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Peicewise affine-tracking



Nonlinear least squares
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Nonlinear least squares (cont’d)

Set derivative of above (wrt delta p) = 0
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Example: jacobian of affine warp

CSE486, Penn State
Robert Collins

Example: Jacobian of Affine Warp
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general equation of Jacobian

1) Above parameterization is better conditioned because all-zero parameters defaults to identity
Notes:

2) Jacobian matrix is a function of (x,y) coordinate



Peicewise warps
W (x; p) = µ+ p1v1 + p2v2 + . . .

s =
⇥
x1 y2 x2 y2 . . .

⇤

s = s0 + p1s1 + p2s2 + . . .

Pr(s) = N(s;µ,⌃)



Lucas-Kanade Algorithm

1. Warp I with W(x;p) ⇒ I(W(x;p)) 

2. Compute error image T(x) - I(W(x;p)) 

3. Warp gradient of I to compute ∇I 

4. Evaluate Jacobian  

5. Compute steepest descent images  

6. Compute Hessian 

7. Compute updates 

8. Update parameters p ← p + Δp

- =
⇒

224 Baker and Matthews

Figure 2. A schematic overview of the Lucas-Kanade algorithm (Lucas and Kanade, 1981). The image I is warped with the current estimate
of the warp in Step 1 and the result subtracted from the template in Step 2 to yield the error image. The gradient of I is warped in Step 3, the
Jacobian is computed in Step 4, and the two combined in Step 5 to give the steepest descent images. In Step 6 the Hessian is computed from
the steepest descent images. In Step 7 the steepest descent parameter updates are computed by dot producting the error image with the steepest
descent images. In Step 8 the Hessian is inverted and multiplied by the steepest descent parameter updates to get the final parameter updates !p
which are then added to the parameters p in Step 9.

W(x; p) and the Jacobian ∂W
∂p at p, they both in gen-

eral depend on p. For some simple warps such as the
translations in Eq. (1) and the affine warps in Eq. (2)
the Jacobian can sometimes be constant. See for ex-
ample Eq. (8). In general, however, all 9 steps of the
algorithm must be repeated in every iteration because
the estimates of the parameters p vary from iteration to
iteration.

2.3. Requirements on the Set of Warps

The only requirement on the warps W(x; p) is that they
are differentiable with respect to the warp parameters p.
This condition is required to compute the Jacobian ∂W

∂p .
Normally the warps are also (piecewise) differentiable
with respect to x, but even this condition is not strictly
required.
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Abstract. Since the Lucas-Kanade algorithm was proposed in 1981 image alignment has become one of the most
widely used techniques in computer vision. Applications range from optical flow and tracking to layered motion,
mosaic construction, and face coding. Numerous algorithms have been proposed and a wide variety of extensions
have been made to the original formulation. We present an overview of image alignment, describing most of the
algorithms and their extensions in a consistent framework. We concentrate on the inverse compositional algorithm,
an efficient algorithm that we recently proposed. We examine which of the extensions to Lucas-Kanade can be used
with the inverse compositional algorithm without any significant loss of efficiency, and which cannot. In this paper,
Part 1 in a series of papers, we cover the quantity approximated, the warp update rule, and the gradient descent
approximation. In future papers, we will cover the choice of the error function, how to allow linear appearance
variation, and how to impose priors on the parameters.

Keywords: image alignment, Lucas-Kanade, a unifying framework, additive vs. compositional algorithms, for-
wards vs. inverse algorithms, the inverse compositional algorithm, efficiency, steepest descent, Gauss-Newton,
Newton, Levenberg-Marquardt

1. Introduction

Image alignment consists of moving, and possibly de-
forming, a template to minimize the difference between
the template and an image. Since the first use of im-
age alignment in the Lucas-Kanade optical flow al-
gorithm (Lucas and Kanade, 1981), image alignment
has become one of the most widely used techniques
in computer vision. Besides optical flow, some of its
other applications include tracking (Black and Jepson,
1998; Hager and Belhumeur, 1998), parametric and
layered motion estimation (Bergen et al., 1992), mo-
saic construction (Shum and Szeliski, 2000), medical
image registration (Christensen and Johnson, 2001),
and face coding (Baker and Matthews, 2001; Cootes
et al., 1998).

The usual approach to image alignment is gradi-
ent descent. A variety of other numerical algorithms

such as difference decomposition (Gleicher, 1997) and
linear regression (Cootes et al., 1998) have also been
proposed, but gradient descent is the defacto standard.
Gradient descent can be performed in variety of dif-
ferent ways, however. One difference between the var-
ious approaches is whether they estimate an additive
increment to the parameters (the additive approach
(Lucas and Kanade, 1981)), or whether they estimate
an incremental warp that is then composed with the
current estimate of the warp (the compositional ap-
proach (Shum and Szeliski, 2000)). Another difference
is whether the algorithm performs a Gauss-Newton, a
Newton, a steepest-descent, or a Levenberg-Marquardt
approximation in each gradient descent step.

We propose a unifying framework for image align-
ment, describing the various algorithms and their ex-
tensions in a consistent manner. Throughout the frame-
work we concentrate on the inverse compositional

IJCV 2004
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solves for increments to the parameters !p; i.e. the
following expression is (approximately) minimized:

∑

x
[I (W(x; p + !p)) − T (x)]2 (4)

with respect to !p, and then the parameters are up-
dated:

p ← p + !p. (5)

These two steps are iterated until the estimates of the
parameters p converge. Typically the test for conver-
gence is whether some norm of the vector !p is below
a threshold ϵ; i.e. ∥!p∥ ≤ ϵ.

2.2. Derivation of the Lucas-Kanade Algorithm

The Lucas-Kanade algorithm (which is a Gauss-
Newton gradient descent non-linear optimization al-
gorithm) is then derived as follows. The non-linear ex-
pression in Eq. (4) is linearized by performing a first
order Taylor expansion on I (W(x; p + !p)) to give:

∑

x

[
I (W(x; p)) + ∇I

∂W
∂p

!p − T (x)
]2

. (6)

In this expression, ∇I = ( ∂ I
∂x , ∂ I

∂y ) is the gradient of
image I evaluated at W(x; p); i.e. ∇I is computed
in the coordinate frame of I and then warped back onto
the coordinate frame of T using the current estimate of
the warp W(x; p). The term ∂W

∂p is the Jacobian of the
warp. If W(x; p) = (Wx (x; p), Wy(x; p))T then:

∂W
∂p

=

⎛

⎝
∂Wx
∂p1

∂Wx
∂p2

. . . ∂Wx
∂pn

∂Wy

∂p1

∂Wy

∂p2
. . .

∂Wy

∂pn

⎞

⎠ . (7)

We follow the notational convention that the partial
derivatives with respect to a column vector are laid out
as a row vector. This convention has the advantage that
the chain rule results in a matrix multiplication, as in
the expression in Eq. (6). For example, the affine warp
in Eq. (2) has the Jacobian:

∂W
∂p

=
(

x 0 y 0 1 0

0 x 0 y 0 1

)
. (8)

Minimizing the expression in Eq. (6) is a least squares
problem and has a closed from solution which can be

Figure 1. The Lucas-Kanade algorithm (Lucas and Kanade, 1981)
consists of iteratively applying Eqs. (10) and (5) until the estimates
of the parameters p converge. Typically the test for convergence
is whether some norm of the vector !p is below a user specified
threshold ϵ. Because the gradient ∇I must be evaluated at W(x; p)
and the Jacobian ∂W

∂p must be evaluated at p, all 9 steps must be
repeated in every iteration of the algorithm.

derived as follows. The partial derivative of the expres-
sion in Eq. (6) with respect to !p is:

2
∑

x

[
∇I

∂W
∂p

]T[
I (W(x; p)) + ∇I

∂W
∂p

!p − T (x)
]

(9)

where we refer to ∇I ∂W
∂p as the steepest descent im-

ages. (See Section 4.3 for why.) Setting this expression
to equal zero and solving gives the closed form solution
for the minimum of the expression in Eq. (6) as:

!p = H−1
∑

x

[
∇I

∂W
∂p

]T

[T (x) − I (W(x; p))]

(10)

where H is the n × n (Gauss-Newton approximation
to the) Hessian matrix:

H =
∑

x

[
∇I

∂W
∂p

]T[
∇I

∂W
∂p

]
. (11)

For reasons that will become clear later we refer to∑
x[∇I ∂W

∂p ]T[T (x) − I (W(x; p))] as the steepest de-
scent parameter updates. Equation (10) then expresses
the fact that the parameter updates !p are the steepest
descent parameter updates multiplied by the inverse
of the Hessian matrix. The Lucas-Kanade algorithm
(Lucas and Kanade, 1981) then consists of iteratively
applying Eqs. (10) and (5). See Figs. 1 and 2 for a sum-
mary. Because the gradient ∇I must be evaluated at
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derived as follows. The partial derivative of the expres-
sion in Eq. (6) with respect to !p is:
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!p − T (x)
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where we refer to ∇I ∂W
∂p as the steepest descent im-

ages. (See Section 4.3 for why.) Setting this expression
to equal zero and solving gives the closed form solution
for the minimum of the expression in Eq. (6) as:

!p = H−1
∑

x

[
∇I

∂W
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]T

[T (x) − I (W(x; p))]

(10)

where H is the n × n (Gauss-Newton approximation
to the) Hessian matrix:

H =
∑

x

[
∇I

∂W
∂p

]T[
∇I

∂W
∂p

]
. (11)

For reasons that will become clear later we refer to∑
x[∇I ∂W

∂p ]T[T (x) − I (W(x; p))] as the steepest de-
scent parameter updates. Equation (10) then expresses
the fact that the parameter updates !p are the steepest
descent parameter updates multiplied by the inverse
of the Hessian matrix. The Lucas-Kanade algorithm
(Lucas and Kanade, 1981) then consists of iteratively
applying Eqs. (10) and (5). See Figs. 1 and 2 for a sum-
mary. Because the gradient ∇I must be evaluated at
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mary. Because the gradient ∇I must be evaluated at

Lucas-Kanade 20 Years On: A Unifying Framework 225

Table 1. The computation cost of one iteration of the Lucas-Kanade algorithm. If n is the number of warp
parameters and N is the number of pixels in the template T , the cost of each iteration is O(n2 N + n3). The
most expensive step by far is Step 6, the computation of the Hessian, which alone takes time O(n2 N ).

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Total

O(nN ) O(N ) O(nN ) O(nN ) O(nN ) O(n2 N ) O(nN ) O(n3) O(n) O(n2 N + n3)

2.4. Computational Cost of the
Lucas-Kanade Algorithm

Assume that the number of warp parameters is n and the
number of pixels in T is N . Step 1 of the Lucas-Kanade
algorithm usually takes time O(n N ). For each pixel x
in T we compute W(x; p) and then sample I at that
location. The computational cost of computing W(x; p)
depends on W but for most warps the cost is O(n) per
pixel. Step 2 takes time O(N ). Step 3 takes the same
time as Step 1, usually O(n N ). Computing the Jacobian
in Step 4 also depends on W but for most warps the cost
is O(n) per pixel. The total cost of Step 4 is therefore
O(n N ). Step 5 takes time O(n N ), Step 6 takes time
O(n2 N ), and Step 7 takes time O(n N ). Step 8 takes
time O(n3) to invert the Hessian matrix and time O(n2)
to multiply the result by the steepest descent parameter
updated computed in Step 7. Step 9 just takes time
O(n) to increment the parameters by the updates. The
total computational cost of each iteration is therefore
O(n2 N +n3), the most expensive step being Step 6. See
Table 1 for a summary of these computational costs.

3. The Quantity Approximated and the Warp
Update Rule

In each iteration Lucas-Kanade approximately mini-
mizes

∑
x [ I (W(x; p + !p)) − T (x) ]2 with respect to

!p and then updates the estimates of the parameters in
Step 9 p ← p + !p. Perhaps somewhat surprisingly
iterating these two steps is not the only way to minimize
the expression in Eq. (3). In this section we outline 3
alternative approaches that are all provably equivalent
to the Lucas-Kanade algorithm. We then show empiri-
cally that they are equivalent.

3.1. Compositional Image Alignment

The first alternative to the Lucas-Kanade algorithm is
the compositional algorithm.

3.1.1. Goal of the Compositional Algorithm. The
compositional algorithm, used most notably by Shum
and Szeliski (2000), approximately minimizes:

∑

x
[I (W(W(x; !p); p)) − T (x)]2 (12)

with respect to !p in each iteration and then updates
the estimate of the warp as:

W(x; p) ← W(x; p) ◦ W(x; !p), (13)

i.e. the compositional approach iteratively solves for
an incremental warp W(x; !p) rather than an additive
update to the parameters !p. In this context, we refer to
the Lucas-Kanade algorithm in Eqs. (4) and (5) as the
additive approach to contrast it with the compositional
approach in Eqs. (12) and (13). The compositional and
additive approaches are proved to be equivalent to first
order in !p in Section 3.1.5. The expression:

W(x; p) ◦ W(x; !p) ≡ W(W(x; !p); p) (14)

is the composition of 2 warps. For example, if W(x; p)
is the affine warp of Eq. (2) then:

W(x; p) ◦ W(x; !p)

=

⎛

⎜⎜⎜⎜⎜⎜⎝

(1 + p1) · ((1 + !p1) · x + !p3 · y + !p5)
+ p3 · (!p2 · x + (1 + !p4) · y + !p6)
+ p5

p2 · ((1 + !p1) · x + !p3 · y + !p5)
+ (1 + p4) · (!p2 · x + (1 + !p4) · y
+ !p6) + p6

⎞

⎟⎟⎟⎟⎟⎟⎠
,

(15)
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algorithm, an efficient algorithm that we recently pro-
posed (Baker and Matthews, 2001). We examine which
of the extensions to Lucas-Kanade can be applied to
the inverse compositional algorithm without any sig-
nificant loss of efficiency, and which extensions require
additional computation. Wherever possible we provide
empirical results to illustrate the various algorithms and
their extensions.

In this paper, Part 1 in a series of papers, we be-
gin in Section 2 by reviewing the Lucas-Kanade algo-
rithm. We proceed in Section 3 to analyze the quan-
tity that is approximated by the various image align-
ment algorithms and the warp update rule that is used.
We categorize algorithms as either additive or compo-
sitional, and as either forwards or inverse. We prove
the first order equivalence of the various alternatives,
derive the efficiency of the resulting algorithms, de-
scribe the set of warps that each alternative can be
applied to, and finally empirically compare the algo-
rithms. In Section 4 we describe the various gradient de-
scent approximations that can be used in each iteration,
Gauss-Newton, Newton, diagonal Hessian, Levenberg-
Marquardt, and steepest-descent (Press et al., 1992).
We compare these alternatives both in terms of speed
and in terms of empirical performance. We conclude
in Section 5 with a discussion. In future papers in this
series (which will be made available on our website
http://www.ri.cmu.edu/projects/project 515.html), we
will cover the choice of the error function, how to al-
low linear appearance variation, and how to add priors
on the parameters.

2. Background: Lucas-Kanade

The original image alignment algorithm was the Lucas-
Kanade algorithm (Lucas and Kanade, 1981). The goal
of Lucas-Kanade is to align a template image T (x) to an
input image I (x), where x = (x, y)T is a column vector
containing the pixel coordinates. If the Lucas-Kanade
algorithm is being used to compute optical flow or to
track an image patch from time t = 1 to time t = 2,
the template T (x) is an extracted sub-region (a 5 × 5
window, maybe) of the image at t = 1 and I (x) is the
image at t = 2.

Let W(x; p) denote the parameterized set of allowed
warps, where p = (p1, . . . pn)T is a vector of parame-
ters. The warp W(x; p) takes the pixel x in the coordi-
nate frame of the template T and maps it to the sub-pixel
location W(x; p) in the coordinate frame of the image
I . If we are computing optical flow, for example, the

warps W(x; p) might be the translations:

W(x; p) =
(

x + p1

y + p2

)
(1)

where the vector of parameters p = (p1, p2)T is then
the optical flow. If we are tracking a larger image patch
moving in 3D we may instead consider the set of affine
warps:

W(x; p) =
(

(1 + p1) · x + p3 · y + p5

p2 · x + (1 + p4) · y + p6

)

=
(

1 + p1 p3 p5

p2 1 + p4 p6

)( x
y
1

)

(2)

where there are 6 parameters p = (p1, p2, p3, p4, p5,

p6)T as, for example, was done in Bergen et al. (1992).
(There are other ways to parameterize affine warps.
Later in this framework we will investigate what is
the best way.) In general, the number of parameters n
may be arbitrarily large and W(x; p) can be arbitrar-
ily complex. One example of a complex warp is the
set of piecewise affine warps used in Active Appear-
ance Models (Cootes et al., 1998; Baker and Matthews,
2001) and Active Blobs (Sclaroff and Isidoro, 1998).

2.1. Goal of the Lucas-Kanade Algorithm

The goal of the Lucas-Kanade algorithm is to mini-
mize the sum of squared error between two images,
the template T and the image I warped back onto the
coordinate frame of the template:

∑

x
[I (W(x; p)) − T (x)]2 . (3)

Warping I back to compute I (W(x; p)) requires inter-
polating the image I at the sub-pixel locations W(x; p).
The minimization of the expression in Eq. (3) is per-
formed with respect to p and the sum is performed
over all of the pixels x in the template image T (x).
Minimizing the expression in Eq. (1) is a non-linear
optimization task even if W(x; p) is linear in p because
the pixel values I (x) are, in general, non-linear in x.
In fact, the pixel values I (x) are essentially un-related
to the pixel coordinates x. To optimize the expression
in Eq. (3), the Lucas-Kanade algorithm assumes that
a current estimate of p is known and then iteratively

W(x;�p) =

✓
(1 +�p1) · x + �p3 · y + �p5

�p2 · x + (1 +�p4) · y + �p6

◆
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solves for increments to the parameters !p; i.e. the
following expression is (approximately) minimized:

∑

x
[I (W(x; p + !p)) − T (x)]2 (4)

with respect to !p, and then the parameters are up-
dated:

p ← p + !p. (5)

These two steps are iterated until the estimates of the
parameters p converge. Typically the test for conver-
gence is whether some norm of the vector !p is below
a threshold ϵ; i.e. ∥!p∥ ≤ ϵ.

2.2. Derivation of the Lucas-Kanade Algorithm

The Lucas-Kanade algorithm (which is a Gauss-
Newton gradient descent non-linear optimization al-
gorithm) is then derived as follows. The non-linear ex-
pression in Eq. (4) is linearized by performing a first
order Taylor expansion on I (W(x; p + !p)) to give:

∑

x

[
I (W(x; p)) + ∇I

∂W
∂p

!p − T (x)
]2

. (6)

In this expression, ∇I = ( ∂ I
∂x , ∂ I

∂y ) is the gradient of
image I evaluated at W(x; p); i.e. ∇I is computed
in the coordinate frame of I and then warped back onto
the coordinate frame of T using the current estimate of
the warp W(x; p). The term ∂W

∂p is the Jacobian of the
warp. If W(x; p) = (Wx (x; p), Wy(x; p))T then:

∂W
∂p

=

⎛

⎝
∂Wx
∂p1

∂Wx
∂p2

. . . ∂Wx
∂pn

∂Wy

∂p1

∂Wy

∂p2
. . .

∂Wy

∂pn

⎞

⎠ . (7)

We follow the notational convention that the partial
derivatives with respect to a column vector are laid out
as a row vector. This convention has the advantage that
the chain rule results in a matrix multiplication, as in
the expression in Eq. (6). For example, the affine warp
in Eq. (2) has the Jacobian:

∂W
∂p

=
(

x 0 y 0 1 0

0 x 0 y 0 1

)
. (8)

Minimizing the expression in Eq. (6) is a least squares
problem and has a closed from solution which can be

Figure 1. The Lucas-Kanade algorithm (Lucas and Kanade, 1981)
consists of iteratively applying Eqs. (10) and (5) until the estimates
of the parameters p converge. Typically the test for convergence
is whether some norm of the vector !p is below a user specified
threshold ϵ. Because the gradient ∇I must be evaluated at W(x; p)
and the Jacobian ∂W

∂p must be evaluated at p, all 9 steps must be
repeated in every iteration of the algorithm.

derived as follows. The partial derivative of the expres-
sion in Eq. (6) with respect to !p is:

2
∑

x

[
∇I

∂W
∂p

]T[
I (W(x; p)) + ∇I

∂W
∂p

!p − T (x)
]

(9)

where we refer to ∇I ∂W
∂p as the steepest descent im-

ages. (See Section 4.3 for why.) Setting this expression
to equal zero and solving gives the closed form solution
for the minimum of the expression in Eq. (6) as:

!p = H−1
∑

x

[
∇I

∂W
∂p

]T

[T (x) − I (W(x; p))]

(10)

where H is the n × n (Gauss-Newton approximation
to the) Hessian matrix:

H =
∑

x

[
∇I

∂W
∂p

]T[
∇I

∂W
∂p

]
. (11)

For reasons that will become clear later we refer to∑
x[∇I ∂W

∂p ]T[T (x) − I (W(x; p))] as the steepest de-
scent parameter updates. Equation (10) then expresses
the fact that the parameter updates !p are the steepest
descent parameter updates multiplied by the inverse
of the Hessian matrix. The Lucas-Kanade algorithm
(Lucas and Kanade, 1981) then consists of iteratively
applying Eqs. (10) and (5). See Figs. 1 and 2 for a sum-
mary. Because the gradient ∇I must be evaluated at
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solves for increments to the parameters !p; i.e. the
following expression is (approximately) minimized:

∑

x
[I (W(x; p + !p)) − T (x)]2 (4)

with respect to !p, and then the parameters are up-
dated:

p ← p + !p. (5)

These two steps are iterated until the estimates of the
parameters p converge. Typically the test for conver-
gence is whether some norm of the vector !p is below
a threshold ϵ; i.e. ∥!p∥ ≤ ϵ.

2.2. Derivation of the Lucas-Kanade Algorithm

The Lucas-Kanade algorithm (which is a Gauss-
Newton gradient descent non-linear optimization al-
gorithm) is then derived as follows. The non-linear ex-
pression in Eq. (4) is linearized by performing a first
order Taylor expansion on I (W(x; p + !p)) to give:

∑

x

[
I (W(x; p)) + ∇I

∂W
∂p

!p − T (x)
]2

. (6)

In this expression, ∇I = ( ∂ I
∂x , ∂ I

∂y ) is the gradient of
image I evaluated at W(x; p); i.e. ∇I is computed
in the coordinate frame of I and then warped back onto
the coordinate frame of T using the current estimate of
the warp W(x; p). The term ∂W

∂p is the Jacobian of the
warp. If W(x; p) = (Wx (x; p), Wy(x; p))T then:

∂W
∂p

=

⎛

⎝
∂Wx
∂p1

∂Wx
∂p2

. . . ∂Wx
∂pn

∂Wy

∂p1

∂Wy

∂p2
. . .

∂Wy

∂pn

⎞

⎠ . (7)

We follow the notational convention that the partial
derivatives with respect to a column vector are laid out
as a row vector. This convention has the advantage that
the chain rule results in a matrix multiplication, as in
the expression in Eq. (6). For example, the affine warp
in Eq. (2) has the Jacobian:

∂W
∂p

=
(

x 0 y 0 1 0

0 x 0 y 0 1

)
. (8)

Minimizing the expression in Eq. (6) is a least squares
problem and has a closed from solution which can be

Figure 1. The Lucas-Kanade algorithm (Lucas and Kanade, 1981)
consists of iteratively applying Eqs. (10) and (5) until the estimates
of the parameters p converge. Typically the test for convergence
is whether some norm of the vector !p is below a user specified
threshold ϵ. Because the gradient ∇I must be evaluated at W(x; p)
and the Jacobian ∂W

∂p must be evaluated at p, all 9 steps must be
repeated in every iteration of the algorithm.

derived as follows. The partial derivative of the expres-
sion in Eq. (6) with respect to !p is:

2
∑

x

[
∇I

∂W
∂p

]T[
I (W(x; p)) + ∇I

∂W
∂p

!p − T (x)
]

(9)

where we refer to ∇I ∂W
∂p as the steepest descent im-

ages. (See Section 4.3 for why.) Setting this expression
to equal zero and solving gives the closed form solution
for the minimum of the expression in Eq. (6) as:

!p = H−1
∑

x

[
∇I

∂W
∂p

]T

[T (x) − I (W(x; p))]

(10)

where H is the n × n (Gauss-Newton approximation
to the) Hessian matrix:

H =
∑

x

[
∇I

∂W
∂p

]T[
∇I

∂W
∂p

]
. (11)

For reasons that will become clear later we refer to∑
x[∇I ∂W

∂p ]T[T (x) − I (W(x; p))] as the steepest de-
scent parameter updates. Equation (10) then expresses
the fact that the parameter updates !p are the steepest
descent parameter updates multiplied by the inverse
of the Hessian matrix. The Lucas-Kanade algorithm
(Lucas and Kanade, 1981) then consists of iteratively
applying Eqs. (10) and (5). See Figs. 1 and 2 for a sum-
mary. Because the gradient ∇I must be evaluated at
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Table 1. The computation cost of one iteration of the Lucas-Kanade algorithm. If n is the number of warp
parameters and N is the number of pixels in the template T , the cost of each iteration is O(n2 N + n3). The
most expensive step by far is Step 6, the computation of the Hessian, which alone takes time O(n2 N ).

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Total

O(nN ) O(N ) O(nN ) O(nN ) O(nN ) O(n2 N ) O(nN ) O(n3) O(n) O(n2 N + n3)

2.4. Computational Cost of the
Lucas-Kanade Algorithm

Assume that the number of warp parameters is n and the
number of pixels in T is N . Step 1 of the Lucas-Kanade
algorithm usually takes time O(n N ). For each pixel x
in T we compute W(x; p) and then sample I at that
location. The computational cost of computing W(x; p)
depends on W but for most warps the cost is O(n) per
pixel. Step 2 takes time O(N ). Step 3 takes the same
time as Step 1, usually O(n N ). Computing the Jacobian
in Step 4 also depends on W but for most warps the cost
is O(n) per pixel. The total cost of Step 4 is therefore
O(n N ). Step 5 takes time O(n N ), Step 6 takes time
O(n2 N ), and Step 7 takes time O(n N ). Step 8 takes
time O(n3) to invert the Hessian matrix and time O(n2)
to multiply the result by the steepest descent parameter
updated computed in Step 7. Step 9 just takes time
O(n) to increment the parameters by the updates. The
total computational cost of each iteration is therefore
O(n2 N +n3), the most expensive step being Step 6. See
Table 1 for a summary of these computational costs.

3. The Quantity Approximated and the Warp
Update Rule

In each iteration Lucas-Kanade approximately mini-
mizes

∑
x [ I (W(x; p + !p)) − T (x) ]2 with respect to

!p and then updates the estimates of the parameters in
Step 9 p ← p + !p. Perhaps somewhat surprisingly
iterating these two steps is not the only way to minimize
the expression in Eq. (3). In this section we outline 3
alternative approaches that are all provably equivalent
to the Lucas-Kanade algorithm. We then show empiri-
cally that they are equivalent.

3.1. Compositional Image Alignment

The first alternative to the Lucas-Kanade algorithm is
the compositional algorithm.

3.1.1. Goal of the Compositional Algorithm. The
compositional algorithm, used most notably by Shum
and Szeliski (2000), approximately minimizes:

∑

x
[I (W(W(x; !p); p)) − T (x)]2 (12)

with respect to !p in each iteration and then updates
the estimate of the warp as:

W(x; p) ← W(x; p) ◦ W(x; !p), (13)

i.e. the compositional approach iteratively solves for
an incremental warp W(x; !p) rather than an additive
update to the parameters !p. In this context, we refer to
the Lucas-Kanade algorithm in Eqs. (4) and (5) as the
additive approach to contrast it with the compositional
approach in Eqs. (12) and (13). The compositional and
additive approaches are proved to be equivalent to first
order in !p in Section 3.1.5. The expression:

W(x; p) ◦ W(x; !p) ≡ W(W(x; !p); p) (14)

is the composition of 2 warps. For example, if W(x; p)
is the affine warp of Eq. (2) then:

W(x; p) ◦ W(x; !p)

=

⎛

⎜⎜⎜⎜⎜⎜⎝

(1 + p1) · ((1 + !p1) · x + !p3 · y + !p5)
+ p3 · (!p2 · x + (1 + !p4) · y + !p6)
+ p5

p2 · ((1 + !p1) · x + !p3 · y + !p5)
+ (1 + p4) · (!p2 · x + (1 + !p4) · y
+ !p6) + p6

⎞

⎟⎟⎟⎟⎟⎟⎠
,

(15)
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algorithm, an efficient algorithm that we recently pro-
posed (Baker and Matthews, 2001). We examine which
of the extensions to Lucas-Kanade can be applied to
the inverse compositional algorithm without any sig-
nificant loss of efficiency, and which extensions require
additional computation. Wherever possible we provide
empirical results to illustrate the various algorithms and
their extensions.

In this paper, Part 1 in a series of papers, we be-
gin in Section 2 by reviewing the Lucas-Kanade algo-
rithm. We proceed in Section 3 to analyze the quan-
tity that is approximated by the various image align-
ment algorithms and the warp update rule that is used.
We categorize algorithms as either additive or compo-
sitional, and as either forwards or inverse. We prove
the first order equivalence of the various alternatives,
derive the efficiency of the resulting algorithms, de-
scribe the set of warps that each alternative can be
applied to, and finally empirically compare the algo-
rithms. In Section 4 we describe the various gradient de-
scent approximations that can be used in each iteration,
Gauss-Newton, Newton, diagonal Hessian, Levenberg-
Marquardt, and steepest-descent (Press et al., 1992).
We compare these alternatives both in terms of speed
and in terms of empirical performance. We conclude
in Section 5 with a discussion. In future papers in this
series (which will be made available on our website
http://www.ri.cmu.edu/projects/project 515.html), we
will cover the choice of the error function, how to al-
low linear appearance variation, and how to add priors
on the parameters.

2. Background: Lucas-Kanade

The original image alignment algorithm was the Lucas-
Kanade algorithm (Lucas and Kanade, 1981). The goal
of Lucas-Kanade is to align a template image T (x) to an
input image I (x), where x = (x, y)T is a column vector
containing the pixel coordinates. If the Lucas-Kanade
algorithm is being used to compute optical flow or to
track an image patch from time t = 1 to time t = 2,
the template T (x) is an extracted sub-region (a 5 × 5
window, maybe) of the image at t = 1 and I (x) is the
image at t = 2.

Let W(x; p) denote the parameterized set of allowed
warps, where p = (p1, . . . pn)T is a vector of parame-
ters. The warp W(x; p) takes the pixel x in the coordi-
nate frame of the template T and maps it to the sub-pixel
location W(x; p) in the coordinate frame of the image
I . If we are computing optical flow, for example, the

warps W(x; p) might be the translations:

W(x; p) =
(

x + p1

y + p2

)
(1)

where the vector of parameters p = (p1, p2)T is then
the optical flow. If we are tracking a larger image patch
moving in 3D we may instead consider the set of affine
warps:

W(x; p) =
(

(1 + p1) · x + p3 · y + p5

p2 · x + (1 + p4) · y + p6

)

=
(

1 + p1 p3 p5

p2 1 + p4 p6

)( x
y
1

)

(2)

where there are 6 parameters p = (p1, p2, p3, p4, p5,

p6)T as, for example, was done in Bergen et al. (1992).
(There are other ways to parameterize affine warps.
Later in this framework we will investigate what is
the best way.) In general, the number of parameters n
may be arbitrarily large and W(x; p) can be arbitrar-
ily complex. One example of a complex warp is the
set of piecewise affine warps used in Active Appear-
ance Models (Cootes et al., 1998; Baker and Matthews,
2001) and Active Blobs (Sclaroff and Isidoro, 1998).

2.1. Goal of the Lucas-Kanade Algorithm

The goal of the Lucas-Kanade algorithm is to mini-
mize the sum of squared error between two images,
the template T and the image I warped back onto the
coordinate frame of the template:

∑

x
[I (W(x; p)) − T (x)]2 . (3)

Warping I back to compute I (W(x; p)) requires inter-
polating the image I at the sub-pixel locations W(x; p).
The minimization of the expression in Eq. (3) is per-
formed with respect to p and the sum is performed
over all of the pixels x in the template image T (x).
Minimizing the expression in Eq. (1) is a non-linear
optimization task even if W(x; p) is linear in p because
the pixel values I (x) are, in general, non-linear in x.
In fact, the pixel values I (x) are essentially un-related
to the pixel coordinates x. To optimize the expression
in Eq. (3), the Lucas-Kanade algorithm assumes that
a current estimate of p is known and then iteratively
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Table 1. The computation cost of one iteration of the Lucas-Kanade algorithm. If n is the number of warp
parameters and N is the number of pixels in the template T , the cost of each iteration is O(n2 N + n3). The
most expensive step by far is Step 6, the computation of the Hessian, which alone takes time O(n2 N ).

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Total

O(nN ) O(N ) O(nN ) O(nN ) O(nN ) O(n2 N ) O(nN ) O(n3) O(n) O(n2 N + n3)

2.4. Computational Cost of the
Lucas-Kanade Algorithm

Assume that the number of warp parameters is n and the
number of pixels in T is N . Step 1 of the Lucas-Kanade
algorithm usually takes time O(n N ). For each pixel x
in T we compute W(x; p) and then sample I at that
location. The computational cost of computing W(x; p)
depends on W but for most warps the cost is O(n) per
pixel. Step 2 takes time O(N ). Step 3 takes the same
time as Step 1, usually O(n N ). Computing the Jacobian
in Step 4 also depends on W but for most warps the cost
is O(n) per pixel. The total cost of Step 4 is therefore
O(n N ). Step 5 takes time O(n N ), Step 6 takes time
O(n2 N ), and Step 7 takes time O(n N ). Step 8 takes
time O(n3) to invert the Hessian matrix and time O(n2)
to multiply the result by the steepest descent parameter
updated computed in Step 7. Step 9 just takes time
O(n) to increment the parameters by the updates. The
total computational cost of each iteration is therefore
O(n2 N +n3), the most expensive step being Step 6. See
Table 1 for a summary of these computational costs.

3. The Quantity Approximated and the Warp
Update Rule

In each iteration Lucas-Kanade approximately mini-
mizes

∑
x [ I (W(x; p + !p)) − T (x) ]2 with respect to

!p and then updates the estimates of the parameters in
Step 9 p ← p + !p. Perhaps somewhat surprisingly
iterating these two steps is not the only way to minimize
the expression in Eq. (3). In this section we outline 3
alternative approaches that are all provably equivalent
to the Lucas-Kanade algorithm. We then show empiri-
cally that they are equivalent.

3.1. Compositional Image Alignment

The first alternative to the Lucas-Kanade algorithm is
the compositional algorithm.

3.1.1. Goal of the Compositional Algorithm. The
compositional algorithm, used most notably by Shum
and Szeliski (2000), approximately minimizes:

∑

x
[I (W(W(x; !p); p)) − T (x)]2 (12)

with respect to !p in each iteration and then updates
the estimate of the warp as:

W(x; p) ← W(x; p) ◦ W(x; !p), (13)

i.e. the compositional approach iteratively solves for
an incremental warp W(x; !p) rather than an additive
update to the parameters !p. In this context, we refer to
the Lucas-Kanade algorithm in Eqs. (4) and (5) as the
additive approach to contrast it with the compositional
approach in Eqs. (12) and (13). The compositional and
additive approaches are proved to be equivalent to first
order in !p in Section 3.1.5. The expression:

W(x; p) ◦ W(x; !p) ≡ W(W(x; !p); p) (14)

is the composition of 2 warps. For example, if W(x; p)
is the affine warp of Eq. (2) then:

W(x; p) ◦ W(x; !p)

=

⎛

⎜⎜⎜⎜⎜⎜⎝

(1 + p1) · ((1 + !p1) · x + !p3 · y + !p5)
+ p3 · (!p2 · x + (1 + !p4) · y + !p6)
+ p5

p2 · ((1 + !p1) · x + !p3 · y + !p5)
+ (1 + p4) · (!p2 · x + (1 + !p4) · y
+ !p6) + p6

⎞

⎟⎟⎟⎟⎟⎟⎠
,

(15)

W(x;�p) =

✓
(1 +�p1) · x + �p3 · y + �p5

�p2 · x + (1 +�p4) · y + �p6

◆
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Table 1. The computation cost of one iteration of the Lucas-Kanade algorithm. If n is the number of warp
parameters and N is the number of pixels in the template T , the cost of each iteration is O(n2 N + n3). The
most expensive step by far is Step 6, the computation of the Hessian, which alone takes time O(n2 N ).

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Total

O(nN ) O(N ) O(nN ) O(nN ) O(nN ) O(n2 N ) O(nN ) O(n3) O(n) O(n2 N + n3)

2.4. Computational Cost of the
Lucas-Kanade Algorithm

Assume that the number of warp parameters is n and the
number of pixels in T is N . Step 1 of the Lucas-Kanade
algorithm usually takes time O(n N ). For each pixel x
in T we compute W(x; p) and then sample I at that
location. The computational cost of computing W(x; p)
depends on W but for most warps the cost is O(n) per
pixel. Step 2 takes time O(N ). Step 3 takes the same
time as Step 1, usually O(n N ). Computing the Jacobian
in Step 4 also depends on W but for most warps the cost
is O(n) per pixel. The total cost of Step 4 is therefore
O(n N ). Step 5 takes time O(n N ), Step 6 takes time
O(n2 N ), and Step 7 takes time O(n N ). Step 8 takes
time O(n3) to invert the Hessian matrix and time O(n2)
to multiply the result by the steepest descent parameter
updated computed in Step 7. Step 9 just takes time
O(n) to increment the parameters by the updates. The
total computational cost of each iteration is therefore
O(n2 N +n3), the most expensive step being Step 6. See
Table 1 for a summary of these computational costs.

3. The Quantity Approximated and the Warp
Update Rule

In each iteration Lucas-Kanade approximately mini-
mizes

∑
x [ I (W(x; p + !p)) − T (x) ]2 with respect to

!p and then updates the estimates of the parameters in
Step 9 p ← p + !p. Perhaps somewhat surprisingly
iterating these two steps is not the only way to minimize
the expression in Eq. (3). In this section we outline 3
alternative approaches that are all provably equivalent
to the Lucas-Kanade algorithm. We then show empiri-
cally that they are equivalent.

3.1. Compositional Image Alignment

The first alternative to the Lucas-Kanade algorithm is
the compositional algorithm.

3.1.1. Goal of the Compositional Algorithm. The
compositional algorithm, used most notably by Shum
and Szeliski (2000), approximately minimizes:

∑

x
[I (W(W(x; !p); p)) − T (x)]2 (12)

with respect to !p in each iteration and then updates
the estimate of the warp as:

W(x; p) ← W(x; p) ◦ W(x; !p), (13)

i.e. the compositional approach iteratively solves for
an incremental warp W(x; !p) rather than an additive
update to the parameters !p. In this context, we refer to
the Lucas-Kanade algorithm in Eqs. (4) and (5) as the
additive approach to contrast it with the compositional
approach in Eqs. (12) and (13). The compositional and
additive approaches are proved to be equivalent to first
order in !p in Section 3.1.5. The expression:

W(x; p) ◦ W(x; !p) ≡ W(W(x; !p); p) (14)

is the composition of 2 warps. For example, if W(x; p)
is the affine warp of Eq. (2) then:

W(x; p) ◦ W(x; !p)

=

⎛

⎜⎜⎜⎜⎜⎜⎝

(1 + p1) · ((1 + !p1) · x + !p3 · y + !p5)
+ p3 · (!p2 · x + (1 + !p4) · y + !p6)
+ p5

p2 · ((1 + !p1) · x + !p3 · y + !p5)
+ (1 + p4) · (!p2 · x + (1 + !p4) · y
+ !p6) + p6

⎞

⎟⎟⎟⎟⎟⎟⎠
,

(15)

Work out Taylor expansion; it turns out Jacobian is evaluated at                        , which means it can be precomputed �p = 0
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solves for increments to the parameters !p; i.e. the
following expression is (approximately) minimized:

∑

x
[I (W(x; p + !p)) − T (x)]2 (4)

with respect to !p, and then the parameters are up-
dated:

p ← p + !p. (5)

These two steps are iterated until the estimates of the
parameters p converge. Typically the test for conver-
gence is whether some norm of the vector !p is below
a threshold ϵ; i.e. ∥!p∥ ≤ ϵ.

2.2. Derivation of the Lucas-Kanade Algorithm

The Lucas-Kanade algorithm (which is a Gauss-
Newton gradient descent non-linear optimization al-
gorithm) is then derived as follows. The non-linear ex-
pression in Eq. (4) is linearized by performing a first
order Taylor expansion on I (W(x; p + !p)) to give:

∑

x

[
I (W(x; p)) + ∇I

∂W
∂p

!p − T (x)
]2

. (6)

In this expression, ∇I = ( ∂ I
∂x , ∂ I

∂y ) is the gradient of
image I evaluated at W(x; p); i.e. ∇I is computed
in the coordinate frame of I and then warped back onto
the coordinate frame of T using the current estimate of
the warp W(x; p). The term ∂W

∂p is the Jacobian of the
warp. If W(x; p) = (Wx (x; p), Wy(x; p))T then:

∂W
∂p

=

⎛

⎝
∂Wx
∂p1

∂Wx
∂p2

. . . ∂Wx
∂pn

∂Wy

∂p1

∂Wy

∂p2
. . .

∂Wy

∂pn

⎞

⎠ . (7)

We follow the notational convention that the partial
derivatives with respect to a column vector are laid out
as a row vector. This convention has the advantage that
the chain rule results in a matrix multiplication, as in
the expression in Eq. (6). For example, the affine warp
in Eq. (2) has the Jacobian:

∂W
∂p

=
(

x 0 y 0 1 0

0 x 0 y 0 1

)
. (8)

Minimizing the expression in Eq. (6) is a least squares
problem and has a closed from solution which can be

Figure 1. The Lucas-Kanade algorithm (Lucas and Kanade, 1981)
consists of iteratively applying Eqs. (10) and (5) until the estimates
of the parameters p converge. Typically the test for convergence
is whether some norm of the vector !p is below a user specified
threshold ϵ. Because the gradient ∇I must be evaluated at W(x; p)
and the Jacobian ∂W

∂p must be evaluated at p, all 9 steps must be
repeated in every iteration of the algorithm.

derived as follows. The partial derivative of the expres-
sion in Eq. (6) with respect to !p is:

2
∑

x

[
∇I

∂W
∂p

]T[
I (W(x; p)) + ∇I

∂W
∂p

!p − T (x)
]

(9)

where we refer to ∇I ∂W
∂p as the steepest descent im-

ages. (See Section 4.3 for why.) Setting this expression
to equal zero and solving gives the closed form solution
for the minimum of the expression in Eq. (6) as:

!p = H−1
∑

x

[
∇I

∂W
∂p

]T

[T (x) − I (W(x; p))]

(10)

where H is the n × n (Gauss-Newton approximation
to the) Hessian matrix:

H =
∑

x

[
∇I

∂W
∂p

]T[
∇I

∂W
∂p

]
. (11)

For reasons that will become clear later we refer to∑
x[∇I ∂W

∂p ]T[T (x) − I (W(x; p))] as the steepest de-
scent parameter updates. Equation (10) then expresses
the fact that the parameter updates !p are the steepest
descent parameter updates multiplied by the inverse
of the Hessian matrix. The Lucas-Kanade algorithm
(Lucas and Kanade, 1981) then consists of iteratively
applying Eqs. (10) and (5). See Figs. 1 and 2 for a sum-
mary. Because the gradient ∇I must be evaluated at
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solves for increments to the parameters !p; i.e. the
following expression is (approximately) minimized:

∑

x
[I (W(x; p + !p)) − T (x)]2 (4)

with respect to !p, and then the parameters are up-
dated:

p ← p + !p. (5)

These two steps are iterated until the estimates of the
parameters p converge. Typically the test for conver-
gence is whether some norm of the vector !p is below
a threshold ϵ; i.e. ∥!p∥ ≤ ϵ.

2.2. Derivation of the Lucas-Kanade Algorithm

The Lucas-Kanade algorithm (which is a Gauss-
Newton gradient descent non-linear optimization al-
gorithm) is then derived as follows. The non-linear ex-
pression in Eq. (4) is linearized by performing a first
order Taylor expansion on I (W(x; p + !p)) to give:

∑

x

[
I (W(x; p)) + ∇I

∂W
∂p

!p − T (x)
]2

. (6)

In this expression, ∇I = ( ∂ I
∂x , ∂ I

∂y ) is the gradient of
image I evaluated at W(x; p); i.e. ∇I is computed
in the coordinate frame of I and then warped back onto
the coordinate frame of T using the current estimate of
the warp W(x; p). The term ∂W

∂p is the Jacobian of the
warp. If W(x; p) = (Wx (x; p), Wy(x; p))T then:

∂W
∂p

=

⎛

⎝
∂Wx
∂p1

∂Wx
∂p2

. . . ∂Wx
∂pn

∂Wy

∂p1

∂Wy

∂p2
. . .

∂Wy

∂pn

⎞

⎠ . (7)

We follow the notational convention that the partial
derivatives with respect to a column vector are laid out
as a row vector. This convention has the advantage that
the chain rule results in a matrix multiplication, as in
the expression in Eq. (6). For example, the affine warp
in Eq. (2) has the Jacobian:

∂W
∂p

=
(

x 0 y 0 1 0

0 x 0 y 0 1

)
. (8)

Minimizing the expression in Eq. (6) is a least squares
problem and has a closed from solution which can be

Figure 1. The Lucas-Kanade algorithm (Lucas and Kanade, 1981)
consists of iteratively applying Eqs. (10) and (5) until the estimates
of the parameters p converge. Typically the test for convergence
is whether some norm of the vector !p is below a user specified
threshold ϵ. Because the gradient ∇I must be evaluated at W(x; p)
and the Jacobian ∂W

∂p must be evaluated at p, all 9 steps must be
repeated in every iteration of the algorithm.

derived as follows. The partial derivative of the expres-
sion in Eq. (6) with respect to !p is:

2
∑

x

[
∇I

∂W
∂p

]T[
I (W(x; p)) + ∇I

∂W
∂p

!p − T (x)
]

(9)

where we refer to ∇I ∂W
∂p as the steepest descent im-

ages. (See Section 4.3 for why.) Setting this expression
to equal zero and solving gives the closed form solution
for the minimum of the expression in Eq. (6) as:

!p = H−1
∑

x

[
∇I

∂W
∂p

]T

[T (x) − I (W(x; p))]

(10)

where H is the n × n (Gauss-Newton approximation
to the) Hessian matrix:

H =
∑

x

[
∇I

∂W
∂p

]T[
∇I

∂W
∂p

]
. (11)

For reasons that will become clear later we refer to∑
x[∇I ∂W

∂p ]T[T (x) − I (W(x; p))] as the steepest de-
scent parameter updates. Equation (10) then expresses
the fact that the parameter updates !p are the steepest
descent parameter updates multiplied by the inverse
of the Hessian matrix. The Lucas-Kanade algorithm
(Lucas and Kanade, 1981) then consists of iteratively
applying Eqs. (10) and (5). See Figs. 1 and 2 for a sum-
mary. Because the gradient ∇I must be evaluated at
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Table 1. The computation cost of one iteration of the Lucas-Kanade algorithm. If n is the number of warp
parameters and N is the number of pixels in the template T , the cost of each iteration is O(n2 N + n3). The
most expensive step by far is Step 6, the computation of the Hessian, which alone takes time O(n2 N ).

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Total

O(nN ) O(N ) O(nN ) O(nN ) O(nN ) O(n2 N ) O(nN ) O(n3) O(n) O(n2 N + n3)

2.4. Computational Cost of the
Lucas-Kanade Algorithm

Assume that the number of warp parameters is n and the
number of pixels in T is N . Step 1 of the Lucas-Kanade
algorithm usually takes time O(n N ). For each pixel x
in T we compute W(x; p) and then sample I at that
location. The computational cost of computing W(x; p)
depends on W but for most warps the cost is O(n) per
pixel. Step 2 takes time O(N ). Step 3 takes the same
time as Step 1, usually O(n N ). Computing the Jacobian
in Step 4 also depends on W but for most warps the cost
is O(n) per pixel. The total cost of Step 4 is therefore
O(n N ). Step 5 takes time O(n N ), Step 6 takes time
O(n2 N ), and Step 7 takes time O(n N ). Step 8 takes
time O(n3) to invert the Hessian matrix and time O(n2)
to multiply the result by the steepest descent parameter
updated computed in Step 7. Step 9 just takes time
O(n) to increment the parameters by the updates. The
total computational cost of each iteration is therefore
O(n2 N +n3), the most expensive step being Step 6. See
Table 1 for a summary of these computational costs.

3. The Quantity Approximated and the Warp
Update Rule

In each iteration Lucas-Kanade approximately mini-
mizes

∑
x [ I (W(x; p + !p)) − T (x) ]2 with respect to

!p and then updates the estimates of the parameters in
Step 9 p ← p + !p. Perhaps somewhat surprisingly
iterating these two steps is not the only way to minimize
the expression in Eq. (3). In this section we outline 3
alternative approaches that are all provably equivalent
to the Lucas-Kanade algorithm. We then show empiri-
cally that they are equivalent.

3.1. Compositional Image Alignment

The first alternative to the Lucas-Kanade algorithm is
the compositional algorithm.

3.1.1. Goal of the Compositional Algorithm. The
compositional algorithm, used most notably by Shum
and Szeliski (2000), approximately minimizes:

∑

x
[I (W(W(x; !p); p)) − T (x)]2 (12)

with respect to !p in each iteration and then updates
the estimate of the warp as:

W(x; p) ← W(x; p) ◦ W(x; !p), (13)

i.e. the compositional approach iteratively solves for
an incremental warp W(x; !p) rather than an additive
update to the parameters !p. In this context, we refer to
the Lucas-Kanade algorithm in Eqs. (4) and (5) as the
additive approach to contrast it with the compositional
approach in Eqs. (12) and (13). The compositional and
additive approaches are proved to be equivalent to first
order in !p in Section 3.1.5. The expression:

W(x; p) ◦ W(x; !p) ≡ W(W(x; !p); p) (14)

is the composition of 2 warps. For example, if W(x; p)
is the affine warp of Eq. (2) then:

W(x; p) ◦ W(x; !p)

=

⎛

⎜⎜⎜⎜⎜⎜⎝

(1 + p1) · ((1 + !p1) · x + !p3 · y + !p5)
+ p3 · (!p2 · x + (1 + !p4) · y + !p6)
+ p5

p2 · ((1 + !p1) · x + !p3 · y + !p5)
+ (1 + p4) · (!p2 · x + (1 + !p4) · y
+ !p6) + p6

⎞

⎟⎟⎟⎟⎟⎟⎠
,

(15)
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Table 1. The computation cost of one iteration of the Lucas-Kanade algorithm. If n is the number of warp
parameters and N is the number of pixels in the template T , the cost of each iteration is O(n2 N + n3). The
most expensive step by far is Step 6, the computation of the Hessian, which alone takes time O(n2 N ).

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Total

O(nN ) O(N ) O(nN ) O(nN ) O(nN ) O(n2 N ) O(nN ) O(n3) O(n) O(n2 N + n3)

2.4. Computational Cost of the
Lucas-Kanade Algorithm

Assume that the number of warp parameters is n and the
number of pixels in T is N . Step 1 of the Lucas-Kanade
algorithm usually takes time O(n N ). For each pixel x
in T we compute W(x; p) and then sample I at that
location. The computational cost of computing W(x; p)
depends on W but for most warps the cost is O(n) per
pixel. Step 2 takes time O(N ). Step 3 takes the same
time as Step 1, usually O(n N ). Computing the Jacobian
in Step 4 also depends on W but for most warps the cost
is O(n) per pixel. The total cost of Step 4 is therefore
O(n N ). Step 5 takes time O(n N ), Step 6 takes time
O(n2 N ), and Step 7 takes time O(n N ). Step 8 takes
time O(n3) to invert the Hessian matrix and time O(n2)
to multiply the result by the steepest descent parameter
updated computed in Step 7. Step 9 just takes time
O(n) to increment the parameters by the updates. The
total computational cost of each iteration is therefore
O(n2 N +n3), the most expensive step being Step 6. See
Table 1 for a summary of these computational costs.

3. The Quantity Approximated and the Warp
Update Rule

In each iteration Lucas-Kanade approximately mini-
mizes

∑
x [ I (W(x; p + !p)) − T (x) ]2 with respect to

!p and then updates the estimates of the parameters in
Step 9 p ← p + !p. Perhaps somewhat surprisingly
iterating these two steps is not the only way to minimize
the expression in Eq. (3). In this section we outline 3
alternative approaches that are all provably equivalent
to the Lucas-Kanade algorithm. We then show empiri-
cally that they are equivalent.

3.1. Compositional Image Alignment

The first alternative to the Lucas-Kanade algorithm is
the compositional algorithm.

3.1.1. Goal of the Compositional Algorithm. The
compositional algorithm, used most notably by Shum
and Szeliski (2000), approximately minimizes:

∑

x
[I (W(W(x; !p); p)) − T (x)]2 (12)

with respect to !p in each iteration and then updates
the estimate of the warp as:

W(x; p) ← W(x; p) ◦ W(x; !p), (13)

i.e. the compositional approach iteratively solves for
an incremental warp W(x; !p) rather than an additive
update to the parameters !p. In this context, we refer to
the Lucas-Kanade algorithm in Eqs. (4) and (5) as the
additive approach to contrast it with the compositional
approach in Eqs. (12) and (13). The compositional and
additive approaches are proved to be equivalent to first
order in !p in Section 3.1.5. The expression:

W(x; p) ◦ W(x; !p) ≡ W(W(x; !p); p) (14)

is the composition of 2 warps. For example, if W(x; p)
is the affine warp of Eq. (2) then:

W(x; p) ◦ W(x; !p)

=

⎛

⎜⎜⎜⎜⎜⎜⎝

(1 + p1) · ((1 + !p1) · x + !p3 · y + !p5)
+ p3 · (!p2 · x + (1 + !p4) · y + !p6)
+ p5

p2 · ((1 + !p1) · x + !p3 · y + !p5)
+ (1 + p4) · (!p2 · x + (1 + !p4) · y
+ !p6) + p6

⎞

⎟⎟⎟⎟⎟⎟⎠
,

(15)
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algorithm, an efficient algorithm that we recently pro-
posed (Baker and Matthews, 2001). We examine which
of the extensions to Lucas-Kanade can be applied to
the inverse compositional algorithm without any sig-
nificant loss of efficiency, and which extensions require
additional computation. Wherever possible we provide
empirical results to illustrate the various algorithms and
their extensions.

In this paper, Part 1 in a series of papers, we be-
gin in Section 2 by reviewing the Lucas-Kanade algo-
rithm. We proceed in Section 3 to analyze the quan-
tity that is approximated by the various image align-
ment algorithms and the warp update rule that is used.
We categorize algorithms as either additive or compo-
sitional, and as either forwards or inverse. We prove
the first order equivalence of the various alternatives,
derive the efficiency of the resulting algorithms, de-
scribe the set of warps that each alternative can be
applied to, and finally empirically compare the algo-
rithms. In Section 4 we describe the various gradient de-
scent approximations that can be used in each iteration,
Gauss-Newton, Newton, diagonal Hessian, Levenberg-
Marquardt, and steepest-descent (Press et al., 1992).
We compare these alternatives both in terms of speed
and in terms of empirical performance. We conclude
in Section 5 with a discussion. In future papers in this
series (which will be made available on our website
http://www.ri.cmu.edu/projects/project 515.html), we
will cover the choice of the error function, how to al-
low linear appearance variation, and how to add priors
on the parameters.

2. Background: Lucas-Kanade

The original image alignment algorithm was the Lucas-
Kanade algorithm (Lucas and Kanade, 1981). The goal
of Lucas-Kanade is to align a template image T (x) to an
input image I (x), where x = (x, y)T is a column vector
containing the pixel coordinates. If the Lucas-Kanade
algorithm is being used to compute optical flow or to
track an image patch from time t = 1 to time t = 2,
the template T (x) is an extracted sub-region (a 5 × 5
window, maybe) of the image at t = 1 and I (x) is the
image at t = 2.

Let W(x; p) denote the parameterized set of allowed
warps, where p = (p1, . . . pn)T is a vector of parame-
ters. The warp W(x; p) takes the pixel x in the coordi-
nate frame of the template T and maps it to the sub-pixel
location W(x; p) in the coordinate frame of the image
I . If we are computing optical flow, for example, the

warps W(x; p) might be the translations:

W(x; p) =
(

x + p1

y + p2

)
(1)

where the vector of parameters p = (p1, p2)T is then
the optical flow. If we are tracking a larger image patch
moving in 3D we may instead consider the set of affine
warps:

W(x; p) =
(

(1 + p1) · x + p3 · y + p5

p2 · x + (1 + p4) · y + p6

)

=
(

1 + p1 p3 p5

p2 1 + p4 p6

)( x
y
1

)

(2)

where there are 6 parameters p = (p1, p2, p3, p4, p5,

p6)T as, for example, was done in Bergen et al. (1992).
(There are other ways to parameterize affine warps.
Later in this framework we will investigate what is
the best way.) In general, the number of parameters n
may be arbitrarily large and W(x; p) can be arbitrar-
ily complex. One example of a complex warp is the
set of piecewise affine warps used in Active Appear-
ance Models (Cootes et al., 1998; Baker and Matthews,
2001) and Active Blobs (Sclaroff and Isidoro, 1998).

2.1. Goal of the Lucas-Kanade Algorithm

The goal of the Lucas-Kanade algorithm is to mini-
mize the sum of squared error between two images,
the template T and the image I warped back onto the
coordinate frame of the template:

∑

x
[I (W(x; p)) − T (x)]2 . (3)

Warping I back to compute I (W(x; p)) requires inter-
polating the image I at the sub-pixel locations W(x; p).
The minimization of the expression in Eq. (3) is per-
formed with respect to p and the sum is performed
over all of the pixels x in the template image T (x).
Minimizing the expression in Eq. (1) is a non-linear
optimization task even if W(x; p) is linear in p because
the pixel values I (x) are, in general, non-linear in x.
In fact, the pixel values I (x) are essentially un-related
to the pixel coordinates x. To optimize the expression
in Eq. (3), the Lucas-Kanade algorithm assumes that
a current estimate of p is known and then iteratively
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Table 1. The computation cost of one iteration of the Lucas-Kanade algorithm. If n is the number of warp
parameters and N is the number of pixels in the template T , the cost of each iteration is O(n2 N + n3). The
most expensive step by far is Step 6, the computation of the Hessian, which alone takes time O(n2 N ).

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Total

O(nN ) O(N ) O(nN ) O(nN ) O(nN ) O(n2 N ) O(nN ) O(n3) O(n) O(n2 N + n3)

2.4. Computational Cost of the
Lucas-Kanade Algorithm

Assume that the number of warp parameters is n and the
number of pixels in T is N . Step 1 of the Lucas-Kanade
algorithm usually takes time O(n N ). For each pixel x
in T we compute W(x; p) and then sample I at that
location. The computational cost of computing W(x; p)
depends on W but for most warps the cost is O(n) per
pixel. Step 2 takes time O(N ). Step 3 takes the same
time as Step 1, usually O(n N ). Computing the Jacobian
in Step 4 also depends on W but for most warps the cost
is O(n) per pixel. The total cost of Step 4 is therefore
O(n N ). Step 5 takes time O(n N ), Step 6 takes time
O(n2 N ), and Step 7 takes time O(n N ). Step 8 takes
time O(n3) to invert the Hessian matrix and time O(n2)
to multiply the result by the steepest descent parameter
updated computed in Step 7. Step 9 just takes time
O(n) to increment the parameters by the updates. The
total computational cost of each iteration is therefore
O(n2 N +n3), the most expensive step being Step 6. See
Table 1 for a summary of these computational costs.

3. The Quantity Approximated and the Warp
Update Rule

In each iteration Lucas-Kanade approximately mini-
mizes

∑
x [ I (W(x; p + !p)) − T (x) ]2 with respect to

!p and then updates the estimates of the parameters in
Step 9 p ← p + !p. Perhaps somewhat surprisingly
iterating these two steps is not the only way to minimize
the expression in Eq. (3). In this section we outline 3
alternative approaches that are all provably equivalent
to the Lucas-Kanade algorithm. We then show empiri-
cally that they are equivalent.

3.1. Compositional Image Alignment

The first alternative to the Lucas-Kanade algorithm is
the compositional algorithm.

3.1.1. Goal of the Compositional Algorithm. The
compositional algorithm, used most notably by Shum
and Szeliski (2000), approximately minimizes:

∑

x
[I (W(W(x; !p); p)) − T (x)]2 (12)

with respect to !p in each iteration and then updates
the estimate of the warp as:

W(x; p) ← W(x; p) ◦ W(x; !p), (13)

i.e. the compositional approach iteratively solves for
an incremental warp W(x; !p) rather than an additive
update to the parameters !p. In this context, we refer to
the Lucas-Kanade algorithm in Eqs. (4) and (5) as the
additive approach to contrast it with the compositional
approach in Eqs. (12) and (13). The compositional and
additive approaches are proved to be equivalent to first
order in !p in Section 3.1.5. The expression:

W(x; p) ◦ W(x; !p) ≡ W(W(x; !p); p) (14)

is the composition of 2 warps. For example, if W(x; p)
is the affine warp of Eq. (2) then:

W(x; p) ◦ W(x; !p)

=

⎛

⎜⎜⎜⎜⎜⎜⎝

(1 + p1) · ((1 + !p1) · x + !p3 · y + !p5)
+ p3 · (!p2 · x + (1 + !p4) · y + !p6)
+ p5

p2 · ((1 + !p1) · x + !p3 · y + !p5)
+ (1 + p4) · (!p2 · x + (1 + !p4) · y
+ !p6) + p6

⎞

⎟⎟⎟⎟⎟⎟⎠
,

(15)

W(x;�p) =

✓
(1 +�p1) · x + �p3 · y + �p5

�p2 · x + (1 +�p4) · y + �p6

◆

Notation:
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(15)

Work out Taylor expansion; it turns out Jacobian is evaluated at                        , which means it can be precomputed �p = 0
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solves for increments to the parameters !p; i.e. the
following expression is (approximately) minimized:

∑

x
[I (W(x; p + !p)) − T (x)]2 (4)

with respect to !p, and then the parameters are up-
dated:

p ← p + !p. (5)

These two steps are iterated until the estimates of the
parameters p converge. Typically the test for conver-
gence is whether some norm of the vector !p is below
a threshold ϵ; i.e. ∥!p∥ ≤ ϵ.

2.2. Derivation of the Lucas-Kanade Algorithm

The Lucas-Kanade algorithm (which is a Gauss-
Newton gradient descent non-linear optimization al-
gorithm) is then derived as follows. The non-linear ex-
pression in Eq. (4) is linearized by performing a first
order Taylor expansion on I (W(x; p + !p)) to give:

∑

x

[
I (W(x; p)) + ∇I

∂W
∂p

!p − T (x)
]2

. (6)

In this expression, ∇I = ( ∂ I
∂x , ∂ I

∂y ) is the gradient of
image I evaluated at W(x; p); i.e. ∇I is computed
in the coordinate frame of I and then warped back onto
the coordinate frame of T using the current estimate of
the warp W(x; p). The term ∂W

∂p is the Jacobian of the
warp. If W(x; p) = (Wx (x; p), Wy(x; p))T then:

∂W
∂p

=

⎛

⎝
∂Wx
∂p1

∂Wx
∂p2

. . . ∂Wx
∂pn

∂Wy

∂p1

∂Wy

∂p2
. . .

∂Wy

∂pn

⎞

⎠ . (7)

We follow the notational convention that the partial
derivatives with respect to a column vector are laid out
as a row vector. This convention has the advantage that
the chain rule results in a matrix multiplication, as in
the expression in Eq. (6). For example, the affine warp
in Eq. (2) has the Jacobian:

∂W
∂p

=
(

x 0 y 0 1 0

0 x 0 y 0 1

)
. (8)

Minimizing the expression in Eq. (6) is a least squares
problem and has a closed from solution which can be

Figure 1. The Lucas-Kanade algorithm (Lucas and Kanade, 1981)
consists of iteratively applying Eqs. (10) and (5) until the estimates
of the parameters p converge. Typically the test for convergence
is whether some norm of the vector !p is below a user specified
threshold ϵ. Because the gradient ∇I must be evaluated at W(x; p)
and the Jacobian ∂W

∂p must be evaluated at p, all 9 steps must be
repeated in every iteration of the algorithm.

derived as follows. The partial derivative of the expres-
sion in Eq. (6) with respect to !p is:

2
∑

x

[
∇I

∂W
∂p

]T[
I (W(x; p)) + ∇I

∂W
∂p

!p − T (x)
]

(9)

where we refer to ∇I ∂W
∂p as the steepest descent im-

ages. (See Section 4.3 for why.) Setting this expression
to equal zero and solving gives the closed form solution
for the minimum of the expression in Eq. (6) as:

!p = H−1
∑

x

[
∇I

∂W
∂p

]T

[T (x) − I (W(x; p))]

(10)

where H is the n × n (Gauss-Newton approximation
to the) Hessian matrix:

H =
∑

x

[
∇I

∂W
∂p

]T[
∇I

∂W
∂p

]
. (11)

For reasons that will become clear later we refer to∑
x[∇I ∂W

∂p ]T[T (x) − I (W(x; p))] as the steepest de-
scent parameter updates. Equation (10) then expresses
the fact that the parameter updates !p are the steepest
descent parameter updates multiplied by the inverse
of the Hessian matrix. The Lucas-Kanade algorithm
(Lucas and Kanade, 1981) then consists of iteratively
applying Eqs. (10) and (5). See Figs. 1 and 2 for a sum-
mary. Because the gradient ∇I must be evaluated at
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threshold ϵ. Because the gradient ∇I must be evaluated at W(x; p)
and the Jacobian ∂W

∂p must be evaluated at p, all 9 steps must be
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sion in Eq. (6) with respect to !p is:
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where we refer to ∇I ∂W
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ages. (See Section 4.3 for why.) Setting this expression
to equal zero and solving gives the closed form solution
for the minimum of the expression in Eq. (6) as:
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to the) Hessian matrix:

H =
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For reasons that will become clear later we refer to∑
x[∇I ∂W

∂p ]T[T (x) − I (W(x; p))] as the steepest de-
scent parameter updates. Equation (10) then expresses
the fact that the parameter updates !p are the steepest
descent parameter updates multiplied by the inverse
of the Hessian matrix. The Lucas-Kanade algorithm
(Lucas and Kanade, 1981) then consists of iteratively
applying Eqs. (10) and (5). See Figs. 1 and 2 for a sum-
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Table 1. The computation cost of one iteration of the Lucas-Kanade algorithm. If n is the number of warp
parameters and N is the number of pixels in the template T , the cost of each iteration is O(n2 N + n3). The
most expensive step by far is Step 6, the computation of the Hessian, which alone takes time O(n2 N ).

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Total

O(nN ) O(N ) O(nN ) O(nN ) O(nN ) O(n2 N ) O(nN ) O(n3) O(n) O(n2 N + n3)

2.4. Computational Cost of the
Lucas-Kanade Algorithm

Assume that the number of warp parameters is n and the
number of pixels in T is N . Step 1 of the Lucas-Kanade
algorithm usually takes time O(n N ). For each pixel x
in T we compute W(x; p) and then sample I at that
location. The computational cost of computing W(x; p)
depends on W but for most warps the cost is O(n) per
pixel. Step 2 takes time O(N ). Step 3 takes the same
time as Step 1, usually O(n N ). Computing the Jacobian
in Step 4 also depends on W but for most warps the cost
is O(n) per pixel. The total cost of Step 4 is therefore
O(n N ). Step 5 takes time O(n N ), Step 6 takes time
O(n2 N ), and Step 7 takes time O(n N ). Step 8 takes
time O(n3) to invert the Hessian matrix and time O(n2)
to multiply the result by the steepest descent parameter
updated computed in Step 7. Step 9 just takes time
O(n) to increment the parameters by the updates. The
total computational cost of each iteration is therefore
O(n2 N +n3), the most expensive step being Step 6. See
Table 1 for a summary of these computational costs.

3. The Quantity Approximated and the Warp
Update Rule

In each iteration Lucas-Kanade approximately mini-
mizes

∑
x [ I (W(x; p + !p)) − T (x) ]2 with respect to

!p and then updates the estimates of the parameters in
Step 9 p ← p + !p. Perhaps somewhat surprisingly
iterating these two steps is not the only way to minimize
the expression in Eq. (3). In this section we outline 3
alternative approaches that are all provably equivalent
to the Lucas-Kanade algorithm. We then show empiri-
cally that they are equivalent.

3.1. Compositional Image Alignment

The first alternative to the Lucas-Kanade algorithm is
the compositional algorithm.

3.1.1. Goal of the Compositional Algorithm. The
compositional algorithm, used most notably by Shum
and Szeliski (2000), approximately minimizes:

∑

x
[I (W(W(x; !p); p)) − T (x)]2 (12)

with respect to !p in each iteration and then updates
the estimate of the warp as:

W(x; p) ← W(x; p) ◦ W(x; !p), (13)

i.e. the compositional approach iteratively solves for
an incremental warp W(x; !p) rather than an additive
update to the parameters !p. In this context, we refer to
the Lucas-Kanade algorithm in Eqs. (4) and (5) as the
additive approach to contrast it with the compositional
approach in Eqs. (12) and (13). The compositional and
additive approaches are proved to be equivalent to first
order in !p in Section 3.1.5. The expression:

W(x; p) ◦ W(x; !p) ≡ W(W(x; !p); p) (14)

is the composition of 2 warps. For example, if W(x; p)
is the affine warp of Eq. (2) then:

W(x; p) ◦ W(x; !p)

=

⎛

⎜⎜⎜⎜⎜⎜⎝

(1 + p1) · ((1 + !p1) · x + !p3 · y + !p5)
+ p3 · (!p2 · x + (1 + !p4) · y + !p6)
+ p5

p2 · ((1 + !p1) · x + !p3 · y + !p5)
+ (1 + p4) · (!p2 · x + (1 + !p4) · y
+ !p6) + p6

⎞

⎟⎟⎟⎟⎟⎟⎠
,

(15)
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Table 1. The computation cost of one iteration of the Lucas-Kanade algorithm. If n is the number of warp
parameters and N is the number of pixels in the template T , the cost of each iteration is O(n2 N + n3). The
most expensive step by far is Step 6, the computation of the Hessian, which alone takes time O(n2 N ).
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to multiply the result by the steepest descent parameter
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O(n) to increment the parameters by the updates. The
total computational cost of each iteration is therefore
O(n2 N +n3), the most expensive step being Step 6. See
Table 1 for a summary of these computational costs.

3. The Quantity Approximated and the Warp
Update Rule
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mizes

∑
x [ I (W(x; p + !p)) − T (x) ]2 with respect to

!p and then updates the estimates of the parameters in
Step 9 p ← p + !p. Perhaps somewhat surprisingly
iterating these two steps is not the only way to minimize
the expression in Eq. (3). In this section we outline 3
alternative approaches that are all provably equivalent
to the Lucas-Kanade algorithm. We then show empiri-
cally that they are equivalent.

3.1. Compositional Image Alignment

The first alternative to the Lucas-Kanade algorithm is
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3.1.1. Goal of the Compositional Algorithm. The
compositional algorithm, used most notably by Shum
and Szeliski (2000), approximately minimizes:
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with respect to !p in each iteration and then updates
the estimate of the warp as:

W(x; p) ← W(x; p) ◦ W(x; !p), (13)

i.e. the compositional approach iteratively solves for
an incremental warp W(x; !p) rather than an additive
update to the parameters !p. In this context, we refer to
the Lucas-Kanade algorithm in Eqs. (4) and (5) as the
additive approach to contrast it with the compositional
approach in Eqs. (12) and (13). The compositional and
additive approaches are proved to be equivalent to first
order in !p in Section 3.1.5. The expression:

W(x; p) ◦ W(x; !p) ≡ W(W(x; !p); p) (14)

is the composition of 2 warps. For example, if W(x; p)
is the affine warp of Eq. (2) then:

W(x; p) ◦ W(x; !p)

=

⎛

⎜⎜⎜⎜⎜⎜⎝

(1 + p1) · ((1 + !p1) · x + !p3 · y + !p5)
+ p3 · (!p2 · x + (1 + !p4) · y + !p6)
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+ (1 + p4) · (!p2 · x + (1 + !p4) · y
+ !p6) + p6

⎞

⎟⎟⎟⎟⎟⎟⎠
,

(15)
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and from Eq. (26) we see that the second of these ex-
pressions:

∂W
∂x

∂W
∂p

= ∂W(x; p) ◦ W(x; p + "p)
∂"p

. (28)

The vectors ∂W
∂p in the additive formulation and ∂W

∂x
∂W
∂p

in the compositional formulation therefore span the
same linear space, the tangent space of the manifold
W(x; p), if (there is an ϵ > 0 such that) for any "p
(∥"p∥ ≤ ϵ) there is a "p′ such that:

W(x; p + "p) = W(x; p) ◦ W(x; p + "p′). (29)

This condition means that the function between "p and
"p′ is defined in both directions. The expressions in
Eq. (27) and (28) therefore span the same linear space.
If the warp is invertible Eq. (29) always holds since
"p′ can be chosen such that:

W(x; p + "p′) = W(x; p)−1 ◦ W(x; p + "p).

(30)

In summary, if the warps are invertible then the two
formulations are equivalent. In Section 3.1.3, above,
we stated that the set of warps must form a semi-group
for the compositional algorithm to be applied. While
this is true, for the compositional algorithm also to be
provably equivalent to the Lucas-Kanade algorithm,
the set of warps must form a group; i.e. every warp
must be invertible.

3.2. Inverse Compositional Image Alignment

As a number of authors have pointed out, there is a huge
computational cost in re-evaluating the Hessian in ev-
ery iteration of the Lucas-Kanade algorithm (Hager and
Belhumeur, 1998; Dellaert and Collins, 1999; Shum
and Szeliski, 2000). If the Hessian were constant it
could be precomputed and then re-used. Each iteration
of the algorithm (see Fig. 1) would then just consist of
an image warp (Step 1), an image difference (Step 2),
a collection of image “dot-products” (Step 7), multi-
plication of the result by the Hessian (Step 8), and the
update to the parameters (Step 9). All of these opera-
tions can be performed at (close to) frame-rate (Dellaert
and Collins, 1999).

Unfortunately the Hessian is a function of p in both
formulations. Although various approximate solutions

can be used (such as only updating the Hessian every
few iterations and approximating the Hessian by as-
suming it is approximately constant across the image
(Shum and Szeliski, 2000)) these approximations are
inelegant and it is often hard to say how good approx-
imations they are. It would be far better if the problem
could be reformulated in an equivalent way, but with a
constant Hessian.

3.2.1. Goal of the Inverse Compositional Algorithm.
The key to efficiency is switching the role of the image
and the template, as in Hager and Belhumeur (1998),
where a change of variables is made to switch or in-
vert the roles of the template and the image. Such a
change of variables can be performed in either the ad-
ditive Hager and Belhumeur (1998) or the composi-
tional approach (Baker and Matthews, 2001). (A re-
stricted version of the inverse compositional algorithm
was proposed for homographies in Dellaert and Collins
(1999). Also, something equivalent to the inverse com-
positional algorithm may have been used in Gleicher
(1997). It is hard to tell. The “difference decompo-
sition” algorithm in La Cascia et al. (2000) uses the
additive approach however.) We first describe the in-
verse compositional approach because it is simpler. To
distinguish the previous algorithms from the new ones,
we will refer to the original algorithms as the forwards
additive (i.e. Lucas-Kanade) and the forwards compo-
sitional algorithm. The corresponding algorithms after
the inversion will be called theinverse additive and in-
verse compositional algorithms.

The proof of equivalence between the forwards com-
positional and inverse compositional algorithms is in
Section 3.2.5. The result is that the inverse composi-
tional algorithm minimizes:

∑

x
[ T (W(x; "p)) − I (W(x; p)) ]2 (31)

with respect to "p (note that the roles of I and T are
reversed) and then updates the warp:

W(x; p) ← W(x; p) ◦ W(x; "p)−1. (32)

The only difference from the update in the forwards
compositional algorithm in Eq. (13) is that the incre-
mental warp W(x; "p) is inverted before it is composed
with the current estimate. For example, the parameters

Inverse compositional 
warp:

228 Baker and Matthews

and from Eq. (26) we see that the second of these ex-
pressions:

∂W
∂x

∂W
∂p

= ∂W(x; p) ◦ W(x; p + "p)
∂"p

. (28)

The vectors ∂W
∂p in the additive formulation and ∂W

∂x
∂W
∂p

in the compositional formulation therefore span the
same linear space, the tangent space of the manifold
W(x; p), if (there is an ϵ > 0 such that) for any "p
(∥"p∥ ≤ ϵ) there is a "p′ such that:

W(x; p + "p) = W(x; p) ◦ W(x; p + "p′). (29)

This condition means that the function between "p and
"p′ is defined in both directions. The expressions in
Eq. (27) and (28) therefore span the same linear space.
If the warp is invertible Eq. (29) always holds since
"p′ can be chosen such that:

W(x; p + "p′) = W(x; p)−1 ◦ W(x; p + "p).

(30)

In summary, if the warps are invertible then the two
formulations are equivalent. In Section 3.1.3, above,
we stated that the set of warps must form a semi-group
for the compositional algorithm to be applied. While
this is true, for the compositional algorithm also to be
provably equivalent to the Lucas-Kanade algorithm,
the set of warps must form a group; i.e. every warp
must be invertible.

3.2. Inverse Compositional Image Alignment

As a number of authors have pointed out, there is a huge
computational cost in re-evaluating the Hessian in ev-
ery iteration of the Lucas-Kanade algorithm (Hager and
Belhumeur, 1998; Dellaert and Collins, 1999; Shum
and Szeliski, 2000). If the Hessian were constant it
could be precomputed and then re-used. Each iteration
of the algorithm (see Fig. 1) would then just consist of
an image warp (Step 1), an image difference (Step 2),
a collection of image “dot-products” (Step 7), multi-
plication of the result by the Hessian (Step 8), and the
update to the parameters (Step 9). All of these opera-
tions can be performed at (close to) frame-rate (Dellaert
and Collins, 1999).

Unfortunately the Hessian is a function of p in both
formulations. Although various approximate solutions

can be used (such as only updating the Hessian every
few iterations and approximating the Hessian by as-
suming it is approximately constant across the image
(Shum and Szeliski, 2000)) these approximations are
inelegant and it is often hard to say how good approx-
imations they are. It would be far better if the problem
could be reformulated in an equivalent way, but with a
constant Hessian.

3.2.1. Goal of the Inverse Compositional Algorithm.
The key to efficiency is switching the role of the image
and the template, as in Hager and Belhumeur (1998),
where a change of variables is made to switch or in-
vert the roles of the template and the image. Such a
change of variables can be performed in either the ad-
ditive Hager and Belhumeur (1998) or the composi-
tional approach (Baker and Matthews, 2001). (A re-
stricted version of the inverse compositional algorithm
was proposed for homographies in Dellaert and Collins
(1999). Also, something equivalent to the inverse com-
positional algorithm may have been used in Gleicher
(1997). It is hard to tell. The “difference decompo-
sition” algorithm in La Cascia et al. (2000) uses the
additive approach however.) We first describe the in-
verse compositional approach because it is simpler. To
distinguish the previous algorithms from the new ones,
we will refer to the original algorithms as the forwards
additive (i.e. Lucas-Kanade) and the forwards compo-
sitional algorithm. The corresponding algorithms after
the inversion will be called theinverse additive and in-
verse compositional algorithms.

The proof of equivalence between the forwards com-
positional and inverse compositional algorithms is in
Section 3.2.5. The result is that the inverse composi-
tional algorithm minimizes:

∑

x
[ T (W(x; "p)) − I (W(x; p)) ]2 (31)

with respect to "p (note that the roles of I and T are
reversed) and then updates the warp:

W(x; p) ← W(x; p) ◦ W(x; "p)−1. (32)

The only difference from the update in the forwards
compositional algorithm in Eq. (13) is that the incre-
mental warp W(x; "p) is inverted before it is composed
with the current estimate. For example, the parameters

Work out Taylor expansion;  
both Jacobian and Hessian are not a function of current p and so can be precomputed  



I(x)

W(x;Δp)

T(x)

W(x;p)

I(W(x;p))

W(x;p) o W(x;Δp)

Forward and Inverse Compositional

• Forwards compositional

I(x)

W(x;Δp)

T(x)

W(x;p)

I(W(x;p))

W(x;p) o W(x;Δp)-1

• Inverse compositional



Inverse Compositional

• Minimise, 

• Solution 

• Update

≈

Crucial observation: we’re always performing taylor expansion of template @ the identity warp, 
so precompute Jacobian, Steepest Descent Images, Hessian (everything but error image!) 



Outline
• Lucas Kanade 

• Moving cameras

https://www.youtube.com/watch?v=iz9UVIo_ZUo&list=PLc0IeyeoGt2xtmfaF2ST_uNdeptre3f9s&index=10

https://www.youtube.com/watch?v=iz9UVIo_ZUo&list=PLc0IeyeoGt2xtmfaF2ST_uNdeptre3f9s&index=10


Moving is a part of life!
Sea squirt: 

Starting off as an egg, the sea squirt quickly develops into a tadpole-like creature, complete with a spinal cord connected to a simple eye and 
a tail for swimming. It also has a primitive brain that helps it locomote through the water. But, the sea squirt’s mobility doesn’t last long. 

Once it finds a suitable place to attach itself, its brain is absorbed by its body. Being permanently attached to a home makes the sea squirt’s 
spinal cord and the neurons that control locomotion superfluous. Once the sea squirt becomes stationary, it literally eats its own brain.



Human development:  
Crawling teaches babies depth perception

After 1 
week of 
crawling:

After 
several 
weeks of 
crawling:

Gibson, 1960s



Today’s goal

Understand the space of image transformations that we see when we move



Recall: pinhole cameras

x =
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Assume calibrated cameras (f=1)





Optical flow is a vector feild (like a gradient map)

Gibson’s example 1: optical flow for a pilot landing a plane





Parallax





Recall: 3D rotations

x
✓

! 2 R3, ||!|| = 1

xk

x?

R = I + ŵ sin ✓ + ŵŵ(1� cos ✓)

R = exp(v̂), where v = !✓

= I + v̂ +
1

2!

v̂2 + . . .

Implication: we can approximate change in position due to a small rotation as   
v ⇥ x, where v = !✓

(derive from above by Taylor series  
expansion of sine + cosine)

Rodrigues’ formula



Angular velocity

We can approximate change in position due to a small rotation as:   

Notation switch: let’s call the scaled direction vector as “angular velocity”:

ẋ(t) = ax(t)

x(t) = e

at
x(0)

Recall: exponentials are solutions of linear differential equations

Ẋ = ! ⇥X = ŵX

Matrix exponentials are solutions of matrix linear differential equations

Alternative derivation of an exponential map representation of rotations!

Ẋ(t) = !̂X(t)

X(t) = e!̂tX(0)

!, ||!|| = �✓, X =

2

4
X
Y
Z

3

5

https://en.wikipedia.org/wiki/Angular_velocity

https://en.wikipedia.org/wiki/Angular_velocity


How does a fixed scene point X move wrt camera?

camera

world coordinate frame

r1

r2

r3

t

Ẋ = �t� ! ⇥X

Let camera be moving at translational velocity of t and rotating with angular velocity
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If we assume f=1, x(t) = X(t)/Z(t) and y(t) = Y(t)/Z(t),  (dx/dt, dy/dt) = ? 

ẋ =
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Z

2


u

v

�
=


ẋ
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Egomotion optical flow

translation component rotation component
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Optical flow for translation along camera’s z-axis



Optical flow vector is a scalar multiple of position vector

Optical flow for translation along camera’s z-axis


u(x, y)

v(x, y)

�
=

tz

Z(x, y)


x

y

�
=


0

0

�
at origin

(where scalar depends upon the depth of scene point)



Moving toward a wall


u(x, y)
v(x, y)

�
=

tz

Z


x

y

�

If speed (tz) and distance (Z) to wall doubles, what happens to flow?

If we are travelling 2 ft/sec, and the wall is 4 ft away, what’s time-to-contact? 

Nothing => fundamental scale ambiguity

Time to contact = Z / tz     Implies time-to-contact (assuming constant depth) can be computed from 2D flow!



v(x,y) = 0 
u(x,y) = -tx / Z(x,y)

Optical flow for translation along 
camera’s x-axis



Optical flow for general translation



Implies FOE is projection of translation vector





translation component rotation component
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Rotational component

Rotational component does not depend on scene depth Z

Angular velocity can be recovered from rotational component

(exploited when fitting a homography to a rotating camera!)



Translating toward wall







Rotating about z-axis



Rotating about y-axis





Outline

• Lucas Kanade 

• Moving cameras (egomotion) 

• Estimating flow



Problem Definition: Optical Flow

• How to estimate pixel motion from image H to image I?

– Find pixel correspondences 
• Given a pixel in H, look for nearby pixels of the same color in I

• Key assumption 
– color constancy:  a point in H looks “the same” in image I 

• For grayscale images, this is brightness constancy



Motion field exists but no optical flow No motion field but shading changes

 Caution: 
2D measured optical flow         3D scene flow6=



Importance of low-level motion
(for inferences beyond camera motion)



t

I(x,y,t)

Videos as spacetime cubes



Visualizing spacetime cubes

y

x

(a) Spatial image

t

x

(b) EPI

Figure 2. The epipolar plane image. In this example, the circle is
in front of the square and the camera is moving horizontally to the
left. The spatial image in (a) is from the middle of the sequence
while the EPI in (b) is at the scanline shown by the dotted line in
(a).

frame subsequences are approximately EPI. This allows ar-
bitrary camera motion as long as the camera centre’s path is
smooth and continuous. Second, we learn the appearance
of spatiotemporal T-junctions from natural images instead
of adapting an ad-hoc spatial model to the spatiotemporal
domain. Learning the appearance of T-junctions helps mit-
igate errors in the approximation of locally linear camera
motion that cause the T-junctions to warp. Third, we show
that the spatiotemporal domain is a lucrative workspace for
occlusion detection even with arbitrary camera motion.

2. Previous Work

2.1. Motion segmentation

Global approaches to motion analysis based on the
Epipolar Plane Image (EPI) were pioneered by Bolles and
Baker [9] who used it to build a 3D description of a static
scene. They constrained the problem to constant horizon-
tal camera motion, which ensures that image features stay
in the same scanline and move continuously over the image
sequence. Hence, an XT slice1 of a complex scene reduces
to an image with a set of straight edges whose gradient is
relative to their depth in the scene (figure 2). In this case, the
termination of an edge by another edge is an indicator of oc-
clusion and presents a similar profile to the T-junction in the
spatial domain. This technique was shown to be quite pow-
erful at determining visible 3D structure within a scene, but
was inherently limited to constant horizontal camera mo-
tion. They extended this work to include arbitrary camera
rotation by working in the dual-space of cylindrical epipolar
plane coordinates [3]. Feldmann et al. relax the constraints
of EPI analysis to circular camera movements by defining a
set of trajectories that define the depth of a point within an
image volume [14].
There have been a number of applications of EPI analy-

sis for spatiotemporal image sequences. Niyogi and Adel-
1An XT or spatiotemporal image is a slice through the volume of im-

ages at a constant scanline.

son observed that walkers generate a helix-like signature
in space-time and exploit this characteristic to detect and
model a persons gait from a stationary camera [27, 28].
Later Niyogi analyzed kinetic occlusion in space-time using
a layering framework and a motion energy scheme adapted
from models of biological vision [25]. In a slightly less
restrictive approach Criminisi et al. exploit the structure
within epipolar plane to detect occluding edges for a dense
reconstruction of the scene [12].
At the other extreme, local approaches make no assump-

tions on the camera path and the motion is estimated lo-
cally over a small number of frames. A classic example
of this is optical flow where spatiotemporal image deriva-
tives are calculated to estimate a velocity field that adheres
to the brightness consistency constraint [17]. Because these
methods are local and based on small regions that carry little
information, they are often inaccurate and noisy. To com-
pensate for this, constraints to smooth the velocity fields
spatially [17, 24, 2] and temporally [6] for segmentation are
used. These global constraints either limit the range of cam-
era motion like EPI or introduce artificial smoothing that is
highly inaccurate at motion boundaries.
In an alternative approach, Irani et al. use temporal inte-

gration to localize and track moving objects [19] by register-
ing frames by the dominant motion, but are limited to track-
ing non-articulated objects. Later, Irani showed that flow
fields of a rigid scene reside in a low-dimensional subspace
and constrain the flow field to reduce the noise in the esti-
mate [18]. Niyogi, Adelson and Bergen [1, 26] also present
methods of detection motion boundaries using oriented spa-
tiotemporal energy models that detect surface texture accre-
tion and deletion.
The work most similar to ours is that of Laptev who

searches for events in the spatiotemporal volume using a
3D Harris corner detector [21]. These events are velocity
and scale adapted before a set of motion descriptors are
learnt for event classification. The learnt events typically
feature changes in motion such as a walkers swinging arm
or a runners legs; however, they also fire at occlusion and
dis-occlusion events. We shall show in this paper that ex-
plicitly learning occlusion events gives better performance.

2.2. T-junction detection

A natural indicator of occlusion is the T-junction—a
photometric profile shaped like a “T”, which is formed
where the edge of an object occludes a change in inten-
sity in the background (figure 1). Until recently, there have
been two predominant approaches to T-junctions detection:
gradient or filter-based approaches [5, 16, 22, 30, 32], and
model-based template matching [29].
Gradient-based methods assume that there is a distinct

gradient profile in a region close to a junction. In [22],

2

In this example, the circle is in front of the square and the camera is moving horigontally to the left



Digression: visualizing space-time cube

Plot I(x,y,t) for a fixed xPlot I(x,y,t) for a fixed t

Plot I(x,y,t) for a fixed (x,y)



Amplifying temporal signals

time

x

y

(a) Input (wrist)

Radial artery

Ulnar artery

x

y time

(b) Motion-amplified

Figure 7: Eulerian video magnification used to amplify subtle motions of blood vessels arising from blood flow. For this video, we tuned the
temporal filter to a frequency band that includes the heart rate—0.88 Hz (53 bpm)—and set the amplification factor to ↵ = 10. To reduce
motion magnification of irrelevant objects, we applied a user-given mask to amplify the area near the wrist only. Movement of the radial and
ulnar arteries can barely be seen in the input video (a) taken with a standard point-and-shoot camera, but is significantly more noticeable in
the motion-magnified output (b). The motion of the pulsing arteries is more visible when observing a spatio-temporal Y T slice of the wrist
(a) and (b). The full wrist sequence can be found in the supplemental video.

baby face2 guitar

subway baby2 shadow

Figure 8: Representative frames from additional videos demon-
strating our technique. The videos can be found in the accompany-
ing video and on the project webpage.

We first select the temporal bandpass filter to pull out the motions
or signals that we wish to be amplified (step 1 above). The choice of
filter is generally application dependent. For motion magnification,
a filter with a broad passband is preferred; for color amplification
of blood flow, a narrow passband produces a more noise-free result.
Figure 9 shows the frequency responses of some of the temporal
filters used in this paper. We use ideal bandpass filters for color am-
plification, since they have passbands with sharp cutoff frequencies.
Low-order IIR filters can be useful for both color amplification and
motion magnification and are convenient for a real-time implemen-
tation. In general, we used two first-order lowpass IIR filters with
cutoff frequencies !

l

and !

h

to construct an IIR bandpass filter.

Next, we select the desired magnification value, ↵, and spatial fre-
quency cutoff, �

c

(steps 2 and 3). While Eq. 14 can be used as a
guide, in practice, we may try various ↵ and �

c

values to achieve a
desired result. Users can select a higher ↵ that violates the bound to
exaggerate specific motions or color changes at the cost of increas-
ing noise or introducing more artifacts. In some cases, one can
account for color clipping artifacts by attenuating the chrominance
components of each frame. Our approach achieves this by doing all
the processing in the YIQ space. Users can attenuate the chromi-
nance components, I and Q, before conversion to the original color
space.

For human pulse color amplification, where we seek to emphasize
low spatial frequency changes, we may force ↵ = 0 for spatial
wavelengths below �

c

. For motion magnification videos, we can
choose to use a linear ramp transition for ↵ (step 4).
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(a) Ideal 0.8-1 Hz (face)
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(b) Ideal 175-225 Hz (guitar)
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(c) Butterworth 3.6-6.2 Hz (subway)
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(d) Second-order IIR (pulse detection)

Figure 9: Temporal filters used in the paper. The ideal filters (a)
and (b) are implemented using DCT. The Butterworth filter (c) is
used to convert a user-specified frequency band to a second-order
IIR structure and is used in our real-time application. The second-
order IIR filter (d) also allows user input. These second-order filters
have a broader passband than an ideal filter.

We evaluated our method for color amplification using a few
videos: two videos of adults with different skin colors and one of a
newborn baby. An adult subject with lighter complexion is shown
in face (Figure 1), while an individual with darker complexion is
shown in face2 (Figure 8). In both videos, our objective was to am-
plify the color change as the blood flows through the face. In both
face and face2, we applied a Laplacian pyramid and set ↵ for the
finest two levels to 0. Essentially, we downsampled and applied a
spatial lowpass filter to each frame to reduce both quantization and
noise and to boost the subtle pulse signal that we are interested in.
For each video, we then passed each sequence of frames through an
ideal bandpass filter with a passband of 0.83 Hz to 1 Hz (50 bpm
to 60 bpm). Finally, a large value of ↵ ⇡ 100 and �

c

⇡ 1000 was
applied to the resulting spatially lowpass signal to emphasize the
color change as much as possible. The final video was formed by
adding this signal back to the original. We see periodic green to red
variations at the heart rate and how blood perfuses the face.

baby2 is a video of a newborn recorded in situ at the Nursery De-
partment at Winchester Hospital in Massachusetts. In addition to
the video, we obtained ground truth vital signs from a hospital-
grade monitor. We used this information to confirm the accuracy of
our heart rate estimate and to verify that the color amplification sig-
nal extracted from our method matches the photoplethysmogram,
an optically obtained measurement of the perfusion of blood to the
skin, as measured by the monitor.

Eulerian Video Magnification for Revealing Subtle Changes in the World

Hao-Yu Wu1 Michael Rubinstein1 Eugene Shih2 John Guttag1 Frédo Durand1 William Freeman1

1MIT CSAIL 2Quanta Research Cambridge, Inc.

(a) Input

(b) Magnified (c) Spatiotemporal YT slicestime

y

time

y

Figure 1: An example of using our Eulerian Video Magnification framework for visualizing the human pulse. (a) Four frames from the
original video sequence (face). (b) The same four frames with the subject’s pulse signal amplified. (c) A vertical scan line from the input (top)
and output (bottom) videos plotted over time shows how our method amplifies the periodic color variation. In the input sequence the signal
is imperceptible, but in the magnified sequence the variation is clear. The complete sequence is available in the supplemental video.

Abstract

Our goal is to reveal temporal variations in videos that are diffi-
cult or impossible to see with the naked eye and display them in
an indicative manner. Our method, which we call Eulerian Video
Magnification, takes a standard video sequence as input, and ap-
plies spatial decomposition, followed by temporal filtering to the
frames. The resulting signal is then amplified to reveal hidden in-
formation. Using our method, we are able to visualize the flow
of blood as it fills the face and also to amplify and reveal small
motions. Our technique can run in real time to show phenomena
occurring at temporal frequencies selected by the user.

CR Categories: I.4.7 [Image Processing and Computer Vision]:
Scene Analysis—Time-varying Imagery;

Keywords: video-based rendering, spatio-temporal analysis, Eu-
lerian motion, motion magnification

Links: DL PDF WEB

1 Introduction

The human visual system has limited spatio-temporal sensitivity,
but many signals that fall below this capacity can be informative.

For example, human skin color varies slightly with blood circu-
lation. This variation, while invisible to the naked eye, can be ex-
ploited to extract pulse rate [Verkruysse et al. 2008; Poh et al. 2010;
Philips 2011]. Similarly, motion with low spatial amplitude, while
hard or impossible for humans to see, can be magnified to reveal
interesting mechanical behavior [Liu et al. 2005]. The success of
these tools motivates the development of new techniques to reveal
invisible signals in videos. In this paper, we show that a combina-
tion of spatial and temporal processing of videos can amplify subtle
variations that reveal important aspects of the world around us.

Our basic approach is to consider the time series of color values at
any spatial location (pixel) and amplify variation in a given tempo-
ral frequency band of interest. For example, in Figure 1 we auto-
matically select, and then amplify, a band of temporal frequencies
that includes plausible human heart rates. The amplification reveals
the variation of redness as blood flows through the face. For this
application, temporal filtering needs to be applied to lower spatial
frequencies (spatial pooling) to allow such a subtle input signal to
rise above the camera sensor and quantization noise.

Our temporal filtering approach not only amplifies color variation,
but can also reveal low-amplitude motion. For example, in the sup-
plemental video, we show that we can enhance the subtle motions
around the chest of a breathing baby. We provide a mathematical
analysis that explains how temporal filtering interplays with spatial
motion in videos. Our analysis relies on a linear approximation re-
lated to the brightness constancy assumption used in optical flow
formulations. We also derive the conditions under which this ap-
proximation holds. This leads to a multiscale approach to magnify
motion without feature tracking or motion estimation.

Previous attempts have been made to unveil imperceptible motions
in videos. [Liu et al. 2005] analyze and amplify subtle motions and
visualize deformations that would otherwise be invisible. [Wang
et al. 2006] propose using the Cartoon Animation Filter to create
perceptually appealing motion exaggeration. These approaches fol-
low a Lagrangian perspective, in reference to fluid dynamics where
the trajectory of particles is tracked over time. As such, they rely


