Motion and flow



Outline

* Lucas Kanade
* Moving cameras (egomotion)

* Estimating flow
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Nonlinear least squares

STI(W(x;p + Ap)) — T(x) ]

X

I(x;p) = I(W(x;p))

shorthand notation
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. ~ . | ) 9
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Nonlinear least squares (cont'd)

ST[I(W(x;p + Ap)) — T(x) | g[I(WXp)HV!%—VXAp T(x )]

Set derivative of above (wrt delta p) =0

/ Error Image
OW i

Ap = S H [wg] T(x) — I(W(x: )
Gradient -
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Example: jacobian of affine warp

affine warp function (6 parameters)

 X+xP+yP,+P,
(x) ) p P +P
quy]-P)—[le P psj y :> U i AR AR AR
V1P = OP OP
p, l+p, ps . _
Sy, x 00y 010

0 x 0 y 0 1

Notes:

1) Above parameterization is better conditioned because all-zero parameters defaults to identity
2) Jacobian matrix 1s a function of (x,y) coordinate



Pelcewise warps

W (x;p)

S:[Qfl Yo T2 yg}
S — SQ —|—p181 —I—pQSQ—I—...
Pr(s) = N(s; 1, %)



Lucas-Kanade Algorithm

. Warp I with W(x;p) = I(W(x;p))
. Compute error image T(x) - (W(x;p))

. Warp gradient of / to compute V/

oW

. Evaluate Jacobian 'y
BB H

| i

. Compute updates Ap = > A [w—] T(x) — I(W(x;p))] -l-l-l

. Compute steepest descent images vV

op

. Compute Hessian 5 — ¥ [W%_V:]T [waa_\:]

xX

op

. Update parameters p < p + Ap l
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Variations

Additive warp: Z[l (WX p + Ap)) — TX)]? p < p+ Ap.



Variations

Additive warp: Z[l (WX p + Ap)) — TX)]? p < p+ Ap.

Compositional warps: Z[l (W(W(x; Ap); p)) — T(®)]’

I+p1)-x + p3-y + Ps)

W(x; )=(
P D2 X + (+ps)-y + Ppe

W(x;Ap):((1+Ap1)'x +Apsy A Apf’)

Aps - x + (1+Aps)-y + Aps



Variations

Additive warp: Z[l (WX p + Ap)) — TX)]? p < p+ Ap.

Compositional warps: Z[l (W(W(x; Ap); p)) — T(®)]’

W(X.p)_(<1+p1)-x +  piy o+ ps> W(W(x; Ap); p)
p2-x + (4+p)-y + ps (14 p1) - (14 App) - x + Aps -y + Aps)
+p3-(Apy-x +( + Aps) -y + Ape)
(I+Ap1)-z +  Aps-y  + Am) + ps
W (x; Ap) = =
: Ap) ( App-x 4+ (1+Ap)-y + Aps | o2 (A +Ap) - x + Aps -y + Aps)
+ (1 +ps)-(Apr-x+ (1 + Aps) -y

+ Ape) + pe )

Work out Taylor expansion; it turns out Jacobian is evaluated at Ap = 0 , which means it can be precomputed



Variations

Additive warp: Z[l (WX p + Ap)) — TX)]? p < p+ Ap.

Notation:
Compositional warps: Z[l (W(W(x; Ap);p) — T(X)]’ W(x;p) < W(x;p) o W(x; Ap),

W(X.p)_(<1+p1)-x +  piy o+ ps> W(W(x; Ap); p)
p2-x + (4+p)-y + ps (14 p1) - (14 App) - x + Aps -y + Aps)
+p3-(Apy-x +( + Aps) -y + Ape)
1+ Apy) -z + Aps -y +  Aps + Ps
Aps-z + (14+Aps)-y + Aps pr- (1 + Apy)-x+ Aps -y + Aps)
+ (14 ps) - (Apa-x+ A+ Aps) -y

+ Ape) + pe )

Work out Taylor expansion; it turns out Jacobian is evaluated at Ap = 0 , which means it can be precomputed



Overview

Additive Warp:Z[I(W(x; p + Ap)) — T(x)]? p < p+ Ap.

Compositional warp: Y "[I(W(W(x; Ap);p)) — T(x)]’ Wxp) < W(xp)o W(x; Ap),

warp: 4

Work out Taylor expansion;
both Jacobian and Hessian are not a function of current p and so can be precomputed



Forward and Inverse Compositional

* Forwards compositional
T(x)

. W(x;p) o W(x;Ap)

(W(x;p))

* Inverse compositional
T(x)

W(x;p) o W(x;Ap) "

(W(x;p))

I(x)



Inverse Compositional

 Minimise,
2
SO [T(W(x Ap)) — IW(xip) ]2~ 3 [T(w<x 0) + VTN Ap — I(W( p))]
 Solution

-] [

Ap = S & ! [waﬂ] (T(x) — I(W(x;p))]

Update

W(x;p) + W(x;p) o W(x;Ap)~!

Crucial observation: we’re always performing taylor expansion of template @ the identity warp,
so precompute Jacobian, Steepest Descent Images, Hessian (everything but error image!)



Outline

e | ucas Kanade

* Moving cameras

Dynamic Perspective

https://www.youtube.com/watch?v=1zZ9UVIo ZUo&list=PLcOleyeoGt2xtmfaF2ST uNdeptre3{9s&index=10



https://www.youtube.com/watch?v=iz9UVIo_ZUo&list=PLc0IeyeoGt2xtmfaF2ST_uNdeptre3f9s&index=10

Moving Is a part of life!

Sea squirt:

Starting off as an egg, the sea squirt quickly develops into a tadpole-like creature, complete with a spinal cord connected to a simple eye and
a tail for swimming. It also has a primitive brain that helps it locomote through the water. But, the sea squirt’s mobility doesn’t last long.
Once it finds a suitable place to attach itself, its brain is absorbed by its body. Being permanently attached to a home makes the sea squirt’s
spinal cord and the neurons that control locomotion superfluous. Once the sea squirt becomes stationary, it literally eats its own brain.



Human development:
Crawling teaches babies depth perception

After 1
week of
crawling:

After
several
weeks of
crawling:

Gibson, 1960s



Today’s goal

Understand the space of image transformations that we see when we move



Recall: pinhole cameras

A ) // (X,Y,Z)
1 (Xa}laf)
!/o/
COP

f
_Jx
YT
f
_Jy
=7

Assume calibrated cameras (f=1)



Suppose the camera moves with

respect to the world...
* When a point (X,Y,Z) in the world moves

relative to the camera, its projection in the
image (x,y) moves as well.

* This movement in the image plane is called
optical flow. Suppose the point (x,y) moves to
(x+Ax, y+Ay) in time At, then

Ax A_y

Uu=—,pv=
At ' At

are the two components of the optical flow
at (x,y)



Gibson’s example 1: optical flow for a pilot landing a plane
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Optical flow 1s a vector feild (like a gradient map)



Gibson’s example Il:
Optical flow from the side window of a car
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Parallax




Outline

* Derive equation relating optical flow field to
scene depth Z(x,y) and the motion of the
camerat, w

* The translationalcomponent of the flow field
Is the more important one — it is what tells
Z(x,y) and the translation t

* The rotational component of the flow field
reveals information about w



Recall: 3D rotations

we R, |wll=1

/!
/CE_I_ 3
g X

R=1+wsinf 4+ ww(l —cosf)  Rodrigues’ formula

R = exp (f[}) : where v = wf (derive from above by Taylor series

expansion of sine + cosine)

1
:I+@+§@2+...

Implication: we can approximate change in position due to a small rotation as v X T



Angular velocity

https://en.wikipedia.org/wiki/Angular velocity

Notation switch: let’s call the scaled direction vector as “angular velocity™:

X
w, |lwl|=A40, X=|Y
Z

We can approximate change in position due to a small rotation as:
X =wx X =X
Recall: exponentials are solutions of linear differential equations

t(t) = ax(t)

z(t) = e x(0)

Matrix exponentials are solutions of matrix linear differential equations

X(t) = X (t)

X (t) = et X(0)

Alternative derivation of an exponential map representation of rotations!


https://en.wikipedia.org/wiki/Angular_velocity

How does a fixed scene point X move wrt camera?

I2

I
camera D
‘ @

world coordinate frame

Let camera be moving at translational velocity of t and rotating with angular velocity W

X =—-t—wxX

X t _wyZ —w,Y
Y| =—|ty| — |wzX —wzZ
_Z_ Ty Wz Y —wy X




If we assume =1, x(t) = X(t)/Z(t) and y(t) = Y(t)/Z(t), (dx/dt, dy/dt) = ?

X

ZQ

. XZ-7ZX

)

Y

‘|

_wyZ —w,Y
W, X — Wy
WY —wy X |

ZZ

XY
1+ Y?

. YZ-2Y

—(1+ X?)
- XY

Y
—X




Egomotion optical flow

m:m 1 {_1 0 X} o +{XY ~(1+Xx%) Y[

ol gl Tz lo0 -1 v||% Ty —xy x| |“
_tz_ _wz_
translation component rotation component
1 2
w(x,y) = e y)( ty + Xt.)+ XYw, — (1 + X°)w, + Yw,
1
v(z,y) = 704 y)( ty +Yt)+(1+Y*w, — XYw, — Xw,

A

I£
COP

(X,Y,Z)




Optical flow for translation along camera’s z-axis

If the motion of the camera is purely translational, the terms due to rotation
in Eq. (3.4) can be dropped and the flow field becomes

—{s 4+ I, -t 4+ yt,
— (Z,y) = — =
Z(z,y) Z(z,y)

We can gain intuition by considering the even more special case of trans-
lation along the optical axis, 1.e. ¢, # 0,f, = 0,t, = 0, the flow field in

Eq.(3.5) becomes

u(z,y) = (3.5)

rt, . yt, -
ulz,y) = Zz. 1)’ v(x,y) = Z(z ll): (3.6)
1 X (X,Y,Z2)
4 (X,y,f) /‘

£ /./
e



Optical flow for translation along camera’s z-axis

— = at origin

Optical flow vector 1s a scalar multiple of position vector

(where scalar depends upon the depth of scene point)



Moving toward a wall

If speed (t;) and distance (Z) to wall doubles, what happens to flow?

Nothing => fundamental scale ambiguity

If we are travelling 2 ft/sec, and the wall 1s 4 ft away, what’s time-to-contact?

Time to contact =7 / t; Implies time-to-contact (assuming constant depth) can be computed from 2D flow!



Optical flow for translation along
camera’s x-axis

-tz + Xt, -t + Yt,
U(I, y) p— Z(.’E y) ?l](Iﬁ y) - Z!zx y) E
v(x,y) =0

u(x,y) = -tx / Z(x,y)



Optical flow for general translation

—Tr P T, —Ty + YL.
u(zr,y) = Z(z.0) Sz, Yy) = X i

When is this (0,0)?



Optical flow for general translation

7 & /
T Z(x,y) T ( y)

When is this (0,0)?

Implies FOE is projection of translation vector



With respect to the FOE, the flow
vectors are radially outward

Suppose we change the ongin to the FOE by applyving the lollowing oo
ordinate change to Eq.(3.5),

’ 'I F " \
r r : u , (3.9)
il ,
then the ot wal How held bocomes
[u, o) (2, ) = =2, ¥ (3.10)

Z i

which should look very familiar. Thus the general case too corresponds to
optical flow vectors pointing outwards from the FOE, justifying the choioe of
the term. Figure 3.3 shows such an optical vector field




Rotational component

w] [#] _1[-1 0 X iw L[ XY -1+ x?) Y Zl‘
vl |yl Z]0 -1 Y ty 1+Y* — XY —X cuy
translation component rotation component

Rotational component does not depend on scene depth Z

(exploited when fitting a homography to a rotating camera!)

Angular velocity can be recovered from rotational component
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Translation along X-axis in front of a wall
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Rotating about z-axis
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Rotating about y-axis
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Concluding Remarks

* Suppose an animal or a robot could analyze its
video signal to measure the optical flow field, it
could use this as data to compute de?th and
egomotion. -y

* There is considerable evidence that many animals
can (a) measure optical flow (b) use it to control
their movement, avoid obstacles etc.

* We will study later how to measure optical flow.



Outline

* Lucas Kanade
* Moving cameras (egomotion)

* Estimating flow



Problem Definition: Optical Flow

0/1 Q 7

\ .
o— Cl) o ]
H(z,y) I(z,y)

* How to estimate pixel motion from image H to image |7

— Find pixel correspondences
* Given a pixel in H, look for nearby pixels of the same color in |

« Key assumption
— color constancy: a pointin H looks “the same” in image |
* For grayscale images, this is brightness constancy



Caution:

2D measured oEtical flow é 3D scene flow
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Motion field exists but no optical flow No motion field but shading changes
(a) (b)




Importance of low-level motion

(for inferences beyond camera motion)




Videos as spacetime cubes

- I(x,p,1)




Visualizing spacetime cubes

In this example, the circle 1s in front of the square and the camera 1s moving horigontally to the left



Digression: visualizing space-time cube

me ¢y Spatiotemporal YT slices

Plot I(x,y,t) for a fixed t Plot I(x,y,t) for a fixed x

/W\\/

Plot I(x,y,t) for a fixed (x,y)




Ampliftying temporal signals

Radial artery

Ulnar artery fime

Motion Magnification in Natural Videos

Eulerian Video Magnification for Revealing Subtle Changes in the World



