
Multiview stereo



Multi-view geometry



(i) Correspondence geometry: Given an image point x in the 
first view, how does this constrain the position of the 
corresponding point x’ in the second image? 

(ii) Camera geometry (motion): Given a set of corresponding 
image points {xi ↔x’i}, i=1,…,n, what are the cameras P and 
P’ for the two views? 

(iii) Scene geometry (structure): Given corresponding image 
points xi ↔x’i  and cameras P, P’, what is the position of (their 
pre-image) X in space? 

Three questions:



Stereo



Basic Stereo Algorithm

For each epipolar line
 For each pixel in the left image

• compare with every pixel on same epipolar line in right image

• pick pixel with minimum match cost

Improvement:  match windows 
• (Normalized) Correlation, Sum of Squared Difference (SSD), Sum of Absolute Differences (SAD), etc…



Triangulation for Rectified Stereo Pairs
Top-down view where world coordinates are centered between cameras

(X,Y,Z)
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1. Write down perspective projection equations 
2. Solve for (X,Y,Z) in terms of image coordinates, focal length, baseline
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Triangulation for Rectified Stereo Pairs
Top-down view where world coordinates are centered between cameras
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is the disparity between corresponding left and right image points

• disparity increases with baseline b• inverse proportional to depth Z

d = xL � xR =
bf

Z



Disparity Maps
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Recall: Stereo Disparity

Left camera

Right camera

Stereo Disparity

Important equation!
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Recall: Stereo Disparity

Important equation!

disparity

depth

Left camera

Right camera

Note: Depth and
stereo disparity are
inversely proportional 
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Stereo Example

Left Image Right Image

From Middlebury stereo evaluation page
http://www.middlebury.edu/stereo/
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Stereo Example

Disparity values (0-64)Left image

Right image

Note how disparity is larger
(brighter) for closer surfaces.

d = xL � xR =
bf

Z

If we double the size of scene geometry and baseline, what happens to disparity?



Numerical stability

How do we characterize the error in depth Z given an error in disparity d, in terms of scene + camera?

b/2
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bf

xL � xR
=
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d

Scene + camera variables: Z,f,b

Dependant variable: d = function(Z,f,b)

@Z

@d
= �bf

d2
= �Z2

bf

1. Error inversely proportional to baseline (larger baselines increase numerical stability) 
2. Error increases quadratically with depth (hard to reconstruct far away points

Z

d = xL � xR =
bf

Z



Disparity maps (in practice)

Small matching window Large matching window
(better localization) (better detection)



Variational stereo
Penalize differences in nearby disparities (a “1-d” flow problem!)

1. Linearlize Eintensity term and solve with least squares

min Eintensity + Esmoothu,v

Eintensity(d) =

Z Z
(I2(x+ d(x, y), y)� I1(x, y))

2
dxdy

E
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Recall: Stereo Disparity

Important equation!

disparity

depth

Left camera
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Note: Depth and
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Stereo Example

Left Image Right Image

From Middlebury stereo evaluation page
http://www.middlebury.edu/stereo/
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Stereo Example

Disparity values (0-64)Left image

Right image

Note how disparity is larger
(brighter) for closer surfaces.

2. Add robust error terms        to handle discontinuties ⇢(·)



image Iimage J

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H

estimate disparities

estimate disparities

upsample

. 

. 

.

Coarse-to-fine stereo



Discrete disparity estimation

E(z) =
X

i2V

�i(zi) +
X

ij2E

 ij(zi, zj)

z 2 {�5 . . . 5}

�i(zi) = ⇢(||I2(xi + zi, yi)� I(xi, yi)||)
 ij(zi, zj) = ⇢(zi � zj)

Solve with GraphCuts
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Disparity Space Image (DSI)
Left Image Right Image

Dissimilarity Values
(1-NCC) or SSD
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Disparity Space Image (DSI)
Left Image
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Enter each vector of
match scores as a 
column in the DSI
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that disparity >= low value
(0 in this case)
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However, I’m going to keep the full 
image around, including invalid values
(I think it is easier to understand the
pixel coordinates involved)

If we rearrange the diagonal 
band of valid values into a 
rectangular array (in this case
of size 64 x N), that is what is 
traditionally known as the DSI

coordinate in left scanline (e.g. N)

Disparity
(e.g. 64)

Disparity Space Image
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DSI and Scanline Consistency
Assigning disparities to all pixels in left scanline now 
amounts to finding a connected path through the DSIStart

End

Special case: single-scan-line consistency



Disparity Space Image (DSI)
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However, I’m going to keep the full 
image around, including invalid values
(I think it is easier to understand the
pixel coordinates involved)

If we rearrange the diagonal 
band of valid values into a 
rectangular array (in this case
of size 64 x N), that is what is 
traditionally known as the DSI

coordinate in left scanline (e.g. N)

Disparity
(e.g. 64)

Disparity Space Image
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DSI and Scanline Consistency
Assigning disparities to all pixels in left scanline now 
amounts to finding a connected path through the DSIStart

End



Representing the cost of all scanline 
correspondences
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Cox et.al. Stereo Matching 

matchOccluded
from left

Occluded
from right

Three cases:
– Matching patches.  Cost = dissimilarity score
– Occluded  from right.  Cost is some constant value.
– Occluded from left.  Cost is some constant value.

match
Occluded
from left

Occluded
from right

i-1,j-1 i-1,j

i,j-1 i,j

C(i,j)= min([ C(i-1,j-1) + dissimilarity(i,j) 
C(i-1,j) + occlusionConstant, 
C(i,j-1) + occlusionConstant]);
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Cox et.al. Stereo Matching

Recap: want to find lowest
cost path from upper left to
lower right of DSI image.

At each point on the path we
have three choices: step left,
step down, step diagonally.

Each choice has a well-defined
cost associated with it.

This problem just screams out for Dynamic Programming!
(which, indeed, is how Cox et.al. solve the problem)

End

Start
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Robert Collins

DP cost matrix
(cost of optimal path from each point to END)

DSI
Real Scanline Example

Every pixel in left column now is marked with
either a disparity value, or an occlusion label.

Proceed for every scanline in left image.
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Example

Result of DP alg.  Black pixels = occluded.

Result of DP alg Result without DP (independent pixels)
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Occlusion Filling
Simple trick for filling in gaps caused by occlusion.

= left occluded

Fill in left occluded pixels with value from the 
nearest valid pixel preceding it in the scanline.

Similarly, for right occluded, look for valid pixel to the right.
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Example

Result of DP alg with occlusion filling. 



Ordering Constraint
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Constraints on Path

It is common to impose an ordering constraint
on the path.  Intuitively, the path is not allowed
to “double back” on itself.
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Dealing with Occlusions

… …
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Dealing with Occlusions

… …
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Match
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MatchOccluded from
right scanline

Occluded from
left scanline
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An Optimal Scanline Strategy

• We want to find best path, taking into
account ordering constraint and the
possibility of occlusions.

Algorithm we will discuss now is from
Cox, Hingorani, Rao, Maggs, “A Maximum
Likelihood Stereo Algorithm,” Computer
Vision and Image Understanding, Vol 63(3), 
May 1996, pp.542-567.

Correspondences should respect left to right order



…most of the time!
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An Optimal Scanline Strategy

• We want to find best path, taking into
account ordering constraint and the
possibility of occlusions.

Algorithm we will discuss now is from
Cox, Hingorani, Rao, Maggs, “A Maximum
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Vision and Image Understanding, Vol 63(3), 
May 1996, pp.542-567.
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An Optimal Scanline Strategy

• We want to find best path, taking into
account ordering constraint and the
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Algorithm we will discuss now is from
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However, I’m going to keep the full 
image around, including invalid values
(I think it is easier to understand the
pixel coordinates involved)

If we rearrange the diagonal 
band of valid values into a 
rectangular array (in this case
of size 64 x N), that is what is 
traditionally known as the DSI

coordinate in left scanline (e.g. N)

Disparity
(e.g. 64)

Disparity Space Image
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DSI and Scanline Consistency
Assigning disparities to all pixels in left scanline now 
amounts to finding a connected path through the DSIStart

End
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Cox et.al. Stereo Matching 

matchOccluded
from left

Occluded
from right

Three cases:
– Matching patches.  Cost = dissimilarity score
– Occluded  from right.  Cost is some constant value.
– Occluded from left.  Cost is some constant value.

match
Occluded
from left

Occluded
from right

i-1,j-1 i-1,j

i,j-1 i,j

C(i,j)= min([ C(i-1,j-1) + dissimilarity(i,j) 
C(i-1,j) + occlusionConstant, 
C(i,j-1) + occlusionConstant]);
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Cox et.al. Stereo Matching

Recap: want to find lowest
cost path from upper left to
lower right of DSI image.

At each point on the path we
have three choices: step left,
step down, step diagonally.

Each choice has a well-defined
cost associated with it.

This problem just screams out for Dynamic Programming!
(which, indeed, is how Cox et.al. solve the problem)

End

Start
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DP cost matrix
(cost of optimal path from each point to END)

DSI
Real Scanline Example

Every pixel in left column now is marked with
either a disparity value, or an occlusion label.

Proceed for every scanline in left image.

CSE486, Penn State
Robert Collins

Example

Result of DP alg.  Black pixels = occluded.

Result of DP alg Result without DP (independent pixels)
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Occlusion Filling
Simple trick for filling in gaps caused by occlusion.

= left occluded

Fill in left occluded pixels with value from the 
nearest valid pixel preceding it in the scanline.

Similarly, for right occluded, look for valid pixel to the right.
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Example

Result of DP alg with occlusion filling. 
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Cox et.al. Stereo Matching

Recap: want to find lowest
cost path from upper left to
lower right of DSI image.

At each point on the path we
have three choices: step left,
step down, step diagonally.

Each choice has a well-defined
cost associated with it.

This problem just screams out for Dynamic Programming!
(which, indeed, is how Cox et.al. solve the problem)

End
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DP cost matrix
(cost of optimal path from each point to END)

DSI
Real Scanline Example

Every pixel in left column now is marked with
either a disparity value, or an occlusion label.

Proceed for every scanline in left image.
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Example

Result of DP alg.  Black pixels = occluded.

Result of DP alg Result without DP (independent pixels)
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Occlusion Filling
Simple trick for filling in gaps caused by occlusion.

= left occluded

Fill in left occluded pixels with value from the 
nearest valid pixel preceding it in the scanline.

Similarly, for right occluded, look for valid pixel to the right.
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Example

Result of DP alg with occlusion filling. 

Claim: scanline correpondences with occlusions can be represented as paths in DSI

Let us score the cost of a path as sum of correspondence matching costs + occlusion costs

Best scanline correspondence = least-cost path



Compute partial scanline costs
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At each point on the path we
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Each choice has a well-defined
cost associated with it.

This problem just screams out for Dynamic Programming!
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Occlusion Filling
Simple trick for filling in gaps caused by occlusion.

= left occluded

Fill in left occluded pixels with value from the 
nearest valid pixel preceding it in the scanline.

Similarly, for right occluded, look for valid pixel to the right.
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Example

Result of DP alg with occlusion filling. 
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Want one with lowest “cost” (Lowest sum of
dissimilarity scores along the path)

We would like to choose the “best” path.
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Constraints on Path

It is common to impose an ordering constraint
on the path.  Intuitively, the path is not allowed
to “double back” on itself.
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Dealing with Occlusions
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An Optimal Scanline Strategy

• We want to find best path, taking into
account ordering constraint and the
possibility of occlusions.

Algorithm we will discuss now is from
Cox, Hingorani, Rao, Maggs, “A Maximum
Likelihood Stereo Algorithm,” Computer
Vision and Image Understanding, Vol 63(3), 
May 1996, pp.542-567.
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However, I’m going to keep the full 
image around, including invalid values
(I think it is easier to understand the
pixel coordinates involved)

If we rearrange the diagonal 
band of valid values into a 
rectangular array (in this case
of size 64 x N), that is what is 
traditionally known as the DSI

coordinate in left scanline (e.g. N)

Disparity
(e.g. 64)

Disparity Space Image
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DSI and Scanline Consistency
Assigning disparities to all pixels in left scanline now 
amounts to finding a connected path through the DSIStart

End
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Cox et.al. Stereo Matching 

matchOccluded
from left

Occluded
from right

Three cases:
– Matching patches.  Cost = dissimilarity score
– Occluded  from right.  Cost is some constant value.
– Occluded from left.  Cost is some constant value.

match
Occluded
from left

Occluded
from right

i-1,j-1 i-1,j

i,j-1 i,j

C(i,j)= min([ C(i-1,j-1) + dissimilarity(i,j) 
C(i-1,j) + occlusionConstant, 
C(i,j-1) + occlusionConstant]);

CSE486, Penn State
Robert Collins

Cox et.al. Stereo Matching

Recap: want to find lowest
cost path from upper left to
lower right of DSI image.

At each point on the path we
have three choices: step left,
step down, step diagonally.

Each choice has a well-defined
cost associated with it.

This problem just screams out for Dynamic Programming!
(which, indeed, is how Cox et.al. solve the problem)

End

Start

CSE486, Penn State
Robert Collins

DP cost matrix
(cost of optimal path from each point to END)

DSI
Real Scanline Example

Every pixel in left column now is marked with
either a disparity value, or an occlusion label.

Proceed for every scanline in left image.

CSE486, Penn State
Robert Collins

Example

Result of DP alg.  Black pixels = occluded.

Result of DP alg Result without DP (independent pixels)

CSE486, Penn State
Robert Collins

Occlusion Filling
Simple trick for filling in gaps caused by occlusion.

= left occluded

Fill in left occluded pixels with value from the 
nearest valid pixel preceding it in the scanline.

Similarly, for right occluded, look for valid pixel to the right.

CSE486, Penn State
Robert Collins

Example

Result of DP alg with occlusion filling. 

Each pixel in DSI is now marked with a disparity value or occlusion label
In practice, enforce upper bound on disparity by computing diagonal band of DSI
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from right

Three cases:
– Matching patches.  Cost = dissimilarity score
– Occluded  from right.  Cost is some constant value.
– Occluded from left.  Cost is some constant value.
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Occluded
from left

Occluded
from right
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C(i,j)= min([ C(i-1,j-1) + dissimilarity(i,j) 
C(i-1,j) + occlusionConstant, 
C(i,j-1) + occlusionConstant]);
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Cox et.al. Stereo Matching

Recap: want to find lowest
cost path from upper left to
lower right of DSI image.

At each point on the path we
have three choices: step left,
step down, step diagonally.

Each choice has a well-defined
cost associated with it.

This problem just screams out for Dynamic Programming!
(which, indeed, is how Cox et.al. solve the problem)

End

Start

CSE486, Penn State
Robert Collins

DP cost matrix
(cost of optimal path from each point to END)

DSI
Real Scanline Example

Every pixel in left column now is marked with
either a disparity value, or an occlusion label.

Proceed for every scanline in left image.

CSE486, Penn State
Robert Collins

Example

Result of DP alg.  Black pixels = occluded.

Result of DP alg Result without DP (independent pixels)

CSE486, Penn State
Robert Collins

Occlusion Filling
Simple trick for filling in gaps caused by occlusion.

= left occluded

Fill in left occluded pixels with value from the 
nearest valid pixel preceding it in the scanline.

Similarly, for right occluded, look for valid pixel to the right.

CSE486, Penn State
Robert Collins

Example

Result of DP alg with occlusion filling. 



Stereo evaluation: http://vision.middlebury.edu/stereo/  



Stereo—best algorithms



Multiview stereo

• stereo / dynamic programming 

• active illumination 

• volumetric models / visiblity reasoning 

• patch-based methods



Hard part: find matching points

If patches look distinctive, they’ll be easy to match 
But lots of patches are not distinctive
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Trick: use a projector to project a 
distinctive appearance 

Active stereo with structured light 

•  Project �structured� light patterns onto the object 
– Simplifies the correspondence problem 
– Allows us to use only one camera 
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Active stereo with structured light 

•  Project �structured� light patterns onto the object 
– Simplifies the correspondence problem 
– Allows us to use only one camera 
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Use projector as camera
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Infrared filter



Spatially-varying speckle 
patterns

QR code



General approach: active illumination

Active stereo with structured light 

RF'qC,#0W'/F'I5.6$<<W',#2'DF'4F'D$"&QF'
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L.90.,--"#0F'@ABC;'effe' D6"2$'%.$2"&E'DF'D$"&Q'

Search along epipolar line to find right color

Project an instantaneous pattern for which its easy to find correspondences



Kinect

Why do we see “holes” around object borders? 
Why can’t you use kinect outdoors? 

Why can’t you use two kinects in the same room?



Outdoor kinect

Episcan sensor, CMU



Episcan scanner

Homogeneous Codes for Energy-Efficient Illumination and Imaging

Matthew O’Toole
University of Toronto

Supreeth Achar
Carnegie Mellon University

Srinivasa G. Narasimhan
Carnegie Mellon University

Kiriakos N. Kutulakos
University of Toronto

(a) (b) (c) (d)

Figure 1: Imagine trying to acquire live video (30fps) of structured-light patterns as they are being projected onto a compact fluorescent
bulb that has already been turned on (rated 1600 Lumens), or onto a face in bright sunlight (80 kLux)—with a 5-Lumen projector. One of our
two prototypes, shown in (a), achieves this with an off-the-shelf laser projector and a CMOS camera with an ordinary lens. We then used it
to capture the video frames in (b) and (c). We also show how to use our prototype to generate a live video feed from the projector’s—rather
than the camera’s—point of view, shown in (d).

Abstract

Programmable coding of light between a source and a sensor has led
to several important results in computational illumination, imaging
and display. Little is known, however, about how to utilize en-
ergy most effectively, especially for applications in live imaging.
In this paper, we derive a novel framework to maximize energy ef-
ficiency by “homogeneous matrix factorization” that respects the
physical constraints of many coding mechanisms (DMDs/LCDs,
lasers, etc.). We demonstrate energy-efficient imaging using two
prototypes based on DMD and laser illumination. For our DMD-
based prototype, we use fast local optimization to derive codes that
yield brighter images with fewer artifacts in many transport prob-
ing tasks. Our second prototype uses a novel combination of a low-
power laser projector and a rolling shutter camera. We use this
prototype to demonstrate never-seen-before capabilities such as (1)
capturing live structured-light video of very bright scenes—even
a light bulb that has been turned on; (2) capturing epipolar-only
and indirect-only live video with optimal energy efficiency; (3) us-
ing a low-power projector to reconstruct 3D objects in challenging
conditions such as strong indirect light, strong ambient light, and
smoke; and (4) recording live video from a projector’s—rather than
the camera’s—point of view.

CR Categories: I.4.1 [Image Processing and Computer Vision]:
Digitization and Image Capture—Imaging geometry, radiometry

Keywords: energy efficiency, low-power imaging, coded illumi-
nation, coded exposure, computational photography, 3D scanning

1 Introduction

When we capture an image under controlled lighting, the power
of the light source matters a lot: all things being equal, brighter
sources will send more photons to the sensor during an exposure,
producing a brighter and less noisy image. The brightness of the
source, however, is just one way to control how much light reaches
the sensor of a computational imaging system. Modern systems
use an arrangement of devices to transport light from a source to
the scene (or from the scene to sensor) and these devices are often
programmable—galvanometers [Mertz et al. 2012], digital micro-
mirror devices [Nayar et al. 2004; Hitomi et al. 2011], liquid-crystal
panels [Raskar et al. 2006], phase modulators [Damberg and Hei-
drich 2015], etc. This brings up a natural question: how should
we program the spatio-temporal behavior of these devices to maxi-
mize an arrangement’s energy efficiency, i.e., the energy that can be
transmitted from the source to the sensor for a given imaging task,
power, and exposure time?

Studies of this problem began in the 1960s for the special case of
arrangements with just three “active” components: a light source
that is always turned on, a light-blocking mask that is controlled
by a binary code, and a sensor [Ibbett et al. 1968; Decker and Har-
wit 1969]. The optimal sequence of codes for this case is derived
from the Hadamard matrix [Harwit and Sloane 1979] and enjoys
widespread use [Schechner et al. 2007], mainly because most con-
ventional computational imaging systems are arranged this way.

Despite the ubiquity of these arrangements, two general princi-
ples have emerged in recent years. On one hand, masks are in-
efficient because they waste energy whenever they block a pho-
ton [Hoskinson et al. 2010]. On the other hand, masks confer
unique abilities when arranged in layers along an optical path and
programmed to change repeatedly in a single exposure. This is be-
cause photons can be blocked far more selectively this way, en-
abling light field displays [Lanman et al. 2010; Wetzstein et al.
2012], indirect-only photography [O’Toole et al. 2012], and several
other imaging functionalities [O’Toole et al. 2014].

Unfortunately, neither the original Hadamard multiplexing theory
nor its recent extensions [Cossairt et al. 2012; Mitra et al. 2014a;
Mitra et al. 2014b] apply to multi-layer arrangements, or to ar-
rangements that avoid masks altogether (e.g., laser-based projec-
tors [Damberg et al. 2014; Gupta et al. 2013]). As a result, the
problem of computing energy-efficient codes for multi-layer ar-



Multiview stereo

• stereo / dynamic programming 

• active illumination 

• volumetric models / visiblity reasoning 

• patch-based methods



Dense multi view stereo

• Reconstruct the 3D position of the points corresponding to 
(all the) pixels in a set of images. 

• Key assumption: We know the relative position, 
orientation, K, of all the cameras. 

• Number of cameras >> 2

?



Trinocular stereo (version 0)

Version 1: generalize 3x3 fundmamental matrix to a 3x3x3 trifocal tensor
(constraints points and lines across 3 images)

1. Pick 2 views, find correspondences 
2. For each matching pair, reconstruct 3D point  
3. If can’t find correspondence near projected location, reject

Why More Than 2 Views? 

• Ambiguity with 2 views 

Camera 1 Camera 2 

? 

? 

Why More Than 2 Views? 

• Ambiguity with 2 views 

Camera 1 Camera 2 Camera 3 

ü  



Multiview stereo (version 0)

Multibaseline Stereo Reconstruction 

-Pick one reference view 
-For each point and for each candidate depth

• keep depths with low SSD error in all other views
Multibaseline Stereo 

Multibaseline Stereo 
Multibaseline Stereo 

Multibaseline Stereo 

Problem: not all points are visible in all other views (occlusion and visibility major nuisance!)

(or any photoconsistency measure)



Multiview stereo (version 1)
Hypothesize depths in a “smart” order where occluding points are found first

Use knowledge of occluding points to smartly select view for photoconsistency check

Voxel Coloring Sweep Order 

 
 

 

Layers 

Scene 
Traversal 

Seitz Store photoconsistent color in a 3D voxel grid (don’t need a reference image)

Reconstuct shape and appearance



Plane-sweep stereo (version 2)
Sweep over voxel plane-by-plane, starting closest-to-front

Voxel Coloring Sweep Order 

 
 

 

Layers 

Scene 
Traversal 

Seitz 
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Plane Induced Parallax

� Determine homography of a plane
– Remaining differences reflect depth from plane
– Flat surfaces like in sporting events

31

Plane Induced Parallax

� Determine homography of a plane
– Remaining differences reflect depth from plane
– Flat surfaces like in sporting events

Quickly validate voxels in a plane by computing their appearance in a virtual view using all N cameras

What is the transformation that warps image N to virtual view?



Recent work: deep stereo

D Selection 
masks

Selection Tow
er

C
olor Tow

er

∑
⊗

⊗

D combined 
color images⊗

Network Output

Figure 3: The basic architecture of our network, with selec-
tion and color towers. The final output image is produced by
element-wise multiplication of the selection and color tower
outputs and then computing the sum over the depth planes.
Fig. 6 shows the full network details.

e.g., a simple average, but learns to optimally combine
the source pixels using training data.

The two towers in our network correspond to these two tasks:
the selection tower produces a probability map (or selection
map) for each depth indicating the likelihood of each pixel
having that depth. The color tower produces a full color
output image for each depth; one can think of this tower
as producing the best color it can for each depth, assuming
that the depth is the correct one. These D color images are
then combined as a per-pixel weighted sum with weights
drawn from the selection maps: the selection maps decide
on the best color layers to use for each output pixel. This
simple new approach to view synthesis has several attractive
properties. For instance, we can learn all of the parameters of
both towers simultaneously, end-to-end using deep learning
methods. The weighted averaging across color layers also
yields some resilience to uncertainty—regions where the
algorithm is not confident tend to be blurred out, rather than
being filled with warped or distorted input pixels.

More formally, the selection tower computes, for each
pixel pi,j , in each plane Pz , the selection probability si,j,z
for the pixel being at that depth. The color tower computes
for each pixel pi,j in each plane Pz the color ci,j,z for the
pixel at that plane. The final output color for each pixel is
computed as a weighted summation over the output color
planes, weighted by the selection probability (Fig. 3):

cfi,j =
X

si,j,z ci,j,z. (1)

The input to each tower is the set of plane sweep volumes
V k
C (consisting of N ⇥D reprojected images in total over

all volumes, where N is the number of source images, and
D the number of depth planes). The first layer of each
tower operates on each reprojected image P i

k independently,
allowing it to learn low-level image features. After the first

D Selection 
masks

⩉
⩉

2D conv 
+ Relu

2D conv 
+ Relu

Reprojected 
Images at a 
single depth

D input planes

Input Output

2D conv 
+ Relu

Shared 
Weights

 C
onv ReLu connected across 
planes + tanh Reconstruct

Softm
ax norm

alization

Stage 1 Stage 2

Figure 4: The selection tower learns to produce a selection
probability si,j,z for each pixel pi,j in each depth plane Pz .
The first 2D layer operates on the individual reprojected im-
ages. Subsequent layers operate on the concatenated features
per depth plane.

layer, the feature maps corresponding to the N sources are
concatenated per depth plane, and subsequent layers operate
on these per-depth-plane feature maps. The final layers of
the selection tower additionally use connections across depth
planes.

The selection tower. The selection tower (Fig. 4) consists
of two main stages. The early layers, as discussed, consist
of a number of 2D convolutional rectified linear layers that
share weights across all depth planes (and within a depth
plane for the first layer). Intuitively, the early layers will
compute features that are independent of depth, such as pixel
differences, so their weights can be shared. The final set of
layers are connected across depth planes in order to model
interactions between depth planes, such as those caused by
occlusion (e.g., when both a near and far depth plane have
high scores, the network might learn to prefer the near depth
because it would occlude the background). The final layer of
the network is a per-pixel softmax normalization transformer
over depth. The softmax transformer encourages the model
to pick a single depth plane per pixel, whilst ensuring that
the sum over all depth planes is 1. We found that using a
tanh activation for the penultimate layer gives more stable
training than the more natural choice of a linear layer. In our
experiments the linear layer would often “shut down” certain
depth planes1 and never recover, presumably due to large
gradients from the softmax layer. The output of the selection
tower is a 3D volume of single-channel nodes si,j,z wherePD

z=1 si,j,z = 1 for all pixels i, j.

The color tower. The color tower (Fig. 5) is simpler and
consists of only 2D convolutional rectified linear layers that
share weights across all planes, followed by a linear recon-
struction layer. Occlusion effects are not relevant for the
color layer so no across-depth interaction is needed. The

1The depth planes would receive zero weight for all inputs and pixels.

Train deep network select pixel from 1 of K depth planes
(At each pixel, output 1 of K classes)
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DeepStereo: Learning to Predict New Views from the World’s Imagery
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Abstract

Deep networks have recently enjoyed enormous success
when applied to recognition and classification problems in
computer vision, but their use in graphics problems has been
limited. In this work, we present a novel deep architecture
that performs new view synthesis directly from pixels, trained
from a large number of posed image sets. In contrast to
traditional approaches, which consist of multiple complex
stages of processing, each of which requires careful tuning
and can fail in unexpected ways, our system is trained end-
to-end. The pixels from neighboring views of a scene are
presented to the network, which then directly produces the
pixels of the unseen view. The benefits of our approach
include generality (we only require posed image sets and
can easily apply our method to different domains), and high
quality results on traditionally difficult scenes. We believe
this is due to the end-to-end nature of our system, which is
able to plausibly generate pixels according to color, depth,
and texture priors learnt automatically from the training
data. We show view interpolation results on imagery from the
KITTI dataset, from prior datasets used for view synthesis,
and on Google Street View images. To our knowledge, our
work is the first to apply deep learning to the problem of new
view synthesis from sets of real-world, natural imagery.

1. Introduction

Estimating 3D shape from multiple posed images is a
fundamental task in computer vision and graphics, both as
an aid to image understanding and as a way to generate 3D
representations of scenes that can be rendered and edited. In
this work, we aim to solve the related problem of new view
synthesis, a form of image-based rendering (IBR) where the
goal is to synthesize a new view of a scene by warping and
combining images from nearby viewpoints. This capability
can be used for applications such as cinematography, virtual
reality, teleconferencing [4], image stabilization [21], or 3-
dimensionalizing monocular film footage.

⇤Contributed while at Google.

Figure 1: The top image was synthesized from several input
panoramas. A portion of four of the inputs is shown on the
bottom row.

New view synthesis is an extremely challenging, under-
constrained problem. An exact solution would require full
knowledge of all visible geometry and materials in the un-
seen view, which is in general unavailable due to occlusions,
limited measurements of material properties, and so on. Ad-
ditionally, visible surfaces may have ambiguous geometry
due to a lack of texture. As a result, high-quality IBR meth-
ods typically require strong priors to fill in pixels where the
geometry is uncertain, or when the target color is unknown
due to occlusions.

The majority of existing techniques for IBR involve tra-
ditional multi-view stereo and/or image warping methods,
and often explicitly model the depth, color, and occlusion
components of each target pixel [39, 1]. A key problem with
such approaches is that they are prone to generating unrealis-
tic and jarring rendering artifacts in the new view, including
tearing around occluders, elimination of fine structures, and
aliasing. Handling complex, self-occluding (yet commonly
seen) objects such as trees is particularly challenging for
traditional approaches. Interpolating between wide baseline

1



Voxel coloring



Voxel Coloring Camera Positions 

Inward-looking 
Cameras above scene 

Outward-looking 
Cameras inside scene 

Seitz 

What about other camera steups?

Voxel Coloring Camera Positions 

Inward-looking 
Cameras above scene 

Outward-looking 
Cameras inside scene 

Seitz 



Panoramic depth ordering

Layers radiate inwardly/outwardly

Panoramic Depth Ordering 

Seitz 
Layers radiate outwards from cameras 

Seitz & Dyer



Space carving
Kutulakos & SeitzSpace Carving 

  

Image 1 Image N 

…... 

Initialize to a volume V containing the true scene 

Repeat until convergence 

Choose a voxel on the current surface 

Carve if not photo-consistent 
Project to visible input images 

Kutulakos & Seitz 

1. Initialize voxel grid to all ‘1’s
2. Repeatedly choose a voxel on current surface:

Project to visible images 

Carve out if not photoconsistent

Very simply algorithm:



Convergence

Consistency Property 
• The resulting shape is photo-consistent 

> all inconsistent points are removed 

Convergence Property 
• Carving converges to a non-empty shape 

> a point on the true scene is never removed



Calibrated Image Acquisition

Calibrated Turntable 
360° rotation (21 images)

Selected Dinosaur Images

Selected Flower Images



Voxel Coloring Results

Dinosaur Reconstruction 
72 K  voxels colored 
7.6 M voxels tested 
7 min. to compute  
on a 250MHz SGI 

Flower Reconstruction 
70 K  voxels colored 
7.6 M voxels tested 
7 min. to compute  
on a 250MHz SGI 



21 images      21 images

16 images   99 images



Silhoette carving

Silhouette Carving 

• Find silhouettes in all images 

• Exact version: 
– Back-project all silhouettes, find intersection 

Binary Images 

Silhouette Carving 

• Find silhouettes in all images 

• Exact version: 
– Back-project all silhouettes, find intersection 

Backproject binary silhouettes and find intersection
In limit of infinite cameras, this will produce convex hull reconstruction of object



Multiview stereo

• stereo / dynamic programming 

• active illumination 

• volumetric models / visiblity reasoning 

• patch-based methods



Long-standing leader

Patch-based Multiview Stereo (PMVS) 

Extent
Position

Normal

Mesh Patch

Easier to approximate 
surface by dense set of 
local planar patches
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Accurate, Dense, and Robust Multi-View Stereopsis
Yasutaka Furukawa and Jean Ponce, Fellow, IEEE

Abstract—This article proposes a novel algorithm for multi-
view stereopsis that outputs a dense set of small rectangular
patches covering the surfaces visible in the images. Stereopsis is
implemented as a match, expand, and filter procedure, starting
from a sparse set of matched keypoints, and repeatedly ex-
panding these before using visibility constraints to filter away
false matches. The keys to the performance of the proposed
algorithm are effective techniques for enforcing local photometric
consistency and global visibility constraints. Simple but effective
methods are also proposed to turn the resulting patch model into
a mesh which can be further refined by an algorithm that enforces
both photometric consistency and regularization constraints. The
proposed approach automatically detects and discards outliers
and obstacles, and does not require any initialization in the form
of a visual hull, a bounding box, or valid depth ranges. We
have tested our algorithm on various datasets including objects
with fine surface details, deep concavities, and thin structures,
outdoor scenes observed from a restricted set of viewpoints, and
“crowded” scenes where moving obstacles appear in front of
a static structure of interest. A quantitative evaluation on the
Middlebury benchmark [1] shows that the proposed method
outperforms all others submitted so far for four out of the six
datasets.

Index Terms—Computer vision, 3D/stereo scene analysis, mod-
eling and recovery of physical attributes, motion, shape.

I. INTRODUCTION

MULTI-view stereo (MVS) matching and reconstruction is
a key ingredient in the automated acquisition of geometric

object and scene models from multiple photographs or video clips,
a process known as image-based modeling or 3D photography.
Potential applications range from the construction of realistic
object models for the film, television, and video game industries,
to the quantitative recovery of metric information (metrology) for
scientific and engineering data analysis. According to a recent sur-
vey provided by Seitz et al. [2], state-of-the-art MVS algorithms
achieve relative accuracy better than 1/200 (1mm for a 20cm wide
object) from a set of low-resolution (640×480) images. They can
be roughly classified into four classes according to the underlying
object models: Voxel-based approaches [3], [4], [5], [6], [7], [8],
[9] require knowing a bounding box that contains the scene, and
their accuracy is limited by the resolution of the voxel grid.
Algorithms based on deformable polygonal meshes [10], [11],
[12] demand a good starting point—for example, a visual hull
model [13]—to initialize the corresponding optimization process,
which limits their applicability. Approaches based on multiple
depth maps [14], [15], [16] are more flexible, but require fusing
individual depth maps into a single 3D model. Finally, patch-
based methods [17], [18] represent scene surfaces by collections
of small patches (or surfels). They are simple and effective, and
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often suffice for visualization purposes via point-based rendering
technique [19], but require a post-processing step to turn them
into a mesh model that is more suitable for image-based modeling
applications. 1
MVS algorithms can also be thought of in terms of the datasets

they can handle, for example images of
• objects, where a single, compact object is usually fully visible
in a set of uncluttered images taken from all around it, and it is
relatively straightforward to extract the apparent contours of the
object and compute its visual hull;
• scenes, where the target object(s) may be partially occluded
and/or embedded in clutter, and the range of viewpoints may be
severely limited, preventing the computation of effective bounding
volumes (typical examples are outdoor scenes with buildings,
vegetation, etc.); and
• crowded scenes, where moving obstacles appear in different
places in multiple images of a static structure of interest (e.g.,
people passing in front of a building).
The underlying object model is an important factor in determin-

ing the flexibility of an approach, and voxel-based or polygonal
mesh-based methods are often limited to object datasets, for
which it is relatively easy to estimate an initial bounding volume
or often possible to compute a visual hull model. Algorithms
based on multiple depth maps and collections of small surface
patches are better suited to the more challenging scene datasets.
Crowded scenes are even more difficult. Strecha et al. [15] use
expectation maximization and multiple depth maps to reconstruct
a crowded scene despite the presence of occluders, but their
approach is limited to a small number of images (typically three)
as the complexity of their model is exponential in the number of
input images. Goesele et al. [21] have also proposed an algorithm
to handle internet photo collections containing obstacles and
produce impressive results with a clever view selection scheme.
In this paper, we take a hybrid approach that is applicable to

all three types of input data. More concretely, we first propose a
flexible patch-based MVS algorithm that outputs a dense collec-
tion of small oriented rectangular patches, obtained from pixel-
level correspondences and tightly covering the observed surfaces
except in small textureless or occluded regions. The proposed
algorithm consists of a simple match, expand, and filter procedure
(Fig. 1): (1) matching: features found by Harris and difference-
of-Gaussians operators are first matched across multiple pictures,
yielding a sparse set of patches associated with salient image
regions. Given these initial matches, the following two steps are
repeated n times (n= 3 in all our experiments); (2) expansion: a
technique similar to [17], [18], [22], [23], [24] is used to spread
the initial matches to nearby pixels and obtain a dense set of
patches; (3) filtering: visibility (and a weak form of regulariza-
tion) constraints are then used to eliminate incorrect matches.
Although our patch-based algorithm is similar to the method

1A patch based surface representation is also used in [20], but in a context
of scene flow capture.
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Fig. 1. Overall approach. From left to right: A sample input image; detected features; reconstructed patches after the initial matching; final patches after
expansion and filtering; and the mesh model.

proposed by Lhuillier and Quan [17], it replaces their greedy
expansion procedure by iteration between expansion and filtering
steps, which allows us to process complicated surfaces and reject
outliers more effectively. Optionally, the resulting patch model
can be turned into a triangulated mesh by simple but efficient
techniques, and this mesh can be further refined by a mesh based
MVS algorithm that enforces the photometric consistency with
regularization constraints. The additional computational cost of
the optional step is balanced by the even higher accuracy it af-
fords. Our algorithm does not require any initialization in the form
of a visual hull model, a bounding box, or valid depth ranges.
In addition, unlike many other methods that basically assume
fronto-parallel surfaces and only estimate the depth of recovered
points, it actually estimates the surface orientation while enforcing
the local photometric consistency, which is important in practice
to obtain accurate models for datasets with sparse input images
or without salient textures. As shown by our experiments, the
proposed algorithm effectively handles the three types of data
mentioned above, and, in particular, it outputs accurate object
and scene models with fine surface detail despite low-texture
regions, large concavities, and/or thin, high-curvature parts. A
quantitative evaluation on the Middlebury benchmark [1] shows
that the proposed method outperforms all others submitted so far
in terms of both accuracy and completeness for four out of the
six datasets.
The rest of this article is organized as follows: Section II

presents the key building blocks of the proposed approach. Sec-
tion III presents our patch-based MVS algorithm, and Section IV
describes how to convert a patch model into a mesh and our
polygonal mesh-based refinement algorithm. Experimental results
and discussion are given in Section V, and Section VI concludes
the paper with some future work. The implementation of the
patch-based MVS algorithm (PMVS) is publicly available at [25].
A preliminary version of this article appeared in [26].

II. KEY ELEMENTS OF THE PROPOSED APPROACH

The proposed approach can be decomposed into three steps: a
patch-based MVS algorithm that is the core reconstruction step
in our approach and reconstructs a set of oriented points (or
patches) covering the surface of an object or a scene of interests;
the conversion of the patches into a polygonal mesh model; and
finally a polygonal-mesh based MVS algorithm that refines the
mesh. In this section, we introduce a couple of fundamental
building blocks of the patch-based MVS algorithm, some of which
are also used in our mesh refinement algorithm.

p

c(p)

n(p)
(µ=5)

p

I1 I2

q(p,I1) q(p,I2)
h(p,I1,I2)
discrepancy

function

Fig. 2. Left: a patch p is a (3D) rectangle with its center and normal
denoted as c(p) and n(p), respectively. Right: the photometric discrepancy
f (p,I1,I2) of a patch is given by one minus the normalized cross correlation
score between sets q(p,Ii) of sampled pixel colors. See text for the details.

A. Patch Model
A patch p is essentially a local tangent plane approximation of

a surface. Its geometry is fully determined by its center c(p), unit
normal vector n(p) oriented toward the cameras observing it, and
a reference image R(p) in which p is visible (See Fig. 2). More
concretely, a patch is a (3D) rectangle, which is oriented so that
one of its edges is parallel to the x-axis of the reference camera
(the camera associated with R(p)). The extent of the rectangle is
chosen so that the smallest axis-aligned square in R(p) containing
its image projection is of size µ×µ pixels in size (µ is either 5
or 7 in all of our experiments).

B. Photometric Discrepancy Function
Let V (p) denote a set of images in which p is visible (see

Sect. III on how to estimate V (p) and choose the reference image
R(p) ∈V (p)). The photometric discrepancy function g(p) for p
is defined as

g(p) =
1

|V (p)\R(p)| ∑
I∈V (p)\R(p)

h(p, I,R(p)), (1)

where h(p, I1, I2) is, in turn, defined to be a pairwise photometric
discrepancy function between images I1 and I2. More concretely
(see Fig. 2), given a pair of visible images I1 and I2, h(p, I1, I2) is
computed by 1) overlaying a µ×µ grid on p; 2) sampling pixel
colors q(p, Ii) through bilinear interpolation at image projections
of all the grid points in each image Ii; 2 and 3) computing one
minus the normalized cross correlation score between q(p, I1) and
q(p, I2). 3

2We have also tried bicubic interpolation but have not observed noticeable
differences.
3See [27] for an example of other photometric discrepancy functions.

Find sparse matches over pairs of images (using interest points + matching)
Triangulate to find sparse 3D points {p}
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Fig. 1. Overall approach. From left to right: A sample input image; detected features; reconstructed patches after the initial matching; final patches after
expansion and filtering; and the mesh model.

proposed by Lhuillier and Quan [17], it replaces their greedy
expansion procedure by iteration between expansion and filtering
steps, which allows us to process complicated surfaces and reject
outliers more effectively. Optionally, the resulting patch model
can be turned into a triangulated mesh by simple but efficient
techniques, and this mesh can be further refined by a mesh based
MVS algorithm that enforces the photometric consistency with
regularization constraints. The additional computational cost of
the optional step is balanced by the even higher accuracy it af-
fords. Our algorithm does not require any initialization in the form
of a visual hull model, a bounding box, or valid depth ranges.
In addition, unlike many other methods that basically assume
fronto-parallel surfaces and only estimate the depth of recovered
points, it actually estimates the surface orientation while enforcing
the local photometric consistency, which is important in practice
to obtain accurate models for datasets with sparse input images
or without salient textures. As shown by our experiments, the
proposed algorithm effectively handles the three types of data
mentioned above, and, in particular, it outputs accurate object
and scene models with fine surface detail despite low-texture
regions, large concavities, and/or thin, high-curvature parts. A
quantitative evaluation on the Middlebury benchmark [1] shows
that the proposed method outperforms all others submitted so far
in terms of both accuracy and completeness for four out of the
six datasets.
The rest of this article is organized as follows: Section II

presents the key building blocks of the proposed approach. Sec-
tion III presents our patch-based MVS algorithm, and Section IV
describes how to convert a patch model into a mesh and our
polygonal mesh-based refinement algorithm. Experimental results
and discussion are given in Section V, and Section VI concludes
the paper with some future work. The implementation of the
patch-based MVS algorithm (PMVS) is publicly available at [25].
A preliminary version of this article appeared in [26].

II. KEY ELEMENTS OF THE PROPOSED APPROACH

The proposed approach can be decomposed into three steps: a
patch-based MVS algorithm that is the core reconstruction step
in our approach and reconstructs a set of oriented points (or
patches) covering the surface of an object or a scene of interests;
the conversion of the patches into a polygonal mesh model; and
finally a polygonal-mesh based MVS algorithm that refines the
mesh. In this section, we introduce a couple of fundamental
building blocks of the patch-based MVS algorithm, some of which
are also used in our mesh refinement algorithm.
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Fig. 2. Left: a patch p is a (3D) rectangle with its center and normal
denoted as c(p) and n(p), respectively. Right: the photometric discrepancy
f (p,I1,I2) of a patch is given by one minus the normalized cross correlation
score between sets q(p,Ii) of sampled pixel colors. See text for the details.

A. Patch Model
A patch p is essentially a local tangent plane approximation of

a surface. Its geometry is fully determined by its center c(p), unit
normal vector n(p) oriented toward the cameras observing it, and
a reference image R(p) in which p is visible (See Fig. 2). More
concretely, a patch is a (3D) rectangle, which is oriented so that
one of its edges is parallel to the x-axis of the reference camera
(the camera associated with R(p)). The extent of the rectangle is
chosen so that the smallest axis-aligned square in R(p) containing
its image projection is of size µ×µ pixels in size (µ is either 5
or 7 in all of our experiments).

B. Photometric Discrepancy Function
Let V (p) denote a set of images in which p is visible (see

Sect. III on how to estimate V (p) and choose the reference image
R(p) ∈V (p)). The photometric discrepancy function g(p) for p
is defined as

g(p) =
1

|V (p)\R(p)| ∑
I∈V (p)\R(p)

h(p, I,R(p)), (1)

where h(p, I1, I2) is, in turn, defined to be a pairwise photometric
discrepancy function between images I1 and I2. More concretely
(see Fig. 2), given a pair of visible images I1 and I2, h(p, I1, I2) is
computed by 1) overlaying a µ×µ grid on p; 2) sampling pixel
colors q(p, Ii) through bilinear interpolation at image projections
of all the grid points in each image Ii; 2 and 3) computing one
minus the normalized cross correlation score between q(p, I1) and
q(p, I2). 3

2We have also tried bicubic interpolation but have not observed noticeable
differences.
3See [27] for an example of other photometric discrepancy functions.

At each point p, estimate normal N(p) and visibility Vi(p) in each image using photoconsistency check (NCC over ~9x9 pixels)
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Fig. 1. Overall approach. From left to right: A sample input image; detected features; reconstructed patches after the initial matching; final patches after
expansion and filtering; and the mesh model.

proposed by Lhuillier and Quan [17], it replaces their greedy
expansion procedure by iteration between expansion and filtering
steps, which allows us to process complicated surfaces and reject
outliers more effectively. Optionally, the resulting patch model
can be turned into a triangulated mesh by simple but efficient
techniques, and this mesh can be further refined by a mesh based
MVS algorithm that enforces the photometric consistency with
regularization constraints. The additional computational cost of
the optional step is balanced by the even higher accuracy it af-
fords. Our algorithm does not require any initialization in the form
of a visual hull model, a bounding box, or valid depth ranges.
In addition, unlike many other methods that basically assume
fronto-parallel surfaces and only estimate the depth of recovered
points, it actually estimates the surface orientation while enforcing
the local photometric consistency, which is important in practice
to obtain accurate models for datasets with sparse input images
or without salient textures. As shown by our experiments, the
proposed algorithm effectively handles the three types of data
mentioned above, and, in particular, it outputs accurate object
and scene models with fine surface detail despite low-texture
regions, large concavities, and/or thin, high-curvature parts. A
quantitative evaluation on the Middlebury benchmark [1] shows
that the proposed method outperforms all others submitted so far
in terms of both accuracy and completeness for four out of the
six datasets.
The rest of this article is organized as follows: Section II

presents the key building blocks of the proposed approach. Sec-
tion III presents our patch-based MVS algorithm, and Section IV
describes how to convert a patch model into a mesh and our
polygonal mesh-based refinement algorithm. Experimental results
and discussion are given in Section V, and Section VI concludes
the paper with some future work. The implementation of the
patch-based MVS algorithm (PMVS) is publicly available at [25].
A preliminary version of this article appeared in [26].

II. KEY ELEMENTS OF THE PROPOSED APPROACH

The proposed approach can be decomposed into three steps: a
patch-based MVS algorithm that is the core reconstruction step
in our approach and reconstructs a set of oriented points (or
patches) covering the surface of an object or a scene of interests;
the conversion of the patches into a polygonal mesh model; and
finally a polygonal-mesh based MVS algorithm that refines the
mesh. In this section, we introduce a couple of fundamental
building blocks of the patch-based MVS algorithm, some of which
are also used in our mesh refinement algorithm.
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Fig. 2. Left: a patch p is a (3D) rectangle with its center and normal
denoted as c(p) and n(p), respectively. Right: the photometric discrepancy
f (p,I1,I2) of a patch is given by one minus the normalized cross correlation
score between sets q(p,Ii) of sampled pixel colors. See text for the details.

A. Patch Model
A patch p is essentially a local tangent plane approximation of

a surface. Its geometry is fully determined by its center c(p), unit
normal vector n(p) oriented toward the cameras observing it, and
a reference image R(p) in which p is visible (See Fig. 2). More
concretely, a patch is a (3D) rectangle, which is oriented so that
one of its edges is parallel to the x-axis of the reference camera
(the camera associated with R(p)). The extent of the rectangle is
chosen so that the smallest axis-aligned square in R(p) containing
its image projection is of size µ×µ pixels in size (µ is either 5
or 7 in all of our experiments).

B. Photometric Discrepancy Function
Let V (p) denote a set of images in which p is visible (see

Sect. III on how to estimate V (p) and choose the reference image
R(p) ∈V (p)). The photometric discrepancy function g(p) for p
is defined as

g(p) =
1

|V (p)\R(p)| ∑
I∈V (p)\R(p)

h(p, I,R(p)), (1)

where h(p, I1, I2) is, in turn, defined to be a pairwise photometric
discrepancy function between images I1 and I2. More concretely
(see Fig. 2), given a pair of visible images I1 and I2, h(p, I1, I2) is
computed by 1) overlaying a µ×µ grid on p; 2) sampling pixel
colors q(p, Ii) through bilinear interpolation at image projections
of all the grid points in each image Ii; 2 and 3) computing one
minus the normalized cross correlation score between q(p, I1) and
q(p, I2). 3

2We have also tried bicubic interpolation but have not observed noticeable
differences.
3See [27] for an example of other photometric discrepancy functions.
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Fig. 5. (a) Given an existing patch, an expansion procedure is performed
to generate new ones for the neighboring empty image cells in its visible
images. The expansion procedure is not performed for an image cell (b) if
there already exists a neighboring patch reconstructed there, or (c) if there is a
depth discontinuity when viewed from the camera. See text for more details.

generate a new patch p′: We first initialize n(p′),R(p′) and V (p′)
by the corresponding values of p. c(p′) is, in turn, initialized
as the point where the viewing ray passing through the center
of Ci(x,y) intersects the plane containing the patch p. After
computing V∗(p′) from V (p) by using Eq. (2), we refine c(p′)
and n(p′) by the optimization procedure described in Sect.II-
C. During the optimization, c(p′) is constrained to lie on a ray
such that its image projection in Ii does not change in order to
make sure that the patch always projects inside the image cell
Ci(x,y). After the optimization, we add to V (p′) a set of images
in which the patch should be visible according to a depth-map
test, where a depth value is computed for each image cell instead
of a pixel, then update V∗(p′) according to Eq. (2). It is important
to add visible images obtained from the depth-map test to V (p′)
instead of replacing the whole set, because some matches (and
thus the corresponding depth map information) may be incorrect
at this point. Due to this update rule, the visibility information
associated with reconstructed patches become inconsistent with
each other, a fact that is used in the following filtering step
to reject erroneous patches. Finally, if |V∗(p′)| ≥ γ , we accept
the patch as a success and update Qi(x,y) and Q∗i (x,y) for
its visible images. Note that, as in the initial feature matching
step, α is set to 0.6 and 0.3, before and after the optimization,
respectively, but we loosen (increase) both values by 0.2 after
each expansion/filtering iteration in order to handle challenging
(homogeneous or relatively texture-less) regions in the latter
iterations. The overall algorithm description is given in Fig.
6. Note that when segmentation information is available, we
simply ignore image cells in the background during initial feature
matching and the expansion procedure, which guarantees that
no patches are reconstructed in the background. The bounding
volume information is not used to filter out erroneous patches in
our experiments, although it would not be difficult to do so.

C. Filtering
The following three filters are used to remove erroneous

patches. Our first filter relies on visibility consistency. Let U(p)
denote the set of patches p′ that are inconsistent with the
current visibility information—that is, p and p′ are not neighbors
(Eq. (8)), but are stored in the same cell of one of the images
where p is visible (Fig. 7). Then, p is filtered out as an outlier if
the following inequality holds

|V ∗(p)|(1−g∗(p)) < ∑
pi∈U(p)

1−g∗(pi).

Input: Patches P from the feature matching step.
Output: Expanded set of reconstructed patches.

While P is not empty
Pick and remove a patch p from P;
For each image cell Ci(x,y) containing p
Collect a set C of image cells for expansion;
For each cell Ci(x′,y′) in C
// Create a new patch candidate p′
n(p′)← n(p), R(p′)← R(p), V (p′)←V ∗(p′);
Update V∗(p′); // Eq. (2)
Refine c(p′) and n(p′); // (Sect.II-C)
Add visible images (a depth-map test) to V (p′);
Update V∗(p′); // Eq. (2)
If |V ∗(p′)| < γ
Go back to For-loop (failure);

Add p′ to P;
Add p′ to corresponding Qj(x,y) and Q∗j(x,y);

Fig. 6. Patch expansion algorithm. The expansion and the filtering procedure
is iterated n(= 3) times to make patches dense and remove outliers.
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Fig. 7. The first filter enforces global visibility consistency to remove outliers
(red patches). An arrow pointing from pi to Ij represents a relationship Ij ∈
V(pi). In both cases (left and right), U(p) denotes a set of patches that is
inconsistent in visibility information with p.

Intuitively, when p is an outlier, both 1−g∗(p) and |V∗(p)| are
expected to be small, and p is likely to be removed. The second
filter also enforces visibility consistency, but more strictly: For
each patch p, we compute the number of images in V∗(p) where p
is visible according to depth-map test. If the number is less than γ ,
p is filtered out as an outlier. Lastly, in the third filter, we enforce
a weak form of regularization: For each patch p, we collect the
patches lying in its own and adjacent cells in all images of V (p).
If the proportion of patches that are neighbors of p (Eq. (8)) in
this set is lower than 0.25, p is removed as an outlier.

IV. POLYGONAL MESH RECONSTRUCTION
The reconstructed patches form an oriented point, or surfel

model. Despite the growing popularity of this type of models
in the computer graphics community [19], it remains desirable
to turn our collection of patches into surface meshes for image-
based modeling applications. In the following, we first propose
two algorithms for initializing a polygonal mesh model from
reconstructed patches, then a surface refinement algorithm, which
polishes up a surface with explicit regularization constraints.

A. Mesh Initialization
1) Poisson Surface Reconstruction: Our first approach to mesh

initialization is to simply use Poisson Surface Reconstruction
(PSR) software [29] that directly converts a set of oriented points
into a triangulated mesh model. The resolution of the mesh model
is adaptive and the size of a triangle depends on the density of

Pipeline: patch expansion
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Fig. 5. (a) Given an existing patch, an expansion procedure is performed
to generate new ones for the neighboring empty image cells in its visible
images. The expansion procedure is not performed for an image cell (b) if
there already exists a neighboring patch reconstructed there, or (c) if there is a
depth discontinuity when viewed from the camera. See text for more details.

generate a new patch p′: We first initialize n(p′),R(p′) and V (p′)
by the corresponding values of p. c(p′) is, in turn, initialized
as the point where the viewing ray passing through the center
of Ci(x,y) intersects the plane containing the patch p. After
computing V∗(p′) from V (p) by using Eq. (2), we refine c(p′)
and n(p′) by the optimization procedure described in Sect.II-
C. During the optimization, c(p′) is constrained to lie on a ray
such that its image projection in Ii does not change in order to
make sure that the patch always projects inside the image cell
Ci(x,y). After the optimization, we add to V (p′) a set of images
in which the patch should be visible according to a depth-map
test, where a depth value is computed for each image cell instead
of a pixel, then update V∗(p′) according to Eq. (2). It is important
to add visible images obtained from the depth-map test to V (p′)
instead of replacing the whole set, because some matches (and
thus the corresponding depth map information) may be incorrect
at this point. Due to this update rule, the visibility information
associated with reconstructed patches become inconsistent with
each other, a fact that is used in the following filtering step
to reject erroneous patches. Finally, if |V∗(p′)| ≥ γ , we accept
the patch as a success and update Qi(x,y) and Q∗i (x,y) for
its visible images. Note that, as in the initial feature matching
step, α is set to 0.6 and 0.3, before and after the optimization,
respectively, but we loosen (increase) both values by 0.2 after
each expansion/filtering iteration in order to handle challenging
(homogeneous or relatively texture-less) regions in the latter
iterations. The overall algorithm description is given in Fig.
6. Note that when segmentation information is available, we
simply ignore image cells in the background during initial feature
matching and the expansion procedure, which guarantees that
no patches are reconstructed in the background. The bounding
volume information is not used to filter out erroneous patches in
our experiments, although it would not be difficult to do so.

C. Filtering
The following three filters are used to remove erroneous

patches. Our first filter relies on visibility consistency. Let U(p)
denote the set of patches p′ that are inconsistent with the
current visibility information—that is, p and p′ are not neighbors
(Eq. (8)), but are stored in the same cell of one of the images
where p is visible (Fig. 7). Then, p is filtered out as an outlier if
the following inequality holds

|V ∗(p)|(1−g∗(p)) < ∑
pi∈U(p)

1−g∗(pi).

Input: Patches P from the feature matching step.
Output: Expanded set of reconstructed patches.

While P is not empty
Pick and remove a patch p from P;
For each image cell Ci(x,y) containing p
Collect a set C of image cells for expansion;
For each cell Ci(x′,y′) in C
// Create a new patch candidate p′
n(p′)← n(p), R(p′)← R(p), V (p′)←V ∗(p′);
Update V∗(p′); // Eq. (2)
Refine c(p′) and n(p′); // (Sect.II-C)
Add visible images (a depth-map test) to V (p′);
Update V∗(p′); // Eq. (2)
If |V ∗(p′)| < γ
Go back to For-loop (failure);

Add p′ to P;
Add p′ to corresponding Qj(x,y) and Q∗j(x,y);

Fig. 6. Patch expansion algorithm. The expansion and the filtering procedure
is iterated n(= 3) times to make patches dense and remove outliers.
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Fig. 7. The first filter enforces global visibility consistency to remove outliers
(red patches). An arrow pointing from pi to Ij represents a relationship Ij ∈
V(pi). In both cases (left and right), U(p) denotes a set of patches that is
inconsistent in visibility information with p.

Intuitively, when p is an outlier, both 1−g∗(p) and |V∗(p)| are
expected to be small, and p is likely to be removed. The second
filter also enforces visibility consistency, but more strictly: For
each patch p, we compute the number of images in V∗(p) where p
is visible according to depth-map test. If the number is less than γ ,
p is filtered out as an outlier. Lastly, in the third filter, we enforce
a weak form of regularization: For each patch p, we collect the
patches lying in its own and adjacent cells in all images of V (p).
If the proportion of patches that are neighbors of p (Eq. (8)) in
this set is lower than 0.25, p is removed as an outlier.

IV. POLYGONAL MESH RECONSTRUCTION
The reconstructed patches form an oriented point, or surfel

model. Despite the growing popularity of this type of models
in the computer graphics community [19], it remains desirable
to turn our collection of patches into surface meshes for image-
based modeling applications. In the following, we first propose
two algorithms for initializing a polygonal mesh model from
reconstructed patches, then a surface refinement algorithm, which
polishes up a surface with explicit regularization constraints.

A. Mesh Initialization
1) Poisson Surface Reconstruction: Our first approach to mesh

initialization is to simply use Poisson Surface Reconstruction
(PSR) software [29] that directly converts a set of oriented points
into a triangulated mesh model. The resolution of the mesh model
is adaptive and the size of a triangle depends on the density of



Pipeline: construct mesh
Convert set of 3D patches (surfel model) into polygonal mesh

Represent surface implicitly using a volumetric signed distance function 
Solve differential equation that equates gradients of function to normals
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Fig. 16. Final mesh models: From left to right and top to bottom: roman, temple, dino, skull, face-1, face-2, body, city-hall, wall, fountain, brussels, steps-1,
steps-2, steps-3, and castle datasets. Note that the mesh models are rendered from multiple view points for fountain and castle datasets to show their overall
structure.



Multiview stereo

• stereo / dynamic programming 

• active illumination 

• volumetric models / visiblity reasoning 

• patch-based methods


