Multiview stereo

Multi-view geometry

Three questions:

- (i) Correspondence geometry: Given an image point x in the first view, how does this constrain the position of the corresponding point x' in the second image?
- (ii) Camera geometry (motion): Given a set of corresponding image points $\{x_i \leftrightarrow x'_i\}$, i=1,...,n, what are the cameras P and P' for the two views?
- (iii) Scene geometry (structure): Given corresponding image points $x_i \leftrightarrow x'_i$ and cameras P, P', what is the position of (their pre-image) X in space?

Stereo

Basic Stereo Algorithm

For each epipolar line

For each pixel in the left image

- compare with every pixel on same epipolar line in right image
- pick pixel with minimum match cost

Improvement: match windows

• (Normalized) Correlation, Sum of Squared Difference (SSD), Sum of Absolute Differences (SAD), etc...

Top-down view where world coordinates are centered between cameras

$$(X_L, Y, Z) \to (x_L, y_L) \qquad (X_R, Y, Z) \to (x_R, y_R)$$
$$X_L = X + \frac{b}{2} \qquad X_R = X - \frac{b}{2}$$

- 1. Write down perspective projection equations
- 2. Solve for (X,Y,Z) in terms of image coordinates, focal length, baseline

Top-down view where world coordinates are centered between cameras

disparity = $x_L - x_R =$

Top-down view where world coordinates are centered between cameras

disparity =
$$x_L - x_R = (X + \frac{b}{2} - X + \frac{b}{2})\frac{f}{Z}$$

= $\frac{bf}{Z}$

Top-down view where world coordinates are centered between cameras

 $d = x_L - x_R = \frac{bf}{Z}$ is the **disparity** between corresponding left and right image points

inverse proportional to depth Z

disparity increases with baseline b

Disparity Maps

$$d = x_L - x_R = \frac{bf}{Z}$$

Disparity values (0-64)

Note how disparity is larger (brighter) for closer surfaces.

If we double the size of scene geometry and baseline, what happens to disparity?

How do we characterize the error in depth Z given an error in disparity d, in terms of scene + camera?

- 1. Error inversely proportional to baseline (larger baselines increase numerical stability)
- 2. Error increases quadratically with depth (hard to reconstruct far away points

Disparity maps (in practice)

Small matching window (better localization)

Large matching window (better detection)

Variational stereo Penalize differences in nearby disparities (a "1-d" flow problem!) min $E_{intensity} + E_{smooth}$ u,v $E_{smooth}(d) = \int \int ||\nabla d(x,y)||^2 dx dy$ $E_{intensity}(d) = \int \int (I_2(x+d(x,y),y) - I_1(x,y))^2 dxdy$

- 1. Linearlize E_{intensity} term and solve with least squares
- 2. Add robust error terms $\rho(\cdot)$ to handle discontinuties

Coarse-to-fine stereo

Gaussian pyramid of image H

Gaussian pyramid of image I

Discrete disparity estimation

 $z \in \{-5 \dots 5\}$

$$\phi_i(z_i) = \rho(||I_2(x_i + z_i, y_i) - I(x_i, y_i)||)$$

$$\psi_{ij}(z_i, z_j) = \rho(z_i - z_j)$$

Solve with GraphCuts

Special case: single-scan-line consistency

Left Image

Dissimilarity Values (1-NCC) or SSD

Disparity Space Image (DSI)

Left scanline

Representing the cost of all scanline correspondences

Ordering Constraint

Correspondences should respect left to right order

... most of the time!

Occlusions

Occlusions

Scanline correspondences

Claim: scanline correspondences with occlusions can be represented as *paths* in DSI Let us score the *cost* of a path as sum of correspondence matching costs + occlusion costs Best scanline correspondence = least-cost path

Compute partial scanline costs

– Matching patches. Cost = dissimilarity score

- -Occluded from right. Cost is some constant value.
- Occluded from left. Cost is some constant value.

$$\begin{split} C(i,j) &= \min([\ C(i-1,j-1) + dissimilarity(i,j) \\ C(i-1,j) + occlusionConstant, \\ C(i,j-1) + occlusionConstant]); \end{split}$$

Cox, Hingorani, Rao, Maggs, "A Maximum Likelihood Stereo Algorithm," Computer Vision and Image Understanding, Vol 63(3), May 1996, pp.542-567.

Dynamic Programming

DSI DSI DP cost matrix (cost of optimal path from each point to END)

Each pixel in DSI is now marked with a disparity value or occlusion label In practice, enforce upper bound on disparity by computing diagonal band of DSI

Results

Result of DP alg

Result without DP (independent pixels)

Result of DP alg. Black pixels = occluded.

Stereo evaluation: http://vision.middlebury.edu/stereo/

Daniel Scharstein • Richard Szeliski

Welcome to the Middlebury Stereo Vision Page, formerly located at <u>www.middlebury.edu/stereo</u>. This website accompanies our taxonomy and comparison of two-frame stereo correspondence algorithms [1]. It contains:

- · An on-line evaluation of current algorithms
- Many stereo datasets with ground-truth disparities
- Our stereo correspondence software
- An <u>on-line submission script</u> that allows you to evaluate your stereo algorithm in our framework

How to cite the materials on this website:

We grant permission to use and publish all images and numerical results on this website. If you report performance results, we request that you cite our paper [1]. Instructions on how to cite our datasets are listed on the <u>datasets page</u>. If you want to cite this website, please use the URL "vision.middlebury.edu/stereo/".

References:

 D. Scharstein and R. Szeliski. <u>A taxonomy and evaluation of dense two-frame stereo correspondence algorithms</u>. *International Journal of Computer Vision*, 47(1/2/3):7-42, April-June 2002. <u>Microsoft Research Technical Report MSR-TR-2001-81</u>, November 2001.

Stereo—best algorithms

Error Threshold = 1		Sort by nonocc			Sort by all					Sort by disc			
Error Threshold 💙													
		Tauluha							Taddy Canaa				
Algorithm	Avg.	ground truth			ground truth			ground truth			ground truth		
	Rank	nonocc	<u>all</u>	<u>disc</u>	nonocc	<u>all</u>	<u>disc</u>	nonocc	<u>all</u>	<u>disc</u>	nonocc	<u>all</u>	<u>disc</u>
	V												
AdaptingBP [17]	2.8	<u>1.11</u> 6	1.37 3	5.79 7	<u>0.10</u> 1	0.21 2	1.44 1	<u>4.22</u> 4	7.06 2	11.8 4	<u>2.48</u> 1	7.92 <mark>2</mark>	7.32 1
DoubleBP2 [35]	2.9	<u>0.88</u> 1	1.29 1	4.76 1	<u>0.13</u> 3	0.45 5	1.87 5	<u>3.53</u> 2	8.30 s	9.63 1	<u>2.90</u> 3	8.78 8	7.79 2
DoubleBP [15]	4.9	<u>0.88</u> 2	1.29 <mark>2</mark>	4.76 <mark>2</mark>	<u>0.14</u> 5	0.60 13	2.00 7	<u>3.55</u> 3	8.71 5	9.70 <mark>2</mark>	<u>2.90</u> 4	9.24 11	7.80 3
SubPixDoubleBP [30]	5.6	<u>1.24</u> 10	1.76 13	5.98 <mark>8</mark>	<u>0.12</u> 2	0.46 6	1.74 4	<u>3.45</u> 1	8.38 4	10.0 <mark>3</mark>	<u>2.93</u> 5	8.73 7	7.91 4
AdaptOvrSeqBP [33]	9.9	<u>1.69</u> 22	2.04 21	5.64 6	<u>0.14</u> 4	0.20 1	1.47 2	<u>7.04</u> 14	11.17	16.4 11	<u>3.60</u> 11	8.96 10	8.84 10
SymBP+occ [7]	10.8	<u>0.97</u> 4	1.75 12	5.09 <mark>4</mark>	<u>0.16</u> 6	0.33 3	2.19 8	<u>6.47</u> 8	10.7 6	17.0 14	<u>4.79</u> 24	10.7 21	10.9 20
PlaneFitBP [32]	10.8	<u>0.97</u> 5	1.83 14	5.26 5	<u>0.17</u> 7	0.51 8	1.71 s	<u>6.65</u> 9	12.1 13	14.7 7	<u>4.17</u> 20	10.7 20	10.6 19
AdaptDispCalib [36]	11.8	<u>1.19</u> 8	1.42 4	6.15 <mark>9</mark>	<u>0.23</u> 9	0.34 4	2.50 11	<u>7.80</u> 19	13.6 21	17.3 17	<u>3.62</u> 12	9.33 12	9.72 15
Segm+visib [4]	12.2	<u>1.30</u> 15	1.57 5	6.92 18	<u>0.79</u> 21	1.06 18	6.76 22	<u>5.00</u> 5	6.54 1	12.3 5	<u>3.72</u> 13	8.62 6	10.2 17
C-SemiGlob [19]	12.3	<u>2.61</u> 29	3.29 24	9.89 27	<u>0.25</u> 12	0.57 10	3.24 15	<u>5.14</u> 6	11.8 <mark>8</mark>	13.0 6	<u>2.77</u> 2	8.35 4	8.20 5
SO+borders [29]	12.8	<u>1.29</u> 14	1.71 9	6.83 15	<u>0.25</u> 13	0.53 <mark>9</mark>	2.26 9	<u>7.02</u> 13	12.2 14	16.3 <mark>9</mark>	<u>3.90</u> 15	9.85 16	10.2 18
DistinctSM [27]	14.1	<u>1.21</u> 9	1.75 11	6.39 11	<u>0.35</u> 14	0.69 16	2.63 13	<u>7.45</u> 18	13.0 17	18.1 19	<u>3.91</u> 18	9.91 18	8.32 7
CostAggr+occ [39]	14.3	<u>1.38</u> 17	1.96 17	7.14 19	<u>0.44</u> 16	1.13 19	4.87 19	<u>6.80</u> 11	11.9 10	17.3 16	<u>3.60</u> 10	8.57 5	9.36 13
OverSegmBP [26]	14.5	<u>1.69</u> 23	1.97 18	8.47 24	<u>0.51</u> 18	0.68 15	4.69 18	<u>6.74</u> 10	11.9 12	15.8 <mark>8</mark>	<u>3.19</u> 8	8.81 <mark>9</mark>	8.89 11
SegmentSupport [28]	15.1	<u>1.25</u> 11	1.62 7	6.68 13	0.25 11	0.64 14	2.59 12	<u>8.43</u> 24	14.2 22	18.2 20	<u>3.77</u> 14	9.87 17	9.77 16
RegionTreeDP [18]	15.7	<u>1.39</u> 19	1.64 8	6.85 16	<u>0.22</u> 8	0.57 10	1.93 6	<u>7.42</u> 17	11.9 11	16.8 13	<u>6.31</u> 30	11.9 27	11.8 23
EnhancedBP (24)	16.6	0.94.2	1 74 10	5.05 2	0.35 15	0.86 17	4 34 17	8 11 22	13 3 19	18.5.22	5 09 27	11 1 22	11.0.21

Multiview stereo

- stereo / dynamic programming
- active illumination
- volumetric models / visiblity reasoning
- patch-based methods

Hard part: find matching points

If patches look distinctive, they'll be easy to match But lots of patches are not distinctive

Kinect

Spatially-varying speckle patterns

QR code

General approach: active illumination

Project an instantaneous pattern for which its easy to find correspondences

Search along epipolar line to find right color

Kinect

Why do we see "holes" around object borders? Why can't you use kinect outdoors? Why can't you use two kinects in the same room?

Outdoor kinect

Episcan sensor, CMU

Episcan scanner

Homogeneous Codes for Energy-Efficient Illumination and Imaging

Matthew O'Toole University of Toronto

Supreeth Achar Carnegie Mellon University

Srinivasa G. Narasimhan Carnegie Mellon University

Kiriakos N. Kutulakos University of Toronto

(1) (1)

Multiview stereo

- stereo / dynamic programming
- active illumination
- volumetric models / visiblity reasoning
- patch-based methods

Dense multi view stereo

- Reconstruct the 3D position of the points corresponding to (all the) pixels in a set of images.
- Key assumption: We know the relative position, orientation, *K*, of all the cameras.
- Number of cameras >> 2

Trinocular stereo (version 0)

- 1. Pick 2 views, find correspondences
- 2. For each matching pair, reconstruct 3D point
- 3. If can't find correspondence near projected location, reject

Version 1: generalize 3x3 fundmamental matrix to a 3x3x3 trifocal tensor (constraints points and lines across 3 images)

Multiview stereo (version 0)

-Pick one reference view

-For each point and for each candidate depth

• keep depths with low SSD error in all other views

Problem: not all points are visible in all other views: (declusion and visibility major nuisance!)

Multiview stereo (version 1)

Hypothesize depths in a "smart" order where occluding points are found *first*

Use knowledge of occluding points to smartly select view for photoconsistency check

Store photoconsistent color in a 3D voxel grid (don't need a reference image) Reconstuct shape *and* appearance

Plane-sweep stereo (version 2)

Sweep over voxel plane-by-plane, starting closest-to-front

Quickly validate voxels in a plane by computing their appearance in a virtual view using all N cameras

What is the transformation that warps image N to virtual view?

Recent work: deep stereo

Train deep network select pixel from 1 of K depth planes (At each pixel, output 1 of K classes)

Recent work: deep stereo

DeepStereo: Learning to Predict New Views from the World's Imagery

John Flynn Zoox Inc.* john.flynn@zoox.com Ivan Neulander Google Inc. ineula@google.com James Philbin Zoox Inc.* james@zoox.com Noah Snavely Google Inc. snavely@google.com

Voxel coloring

What about other camera steups?

Panoramic depth ordering

Seitz & Dyer

Layers radiate inwardly/outwardly

Space carving

Kutulakos & Seitz

Very simply algorithm:

- 1. Initialize voxel grid to all '1's
- 2. Repeatedly choose a voxel on current surface:

Project to visible images

Carve out if not photoconsistent

Convergence

Consistency Property

- The resulting shape is photo-consistent
 - > all inconsistent points are removed

Convergence Property

- Carving converges to a non-empty shape
 - > a point on the true scene is *never* removed

Calibrated Image Acquisition

Calibrated Turntable

Selected Dinosaur Images

Selected Flower Images

Voxel Coloring Results

Dinosaur Reconstruction

72 K voxels colored7.6 M voxels tested7 min. to computeon a 250MHz SGI

Flower Reconstruction

70 K voxels colored 7.6 M voxels tested 7 min. to compute on a 250MHz SGI

21 images

21 images

16 images

99 images

Silhoette carving

Backproject binary silhouettes and find intersection In limit of infinite cameras, this will produce convex hull reconstruction of object

Multiview stereo

- stereo / dynamic programming
- active illumination
- volumetric models / visiblity reasoning
- patch-based methods

Long-standing leader

Accurate, Dense, and Robust Multi-View Stereopsis

Yasutaka Furukawa and Jean Ponce, Fellow, IEEE

Patch-based Multiview Stereo (PMVS)

Pipeline: feature detection

Find sparse matches over pairs of images (using interest points + matching) Triangulate to find sparse 3D points {p}

Pipeline: patch optimization

At each point p, estimate normal N(p) and visibility V_i(p) in each image using photoconsistency check (NCC over ~9x9 pixels)

Pipeline: patch expansion

Expand set of points {p} by looking for hypothesizing 2D neighbors in visible images, backprojecting, and verifying photoconsistency

Fig. 5. (a) Given an existing patch, an expansion procedure is performed to generate new ones for the neighboring empty image cells in its visible images. The expansion procedure is not performed for an image cell (b) if there already exists a neighboring patch reconstructed there, or (c) if there is a depth discontinuity when viewed from the camera. See text for more details.

Pipeline: filter out outlier patches

Fig. 7. The first filter enforces global visibility consistency to remove outliers (red patches). An arrow pointing from p_i to I_j represents a relationship $I_j \in V(p_i)$. In both cases (left and right), U(p) denotes a set of patches that is inconsistent in visibility information with p.

Pipeline: construct mesh

Convert set of 3D patches (surfel model) into polygonal mesh

Represent surface implicitly using a volumetric signed distance function Solve differential equation that equates gradients of function to normals

Results

Multiview stereo

- stereo / dynamic programming
- active illumination
- volumetric models / visiblity reasoning
- patch-based methods