
Filters + linear algebra



Outline

• Efficiency (pyramids, separability, steerability) 

• Linear algebra 

• Frequencies



Ideal image +noise filtered

Recall: Canny

Derivative-of-Gaussian = Gaussian * [1 -1]

Fundamental tradeoff between good localization and noise reduction

soln 1: NMS



Other soln:  
oriented filter banks

Gabor wavelet:

€ 

ψ(x,y) = e
−
x 2 +y 2

2σ 2 e j2πu0x

Tuning filter orientation:

€ 

x'= cos(α)x + sin(α)y
y'= −sin(α)x + cos(α)y
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Leung Malik

Gabor filter bank



Revisiting orientations
f x1

x2

https://en.wikipedia.org/wiki/Directional_derivative

f(x) where x = (x1, x2),v = (v1, v2)

rvf(x) = lim
a!0

f(x+ av)� f(x)

a
= rf(x) · v

https://en.wikipedia.org/wiki/Directional_derivative


Steerability
• Steerability - the ability to synthesize a filter of any orientation 

from a linear combination of filters at fixed orientaton

24

Simple$example
 “Steerability”-- the ability to synthesize a filter of any orientation from a linear 
combination of filters at fixed orientations.

Filter Set:
0o 90o Synthesized 30o

Response:
Raw Image

Taken from:
W. Freeman, T. Adelson, “The Design 
and Use of Sterrable Filters”, IEEE 
Trans. Patt, Anal. and Machine Intell., 
vol 13, #9, pp 891-900, Sept 1991

r✓G�(x, y) = cos ✓

@G�

@x

+ sin ✓

@G�

@y
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Simple$example
 “Steerability”-- the ability to synthesize a filter of any orientation from a linear 
combination of filters at fixed orientations.

Filter Set:
0o 90o Synthesized 30o

Response:
Raw Image

Taken from:
W. Freeman, T. Adelson, “The Design 
and Use of Sterrable Filters”, IEEE 
Trans. Patt, Anal. and Machine Intell., 
vol 13, #9, pp 891-900, Sept 1991

[write as dot-product on board; what’s theta that maximizes this?]



Steerable$filters

€ 

hx (x,y) =
∂h(x,y)
∂x

=
−x
2πσ 4 e

−
x 2 +y 2

2σ 2

€ 

hy (x,y) =
∂h(x,y)
∂y

=
−y
2πσ 4 e

−
x 2 +y 2

2σ 2

Derivatives of a Gaussian:

cos(α) +sin(α) =

Freeman & Adelson 92

An arbitrary orientation can be computed as a linear combination of those two
basis functions:

€ 

hα (x,y) = cos(α)hx (x,y) + sin(α)hy (x,y)

The representation is “shiftable” on orientation: We can interpolate any other
orientation from a finite set of basis functions.

For a given (x,y) point, let’s select the direction that maximizes the 
above. What’s the value of this maximal directional gradient?

cos ✓ sin ✓+

Steerability

max

✓
r✓F (x, y) = ||rF (x, y)||

The (smoothed) gradient magnitude!



Second case:  Second-derivatives of Gaussians

Two$equivalent$basis
These two basis can use to steer 2nd order Gaussian derivatives

29

Steerability
Important example is 2nd derivative of Gaussian                                       (~Laplacian):

Taken from: W. Freeman, T. Adelson, “The Design and Use of Steerable Filters”, IEEE Trans. Patt, Anal. and Machine Intell., vol 13, #9, pp 891-900, Sept 1991

G✓ =
X

i

ki(✓)Gi
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Simple$example
 “Steerability”-- the ability to synthesize a filter of any orientation from a linear 
combination of filters at fixed orientations.

Filter Set:
0o 90o Synthesized 30o

Response:
Raw Image

Taken from:
W. Freeman, T. Adelson, “The Design 
and Use of Sterrable Filters”, IEEE 
Trans. Patt, Anal. and Machine Intell., 
vol 13, #9, pp 891-900, Sept 1991

When is this possible? Filters must be “smooth” in orientation space



Separability
Image of size N^2 
Filter of size M^2

Complexity of filtering?

Derivation works for both convolution and correlation

O(N^2M^2)

O(N^2M)

H[u, v] = H
x

[u]H
y

[v]

G[i, j] =
X

u

X

v

H[u, v]F [i+ u, j + v]

=
X

u

H
x

[u]A[i+ u, j] where A[i+ u, j] =
X

v

H
y

[v]F [i+ u, j + v]



Separability
Given a filter, how can we come up with a good separable approximation?

⇡

H[u, v] ⇡ H
x

[u]H
y

[v]

Gabor wavelet:

€ 

ψ(x,y) = e
−
x 2 +y 2

2σ 2 e j2πu0x

Tuning filter orientation:

€ 

x'= cos(α)x + sin(α)y
y'= −sin(α)x + cos(α)y

Space

Fourier domain

Real

Imag

Real

Imag

=
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Figure 2: Example of spatial frequencies in images:
(a) Vertical stripes - the frequencies would have hor-
izontal orientation, and (b) Curved stripes

plane. Visualizing a 4D space on a screen is difficult. The
focus of our paper is to provide a good interactive interface
for this. To give a better description of the problem, we first
introduce Gabor Filters in more depth. Then we will discuss
our interface and its relation to current work in Information
Visualization.

1.1 Introduction to Gabor Filters
A Gabor filter is obtained by modulating a sinusoid with a
Gaussian. For the case of one dimensional (1D) signals, a
1D sinusoid is modulated with a Gaussian. This filter will
therefore respond to some frequency, but only in a localized
part of the signal. This is illustrated in Figure 3. For 2D
signals such as images, consider the sinusoid shown in Fig-
ure 4(a). By combining this with a Gaussian (Figure 4(b)),
we obtain a Gabor filter - Figure 4(c). Let g(x, y, θ, φ) be
the function defining a Gabor filter centered at the origin
with θ as the spatial frequency and φ as the orientation. We
can view Gabor filters as:

g(x, y, θ, φ) = exp(−
x2 + y2

σ2
) exp(2πθi(x cos φ + y sin φ)))

(1)

It has been shown that σ, the standard deviation of the
Gaussian kernel depends upon the spatial frequency to mea-
sured, i.e. θ. In our case, σ = 0.65θ. Figure 5 shows 3D
plots of some Gabor filters and the intensity plots of their
amplitudes in the image plane. See [3] for an interactive tool
to explore 2D Gabor filters.

The response of a Gabor filter to an image is obtained by
a 2D convolution operation. Let I(x, y) denote the image
and G(x, y, θ, φ) denote the response of a Gabor filter with
frequency θ and orientation φ to an image at point (x, y) on
the image plane. G(.) is obtained as

G(x, y, θ, φ) = I(p, q)g(x − p, y − q, θ, φ) dp dq (2)

Consider the image of a zebra shown in Figure 6(a). If we ap-
ply a Gabor filter oriented horizontally on this image then it
will give high responses wherever there are horizontal stripes
present on the zebra. Figure 6(b) shows the amplitude of
the response of such a horizontally oriented Gabor filter for
the image.

1.2 Previous Work
The GRID principles [4] provide a general strategy for deal-
ing with multi-dimensional data. We have used these prin-
ciples here to guide our interface design. These principles
would dictate that we begin to visualize our 4-dimensional
space by looking at the 2-dimensional projections, and this
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Figure 3: Gabor filter composition for 1D signals:
(a) sinusoid, (b) a Gaussian kernel, (c) the corre-
sponding Gabor filter.

has proven useful to us. The next dictate is to rank which
projections are worth considering. Here, we do not need to
do this dynamically, since we are always projecting the same
4 dimensions. We can therefore predict in advance which 2-
dimensional projections are informative. As we will discuss
in detail later, these projections are the (x, y) plane, and the
(θ, φ) plane. We found that if the user is given these projec-
tions, the other possible projections add little. Gross et.al.
present an approach for generating static visualization of
Gabor filter responses using projections [5]. However, sim-
ply showing these 2-dimensional projections statically does
not give a satisfactory impression of the 4-dimensional data,
since many 4-dimensional spaces correspond to the same
projections. We therefore included two techniques in our
visualization to give a richer impression of the data. First,
we designed a simple interface which allows the user to in-
teract with the projections: the user can restrict what parts
of the projected dimensions are visible. Second, we include
additional visualizations to give information about where in
the projected dimensions the data came from.

2. OUR APPROACH
2.1 One Dimensional Visualization
We have devised a simple way to view the responses of Ga-
bor filters in one dimension. These filter responses can be
nicely summarized in a static one-dimensional graph. This
is interesting in its own right, and also provides an introduc-
tion to our approach for two dimensional filters.

Take the response of a one-dimensional Gabor filter bank
to to be G(x, θ), where x is ’position’ and θ is frequency.
By creating an array indexed by x and θ and encoding the



Linear algebra digression
Any matrix can be thought of as a transformation

A =


a b
c d

�

A =

2

4
a b
c d
e f

3

5

Figure 1: 2-D dimension reduction

Figure 2: 3-D dimension reduction
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Change of basis

See handout 



Least-squares method of 
steerability
Shy & Perona, CVPR94

Figure 1: The 3D pseudo-SVD reconstructed filter approx-

imations at 20%, 10%, 5%, 0% error. These corre-

spond to 7 10 13 and the original filter. The top row

shows the filter at 0 ; the bottom row, at 60 .
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Figure 3: The % error in the reconstructed filter approx-

imation
13
(a 5% approximation) as a function of the

angle of reconstruction.

Property Scheme Perona–92 3D pseudo-SVD

# x kernels 34 13

# y kernels 34 13

# functions 11 13

# 1D convolutions 68 26

# stored images 11 13

off-line kernel

decomposition time
1 min 1 hour

Convolution time 34 sec. 13 sec.

mean error vs. 4.9 .5 4.8 1.6

Table 1: A comparison of the properties of two decomposi-

tionmethods. Computation times are referred to a steerable

17x17 kernel, and a 512x512 image on a SUN-SPARC 10.

2.2 Comparison of X-Y-separable, steerable de-
compositions

In table 1, we summarize the properties of two decom-

position methods: the original scheme due to Perona, and

the 3D pseudo-SVD. The decompositions were performed

on an orientation selective gaussian kernel: a real, 17 17

pixel sampling of a kernel that has been used for brightness

boundary detection and texture analysis: the second deriva-

tive of a gaussian along the y axis, and a normal gaussian

along the x axis. The standard deviation in the x direction

was 3 times that of the y direction, which was 1.7 pixels.

The set of all angles was discretized in 72 samples. The

comparison here is made between kernel approximations

of 5% accuracy.

The mean error vs. orientation listed in table 1 refers to

the mean and distribution of the reconstruction error of the

kernel at different orientations, for 5% approximations. Al-

though the 3D pseudo-SVD has a relatively large variation

in error vs. orientation, the error is bound below 8%.

3 The 4D pseudo-SVD for steerability and

scalability

In section 2.1.1, an iterative least squares algorithmwas

used to produce the pseudo-SVD of a filter kernel: es-

sentially, a steerable sum of x-y separable kernels. The

algorithm, as well as the pseudo-SVD, is by no means lim-

ited to 3D problems ( 2 variables and 1 parameter ( )

3 dimensions ). The algorithm generalizes easily to an

N dimensional array, which in most cases corresponds to

2 variables and N–2 parameters. Thus, the pseudo-

SVD will provide not only “steerable” decompositions in

which the basis filters are separable, but also generally

“deformable” decompositions, e.g. “scalable”, “stretch-

able”, “shearable”, etc., provided that theN–2deformations

involved are continuous and can be parameterized.

Stack bank of filters into a matrix 
Apply SVD to generate low-rank approximation

⇡



Least-squares method of 
steerability
Shy & Perona, CVPR94

H[u, v, k] = Hs[u, v]c[k]

G[i, j, k] =
X

u

X

v

H[u, v, k]F [i+ u, j + v]

= c[k]A[i, j] where A[i, j] =
X

u

X

v

Hs[u, v]F [i+ u, j + v]

Reduces O(N2M2K) to O(N2M2 + KN2)

Rank 1 approximation
Figure 1: The 3D pseudo-SVD reconstructed filter approx-

imations at 20%, 10%, 5%, 0% error. These corre-

spond to 7 10 13 and the original filter. The top row

shows the filter at 0 ; the bottom row, at 60 .
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Table 1: A comparison of the properties of two decomposi-

tionmethods. Computation times are referred to a steerable

17x17 kernel, and a 512x512 image on a SUN-SPARC 10.

2.2 Comparison of X-Y-separable, steerable de-
compositions

In table 1, we summarize the properties of two decom-

position methods: the original scheme due to Perona, and

the 3D pseudo-SVD. The decompositions were performed

on an orientation selective gaussian kernel: a real, 17 17

pixel sampling of a kernel that has been used for brightness

boundary detection and texture analysis: the second deriva-

tive of a gaussian along the y axis, and a normal gaussian

along the x axis. The standard deviation in the x direction

was 3 times that of the y direction, which was 1.7 pixels.

The set of all angles was discretized in 72 samples. The

comparison here is made between kernel approximations

of 5% accuracy.

The mean error vs. orientation listed in table 1 refers to

the mean and distribution of the reconstruction error of the

kernel at different orientations, for 5% approximations. Al-

though the 3D pseudo-SVD has a relatively large variation

in error vs. orientation, the error is bound below 8%.

3 The 4D pseudo-SVD for steerability and

scalability

In section 2.1.1, an iterative least squares algorithmwas

used to produce the pseudo-SVD of a filter kernel: es-

sentially, a steerable sum of x-y separable kernels. The

algorithm, as well as the pseudo-SVD, is by no means lim-

ited to 3D problems ( 2 variables and 1 parameter ( )

3 dimensions ). The algorithm generalizes easily to an

N dimensional array, which in most cases corresponds to

2 variables and N–2 parameters. Thus, the pseudo-

SVD will provide not only “steerable” decompositions in

which the basis filters are separable, but also generally

“deformable” decompositions, e.g. “scalable”, “stretch-

able”, “shearable”, etc., provided that theN–2deformations

involved are continuous and can be parameterized.



Final trick for efficient filters:  
box filtering with integral images

http://en.wikipedia.org/wiki/Summed_area_table

Reduces O(N2M2) to O(N2)
Sum = D - B - C + A



Outline

• Efficiency (pyramids, separability, steerability) 

• Bag-of-words 

• Frequency analysis



HW1: Scene Classification

16-720 Computer Vision: Homework 1

Spatial Pyramid Matching for Scene Classification

Instructors: Deva Ramanan
TAs: Allie Del Giornio, Jai Prakash, Esha Uboweja

Guanhang Wu
Due: Refer to course website: http://16720.courses.cs.cmu.edu/

airport auditorium bedroom campus

desert
 football
stadium landscape rainforest

Figure 1: Scene Classification: Given an image, can a computer program determine
where it was taken? In this homework, you will build a representation based on bags of
visual words and use spatial pyramid matching for classifying the scene categories.

Instructions/Hints

1. Please pack your system and write-up into a single file named <AndrewId>.zip, see
the complete submission checklist in the overview.

2. All questions marked with a Q require a submission.

3. For the implementation part, please stick to the headers, variable names,

and file conventions provided.

4. Start early! This homework will take a long time to complete.

5. Attempt to verify your implementation as you proceed: If you don’t verify
that your implementation is correct on toy examples, you will risk having a huge mess
when you put everything together.

6. If you have any questions, please contact TAs - Allie (adelgior@andrew.cmu.edu),
Jai (jprakash@andrew.cmu.edu), Esha (euboweja@andrew.cmu.edu),
Guanhang (guanhanw@andrew.cmu.edu).
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Can we think about as different “textures”?



Pre-attentive texture discrimination 
(Julesz,1981) 

 

“textons” 

160 ms, outside foveal gaze 
Instantenous, or effortless texture discrimination



Representing textures 

• Textures are made up of stylized subelements, 
repeated in meaningful ways 

• Representation: 
– find the subelements, and represent their statistics 

• But what are the subelements, and how do we find 
them? 
– find subelements by applying filters, looking at the 

magnitude of the response 
• What statistics? 

– Mean, standard deviation, histograms of marginal 
statistics 





Chi-square 

`
`

Histogram of filter responses 

P(I *       ) 

Use collection of histograms for a set of 
filters to represent texture 



Joint vs marginals

• If we have M filters and discretize reponses in N 
possible values:

P(f1,f2,f3,…) = NM values

P(f1)P(f2)P(f3)…. = NM values



Let’s look at samples from joint



Counting bins is difficult because most will be zero



But reponses seem to cluster into groups….



Adaptive binning strategy



Capture joint statistics via histograms 
of vector quantized features 



K-means algorithm
min
Z,D

C(Z,D,X) where C(Z,D,X) =
X

i

||xi � dzi ||2

xi 2 R

n

zi 2 {1, 2, . . .K}
dj 2 R

n



K-means algorithm

1.

2.

min
Z,D

C(Z,D,X) where C(Z,D,X) =
X

i

||xi � dzi ||2

min
Z

C(Z,D,X)

min
D

C(Z,D,X)



K-means algorithm

zi = argmin
k

||xi � dk||2, 8i

dk =
1

|Si|
X

i2Sk

xi, Sk = {i : zi = k}, 8k

1.

2.

min
Z

C(Z,D,X)

min
D

C(Z,D,X)

min
Z,D

C(Z,D,X) where C(Z,D,X) =
X

i

||xi � dzi ||2



K-means 
Do we globally optimize the objective function?

1 2 3

4 5 6



Training vs testing

Training:

Testing:

min
Z,D

C(Z,D,Xtrain)

min
Z

C(Z,D,Xtest)



  

“Textons” 

Textons are vector-quantized filter outputs. 
Use k-means to cluster joint filter outputs, adaptively 

partition the space into histogram bins. 

Texton 
Map 



Inspiration from Text Analysis

Political observers say that 
the government of Zorgia 
does not control the political 
situation. The government 
will not hold elections …

The ZH-20 unit is a 
200Gigahertz processor with 
2Gigabyte memory. Its 
strength is its bus and high-
speed memory……

How to compare the two articles?



Bag-of-words

Training images Filter  
responses 

Clustering 

Given a large set of vectorized image patches:  
and a bank of vectorized filters F =  [f1,f2,..fb]

1. Project each patch into basis spanned by F: 
(does this basis span RM^2? Is it orthonormal?) 

2. Cluster patches in this projected space

x 2 R

M⇥M ) x 2 R

M2

y = F

T
x, y 2 R

b



Use pseudoinverse of filter bank to 
visualize cluster means in original space

y = F

T
x, x 2 R

M2

, y 2 R

B

x ⇡ (FT )+y

V is(dj) ⇡ (FT )+dj

Given a M X M image patch ‘x’ (reshaped into a M2 vector) and a filter 
bank of B filters, filter bank responses can be seen as a change of basis



Modeling Texture Distributions

Training  
image

Filter 
Responses

Texton Map Model = 
Histogram 

of textons in 
the image



Example Classification

Input 
Region

Words



Object Bag of ‘words’

ICCV 2005 short course, L. Fei-Fei





Bags of visual words

▪ Summarize entire image based 
on its distribution (histogram) of 
word occurrences. 

▪ Analogous to bag of words 
representation commonly used 
for documents.

41
Image credit: Fei-Fei Li



Outline

• Efficiency (pyramids, separability, steerability) 

• Linear algebra 

• Bag-of-words 

• Frequency analysis (don’t expect to get to)


