used learning algorithms include cross-validation and simple partition function
approximations [7]. However, many works do not perform learning at all and rely
on hand-tuned parameters.

In this paper, we describe an e�cient and easy-to-implement technique that
is capable of learning dozens of parameters from millions of pixels in minutes.
Our algorithm is based on the structured support vector machine (SVMstruct)
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Taigman & Wolf “Leveraging 
Billions of Faces...” 2011
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Zhu, Vondrick, Ramanan & Fowlkes,  
“Do we need more training data or better models?” 
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Mixtures with sharing
MixturesIndependent

Could we do better with more data?
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“Do we need more training data or better models?” 
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Mixtures

Indepedant subcategories vs sharing

Independent
Sharing
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Supervised tree DPM
Mixtures with sharing
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Synthesis even more beneficial than sharing

Sharing versus synthesis

Independent
Sharing

Sharing + Synthesis
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One can train a state-of-art face detector (c.f. Google 
Picassa & Facebook’s face.com) with 100 faces!
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Input: 
2D image

Output: 
3D shape 

camera viewpoint

What if we want to recognize 3D shapes?



Shape synthesis
Synthesis 

engine 

Problem... local appearances depend on global geometry 
(foreshortened or occluded wheels look very different)



Geometry-conditioned appearance
Enlarge part dictionary to include parts with different local geometries  

(learned by clustering)

Figure 3. We learn local part mixtures by clustering the relative 3D
position of keypoint i and its connected neighbors in the underly-
ing 3D mesh. We show keypoint cluster means above µi

mi
, along

with their associated part templates �mi
i below. Each sythnesized

3D pose (and associated template) is constructed by adding to-
gether shifted copies of local part templates, which in turn allows
for efficient search.

where (5) is a standard perspective projection model, and
p

i is the i

th column of matrix P . We have assumed unity-
scaled pixels factors for simplicity (though they can easily
be added).

Appearance synthesis: To capture changes in ap-
pearance caused by geometry (frontal and foreshoretened
wheels look different), we associate each keypoint with a
discrete mixture m

i

. We will use separate local template to
model the appearance of each mixture. We now describe
a simple approach for synthesizing m

i

conditioned on P

(the view-dependant 3D shape). We associate each mixture
m

i

with a particular geometric configuration of nearby key-
points, written as µ

i

k

. These geometric configurations are
learned off-line by clustering the set of synthesized shapes.
Given a particular shape instance P , we synthesize its cor-
responding mixture labels m

i

by assigning each keypoint to
its closest cluster/mixture:

m
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= k
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and rel = {p
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where µ

i

k

is defined as the average relative location of
neighboring points N(i) for cluster k. We define N(i)

be the set of keypoints connected to i under the 3D mesh
model, given by the 3 other keypoints with highest spatial
correlation to i. We visualize the 3D geometric configu-
rations µ

i

k

and their associated appearance-specific visual
templates wk

i

in Fig. 3.
Parameter quantization: In our experiments, we ex-

plore various strategies for producing a set of parameters ✓.
One option is to use the set of parameters encountered in
a set of training images. Alternatively, we can enumerate
parameters with a grid search over a uniform range (where
bounds on the camera rotation matrix is defined in terms of
elevation and azimuth Euler angles). To ensure translation-
invariance, we clamp camera translations to 0 (t = 0) dur-
ing the grid search. But we do search over focal lengths f
to model perspective effects. This produces a massive set

of thousands or millions of parameters vectors, constructed
either with a grid search or enumeration of training data.
In our results, we experiment with various quantized sub-
sets. We wish to quantize together parameters that yield
similar 2D projections. Specifically, we construct a vector
of 2D (x

i

, y

i

) keypoint positions for each discrete ✓, and
cluster this set with K-means. We denote the final set of
K-quantized parameter vectors as

⌦

K

= {✓1 . . . ✓K} (8)

4. Template model

Given a parameter vector ✓ and image I , we describe a
method for scoring a visual template w
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:

S(I, ✓) =
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where I[u] is an image feature extracted from a pixel lo-
cation and scale u = (x, y,�) in image I . We write
U for the set of all possible discrete pixel locations and
scales enumerated in a feature pyramid. In practice, w

✓

is
a single-scale template with local spatial support. For nota-
tional simplicity, we assume that templates are zero-padded
(across space and scales).

To efficiently represent our family of templates, we con-
struct each template w

✓

by adding together local keypoint
templates shifted to lie at locations given by Render(✓) (5).
We write �mi
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for the (zero-padded) local visual template, or
“part”, associated with keypoint i, when tuned for mixture
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:
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cation z
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(✓) on parameter ✓.
If keypoint i is occluded given the viewpoint specified by
✓, then the associated m

i

acts as an occlusion-specific mix-
ture. In such cases, the learned template �

mi
i

may be set to
all zeros, or it may capture image features characteristic of
occlusions (such as t-junctions).

Let us define a dummy indexing variable u

0
= u + z

i

and switch the order of summations in the above equation.
This allows us to write the global template w

✓

from (9) as a
superposition of shifted keypoint templates:
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where we have assumed keypoint templates � are zero-
padded outside of their default spatial extent.
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Explicit set of synthesized templates

(Most viewpoints never seen during training)
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Figure 7. Recognition + Reconstruction visualizations of our method. Odd rows show the test image and recognized + reconstructed
object overlayed on it. Even rows illustrate the associated synthesized templates which detect object. As shown, the method is capable
of recognizing objects from various viewpoints, shapes and is robust to heavy occlusion. Because every synthesized template has a 3D
shape, recognition is inherently reconstructive. On the top right, we show results for images with multiple cars. Results for boxes suggest
that our synthesis model can handle various viewpoints, aspect ratios, and even perspective effects. However some images are genuinely
ambiguous, like the rubiks cube (bottom-right).
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Car detection + reconstruction

parts are beign spatially moved and swapped out



Evaluation: MIT Geometric Primitive Dataset



Semantic vs learned representations

Skeleton “Poselets”Patches

What are the right units for sharing and synthesis?



For general objects?



Data-driven parts

Learn parts that allow for accurate recognition

Learned model
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Fig. 1. Detections obtained with a single component person model. The model is defined by a coarse root filter (a), several

higher resolution part filters (b) and a spatial model for the location of each part relative to the root (c). The filters specify

weights for histogram of oriented gradients features. Their visualization show the positive weights at different orientations. The

visualization of the spatial models reflects the “cost” of placing the center of a part at different locations relative to the root.

To train models using partially labeled data we use a latent variable formulation of MI-SVM

[3] that we call latent SVM (LSVM). In a latent SVM each example x is scored by a function

of the following form,

f�(x) = max
z�Z(x)

� · �(x, z). (1)

Here � is a vector of model parameters, z are latent values, and �(x, z) is a feature vector.

In the case of one of our star models � is the concatenation of the root filter, the part filters,

and deformation cost weights, z is a specification of the object configuration, and �(x, z) is a

concatenation of subwindows from a feature pyramid and part deformation features.

We note that (1) can handle very general forms of latent information. For example, z could

specify a derivation under a rich visual grammar.

Our second class of models represents each object category by a mixture of star models.

The score of one of our mixture models at a given position and scale is the maximum over

components, of the score of that component model at the given location. In this case the latent

information, z, specifies a component label and a configuration for that component. Figure 2

shows a mixture model for the bicycle category.

To obtain high performance using discriminative training it is often important to use large

training sets. In the case of object detection the training problem is highly unbalanced because

there is vastly more background than objects. This motivates a process of searching through

the background to find a relatively small number of potential false positives. A methodology of

June 1, 2009 DRAFT
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In the case of one of our star models � is the concatenation of the root filter, the part filters,
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SVMs

Given positive and negative training windows {xn}

 L(w) is convex  (Quadratic Program)

Learned model
fw(x) = w · �(x)Training

• Training data consists of images with labeled bounding boxes

• Need to learn the model structure, filters and deformation costs
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Learned model
fw(x) = w · �(x)Training

• Training data consists of images with labeled bounding boxes

• Need to learn the model structure, filters and deformation costs

Training

positive
weights

negative
weights

pos neg

L(w) = ||w||2 +
�

n2pos
max(0, 1� fw(xn)) +

�

n2neg
max(0, 1 + fw(xn))

L(w) = ||w||2 +
�

n

max(0, 1� ynfw(xn))

w · �(xn, zn)

zp = {zn : n ⌅ pos}

zn = argmax
z

w · �(xn, z) ⌃n ⌅ pos

w = argmin
w

L(w) with fixed {zn : n ⌅ pos}

L(w, {zn : n ⌅ pos})

S(X, Y ) =
�

i

wyi · xi +
�

i,j

wyi,yj · dij

S(X, Y ) = w · �(X, Y )

L(X) = argmax
Y

S(X, Y )

argmin
w

||w||2

s.t. ⌃n, ⌃Hn ⇧= Zn, w · �(Xn, Yn)� w · �(Xn, Hn) ⇤ 1

y⇤ = argmax
y

Sy(X) where y ⌅ {1 . . . K}

Sy(X) = max
Z

Sy(X,Z)

xt ⌅ ⇥

S(x) =
�

t

Local(xt) + Pair(xt, xt�1)

argmax
x1...xk

�

k

S(xk)

S(X, Y ) = w · �(X, Y )

2

{xn, yn}

argmin
w

||w||2 +
X

n

max(0, 1� ynw · xn)

argmin
w

||w||2 s.t. 8n, ynw · xn � 1

S(x, z) =
X

i

wi · �(x, zi) +
X

i,j�E

wij · ⇥(zi, zj)

⇥(zi, zj) =

2

664

dx
dx2

dy
dy2

3

775

⇥(zi, zj) =
⇥
dx dx2 dy dy2

⇤T

S(x, z) = w · �(x, z)

argmin
w

||w||2

s.t. 8n, 8hn 6= zn, w · �(xn, zn)� w · �(xn, hn) � 1

P (z|x) / eS(x,z)

fw(x) > 0

fw(x) = w · �(x)

fw(x) = max
z

w · �(x, z)

argmin ||w||2 (1)

s.t.8n 2 pos, max
z

w · �(x, z) � 1 (2)

8n 2 neg, 8zn, w · �(xn, zn)  1 (3)

argmin
w

||w||2 s.t. 8n, ynw · fw(xn) � 1

1



Latent SVMs

Given positive and negative training windows {xn}

 L(w) is “almost” convex

Learned model
fw(x) = w · �(x)Training

• Training data consists of images with labeled bounding boxes

• Need to learn the model structure, filters and deformation costs
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1) Given positive part locations, learn w with a convex program

L(w) = ||w||2 +
�

n2pos
max(0, 1� fw(xn)) +

�

n2neg
max(0, 1 + fw(xn))

L(w) = ||w||2 +
�

n

max(0, 1� ynfw(xn))

w · �(xn, zn)

zp = {zn : n ⌅ pos}

zn = argmax
z

w · �(xn, z) ⌃n ⌅ pos

w = argmin
w

L(w) with fixed {zn : n ⌅ pos}
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i
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y⇤ = argmax
y

Sy(X) where y ⌅ {1 . . . K}

Sy(X) = max
Z

Sy(X,Z)

xt ⌅ ⇥

S(x) =
�

t

Local(xt) + Pair(xt, xt�1)

argmax
x1...xk

�

k

S(xk)

S(X, Y ) = w · �(X, Y )

2

The above steps perform coordinate descent on a joint loss  
Can be seen as an instance of the CCCP algorithm (Yuille)

2) Given w,  estimate part locations on positives  

Coordinate descent
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y⇤ = argmax
y

Sy(X) where y ⌅ {1 . . . K}

Sy(X) = max
Z

Sy(X,Z)

xt ⌅ ⇥

S(x) =
�

t

Local(xt) + Pair(xt, xt�1)

argmax
x1...xk

�

k

S(xk)

S(X, Y ) = w · �(X, Y )
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Treat ground-truth labels 
as partially latentModel update

•Update positives 

-Apply current detector over all positions & scales

-Find best-scoring               that overlaps > 50% with 
ground truth positive bounding box

-Allows for automatic adjustment of b. box

•Collect negative              `s by finding high-scoring 
detections, cycling through negative training images

•Use              `s to train a new detector (w) with 
SVM-light (Joachims) 

•Repeat update 10 times

�(xi, zi)

�(xi, zi)

�(xi, zi)

Allows for “cleaning up” of noisy labels (in blue) during 
iterative learning



Example models

Figure 5. Some results from the PASCAL 2007 dataset. Each row shows detections using a model for a specific class (Person, Bottle, Car,
Sofa, Bicycle, Horse). The first three columns show correct detections while the last column shows false positives. Our system is able to
detect objects over a wide range of scales (such as the cars) and poses (such as the horses). The system can also detect partially occluded
objects such as a person behind a bush. Note how the false detections are often quite reasonable, for example detecting a bus with the car
model, a bicycle sign with the bicycle model, or a dog with the horse model. In general the part filters represent meaningful object parts
that are well localized in each detection such as the head in the person model.
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Example models

36

person

car

horse

sofa

bottle

cat

Fig. 10. Examples of high-scoring detections on the PASCAL 2007 dataset. The framed images (last two in each row) illustrate

false positives for each category. Many false positives (such as for person and cat) are due to the bounding box scoring criteria.
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False positive due to 
imprecise bounding box



Challenge 1:

Skeleton “Poselets”Patches

What are the right parts?

Are “computer graphics” primitives the right choice?



Challenge 2:
How to deal with long-tail distribution of part types?
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1800



Solution 1+2:  
latent hierarchical (or “deep”) models

subparts

objects

parts

Inference on such models requires layers of convolution and max-pooling

(we’ve almost derived a convolutional neural net)



Latent hierarchical models

S(x, z) =
X

i2V

wi · �(x, zi) +
X

ij2E

wij ·  (zi, zj)

Next lecture (deep models): define zin to be binary variable that specify if (sub)part i is found at location n



Parts: a look back

Recognition through reconstruction:

Sharing + synthesis: zero & one-shot learning for tails

latent-variable classification 

Representation learning: part discovery


