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About me
Deva Ramanan 
First class at CMU! 
Moved from sunny California to Pittsburgh :)



About you

Majors? 

Years? 

Related classes?  
(computer graphics, machine learning,…)



Outline

• What is this class about? 
• Logistics for class (homeworks, grading) 
• Historical perspective in computer vision 
• HW0



Related field: computer graphics

3D geometry

physics

Simulation

projection



What is computer vision? 

3D geometry

physics

Estimation



Challenge: ill-posed problem

Certain 3D interpretations are more probable than others

We want to build models that capture such prior knowledge about the word



Why do we want to understand the world from 
images (or videos)?



Visual media is everywhere

... each day

8 years worth of video is uploaded to YouTube 
250 million photos are uploaded to FaceBook

Text

By 2018, 80% of internet traffic will be video data 



Distributed sensors

Everyone is carrying a camera in their back pocket



Reconstructing the (4D) world

Photo Tourism (UWashington/Microsoft)



Applications: assistive technology

CMU Quality of Life Center



Applications: assistive technology

CMU Quality of Life Center



Application: field robotics



Applications:  
autonomous vehicle navigation

Google,Uber,…



Applications:  
motion/shape capture for graphics



Applications: surveillance



Aside: understanding intentions and goals is hard!



Applications: surveillance (cont’d)

“The work was painstaking and mind-numbing: One agent watched the same segment of 
video 400 times.The goal was to construct a timeline of images, following possible 

suspects as they moved along the sidewalks, building a narrative out of a random jumble 
of pictures from thousands of different phones and cameras. It took a couple of days, but 
analysts began to focus on two men in baseball caps who had brought heavy black bags 

into the crowd near the marathon’s finish line but left without those bags.”
Washington Post



Applications: image search



Applications: visual lifelogging

“Google Glass”



Applications: augmented reality

MagicLeap: .5 billion second stage funding  
(record)

Occulus Rift: 2 billion

 Sports analytics 
Nice explanation of first-down line on www.howstuffworks.com

http://www.howstuffworks.com/first-down-line.htm
http://www.howstuffworks.com


Applications: gaming interfaces

c.f. Wikipedia

Kinect holds the Guinness World Record of being the 
"fastest selling consumer electronics device". It sold an 
average of 133,333 units per day with a total of 8 million 
units in its first 60 days.[18][19][20] 10 million units of the 
Kinect sensor have been shipped as of March 9, 2011.[1]

http://en.wikipedia.org/wiki/Guinness_World_Record
http://en.wikipedia.org/wiki/Kinect#cite_note-Gamasutra-record-17
http://en.wikipedia.org/wiki/Kinect#cite_note-CVG-record-18
http://en.wikipedia.org/wiki/Kinect#cite_note-Guinness-record-19
http://en.wikipedia.org/wiki/Kinect#cite_note-10-million-0


Optical character recognition 

Digit recognition, AT&T labs 
http://www.research.att.com/~yann/

Technology to convert scanned docs to text 
• If you have a scanner, it probably came with OCR software

License plate readers 
http://en.wikipedia.org/wiki/Automatic_number_plate_recognition

http://www.research.att.com/~yann
http://en.wikipedia.org/wiki/Automatic_number_plate_recognition


Why is this interesting science?

Vision is the most powerful of our senses 
About 1/3 of brain is devoted to visual processing

Computational understanding of human perception



The human visual system exploits the 
ecological regularities of the world

Optical illusions are violations of this regularity

Human perception has 
“shortcomings”



Illusory motion
Copyright A.Kitaoka 2003

http://www.ritsumei.ac.jp/~akitaoka/saishin-e.html


ShadingShading



Cast shadows



Cast shadows



Other fields

Image Processing

Neuroscience

Artificial  
Intelligence

Computer 
 Graphics

Computational 
Photography

Human 
Perception

Robotics



Why is this interesting?

Engineering: 
How do we process the abundance of 

visual media data around us?

Science: 
How does the human perceptual system work?



Why not build a computer like a brain?

Visual cortex: 1011 neurons 
  parallel

Computer: 108 transistor 
                  serial (but changing)

We still don’t know the right software

Many approaches  (e.g., deep learning) are inspired by biology



Let’s discuss a simple computational 
approach to vision…



What is this a picture of?



Digital images

A digital image = table of numbers

234 7 89 7 98 98 7 9 7 5

43 7 0 123 4 13 454 23 5 87

67 5 76 4 3 56 67 87 65 45

97 0 6 3 6 25 7 3 587 8

78 5 54 7 876 71 54 76 9 75

45 81 67 78 78 5 4 75 86 8

5 4 3 35 8 256 6 4 3 36

7 6 64 3 4 7 77 76 4 54

64 35 46 46 64 56 7 56 4 7

75 464 576 75 75 75 57 64 75 75



Digital Color images

3 tables of numbers (Red, Green Blue)

S. Dali “Gala Contemplating 
 the Mediterranean Sea”
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75 464 576 75 75 75 57 64 75 75
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Example problem: face recognition

Query

Library of known faces

Obama G.W.Bush Clinton G.H. Bush

...
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Can you think of an algorithm for matching?



“Nearest-Neighbor” Face Recognition

...

Variant of this implemented in Picasa, iPhoto, FaceBook



Google approach to intelligence



Why doesn’t big-data solve vision? 

y = x

a

log y = a log x

Long-tail statistics: we still care about small-data problems in big-data world

Figure 1. A screenshot of the labeling tool in use. The user is shown an image along with

possibly one or more existing annotations, which are drawn on the image. The user has the

option of annotating a new object by clicking along the boundary of the desired object and

indicating its identity, or editing an existing annotation. The user may annotate as many

objects in the image as they wish.
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Capturing long-tail distributions of object subcategories

Xiangxin Zhu
University of California, Irvine

xzhu@ics.uci.edu

Dragomir Anguelov
Google Inc.

dragomir@google.com

Deva Ramanan
University of California, Irvine

dramanan@ics.uci.edu

Abstract

We argue that object subcategories follow a long-tail dis-
tribution: a few subcategories are common, while many are
rare. We describe distributed algorithms for learning large-
mixture models that capture long-tail distributions, which
are hard to model with current approaches. We introduce a
generalized notion of mixtures (or subcategories) that allow
for examples to be shared across multiple subcategories. We
optimize our models with a discriminative clustering algo-
rithm that searches over mixtures in a distributed, “brute-
force” fashion. We used our scalable system to train tens
of thousands of deformable mixtures for VOC objects. We
demonstrate significant performance improvements, partic-
ularly for object classes that are characterized by large ap-
pearance variation.

1. Introduction
It is well-known that the frequency of object occurrence

in natural scenes follows a long-tail distribution [26]: for
example, people and windows are much more common than
coffins and ziggurats (Fig. 1a). Long-tails complicate anal-
ysis because rare cases from the tail still collectively make
up a significant portion of the data and so cannot be ig-
nored. Many approaches try to minimize this phenomenon
by working with balanced datasets of objects categories
[10]. But long-tails still exist for object subcategories: most
people tend to stand, but people can assume a large num-
ber of unusual poses (Fig.1b). We believe that current ap-
proaches may capture iconic object appearances well, but
are still limited due to inadequate modeling of the tail.

In theory, multi-mixture or subcategory models should
address this, with possibly large computational costs: train
a separate model for different viewpoints, shape deforma-
tion, etc. Empirically though, these approaches tend to satu-
rate early in performance after a modest number of mixtures
[34, 20, 12, 16, 14].

We argue that the long-tail raises three major challenges
that current mixture models do not fully address: (1) The
“right” criteria for grouping examples into subcategories is
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(a) The number of examples by object class in SUN dataset
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(b) Distributions of the visibility patterns for bus and person

Figure 1: Long tail distributions exist for both object cat-
egories and subcategories. (a) shows the number of exam-
ples by object class in the SUN dataset. The blue curve in
the inset show a log-log plot, along with a best-fit line in
red. This suggests that the distribution follows a long-tail
power law. (b) shows the distributions of the keypoint visi-
bility patterns for bus and person from PASCAL (using the
manual annotations of [6]), which also follow a long-tail.
We describe methods for automatically discovering long-
tail distributions of subcategories with a distributed, “brute-
force” search without using additional annotations.

not clear. Various approaches have been suggested (includ-
ing visual similarity [12], geometric similarity [5], semantic
ontologies [10]), but the optimal criteria remains unknown.
(2) Even given the optimal criteria, it is not clear how to
algorithmically optimize for it. Typical methods employ
some form of clustering, but common algorithms (e.g., k-
means) tend to report clusters of balanced sizes, while we
hope to get long-tail distributions. (3) Even given the opti-
mal clustering, how does one learn models for rare subcat-
egories (small clusters) with little training data?

In our work, we address all three challenges: (1) We

1



Interlude: Logistics
http://16720.courses.cs.cmu.edu/



Waitlist
We are at the capacity of this room (can’t add much more).  

If you are considering dropping, please do so as a courtesy to your fellow classmates 

Because class is oversubscribed by nearly 200 people, even handling special cases is overwhelming

Default order for pulling off waitlist (prioritized by seniority and departments where class is required)

1. Phd Robotics 
2. Masters Robotics 
3. Phd SCS 
4. Masters SCS 
5. Phd Engineering 
6. Masters Engineering 
7. PhD - remaining 
8. Masters - remaining 
9. Undergrads - remaining

You can try e-mail me any special circumstances, but if I don’t respond, assume that I’ll use the default above



Textbooks (recommended)

http://szeliski.org/Book/

http://szeliski.org/Book/


Other texts

(classic and nice presentation) Gives the “human” side of things



Pre-reqs
Knowledge of linear algebra, vector calculus, and basic probability are 
required. MATLAB programming experience and previous exposure to 
image processing are desirable, but not required. 



Grading

5 homeworks (with considerable MATLAB implementation) worth 17% each, a 
class project worth 12%, and class participation (measured by instructor-approved 
answers to Piazza questions) worth 3%. 



Accounts used by class

Blackboard: submission of code

Gradescope: submission of PDF writeup and returning of grades

Piazza: asking and answering questions about course and homeworks



HW submission
Homework Code Submission 

Submit a zipfile named YourAndrewId.zip to Blackboard. This zip file should contain a single folder called 
YourAndrewId that contains  a matlab/ folder containing all the .m and .mat files you were asked to write and generate. 
Make sure the matlab directory includes everything that your code needs to run. If we hand out code as part of the 
assignment, please include that also. However, to prevent large zip files, do not include image or data files that we 
prodivid in the data directory of skeleton code. 

Homework Writeup Submission 

You must submit your writeups as as a single PDF file titled YourAndrewId.pdf to Gradescope. We will not accept 
writeups in any word processing format such as MS Word or Open Office. You are welcome to create the writeup in 
whichever word processor you like but in the end you need to save it as a pdf file. 

Late policy 

Assignments and due dates can be found on the lecture webpage. Homeworks must be submitted on both Blackboard 
(code) and Gradescope (writeup) by 11:59 pm on the given due date. You will be allowed a total of 3 late days 
througout the semester - use them wisely! Each additional day late will result in an penalty of 50% of the homework 
grade, and no homework will be accepted after 3 days past its due date. 



Piazza discussions
Questions are encouraged as a way to get help from other students when you are stuck, or feel like you're going down the 
wrong path. Questions are not meant as a way to solve a problem before you've struggled with it. Most learning comes 
from a little bit of struggling, and the assigments are meant to make you think a little about how to implement things. Before 
posting a question, ask yourself whether you're truly stuck or are just avoiding spending the time to figure it out. Struggling 
and debugging is a big part of learning in this class! 
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wrong path. Questions are not meant as a way to solve a problem before you've struggled with it. Most learning comes 
from a little bit of struggling, and the assigments are meant to make you think a little about how to implement things. Before 
posting a question, ask yourself whether you're truly stuck or are just avoiding spending the time to figure it out. Struggling 
and debugging is a big part of learning in this class! 

Questions about homework wording, lecture slides, or class logistics are welcome and encouraged; however, please keep 
complaints about the course off of Piazza. If you have a concern or a suggestion about anything to do with the course, the best 
way to deal with it and get results is to take it to the TA or Instructor directly . Piazza is not a complaint forum. 
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Questions are encouraged as a way to get help from other students when you are stuck, or feel like you're going down the 
wrong path. Questions are not meant as a way to solve a problem before you've struggled with it. Most learning comes 
from a little bit of struggling, and the assigments are meant to make you think a little about how to implement things. Before 
posting a question, ask yourself whether you're truly stuck or are just avoiding spending the time to figure it out. Struggling 
and debugging is a big part of learning in this class! 

Questions about homework wording, lecture slides, or class logistics are welcome and encouraged; however, please keep 
complaints about the course off of Piazza. If you have a concern or a suggestion about anything to do with the course, the best 
way to deal with it and get results is to take it to the TA or Instructor directly . Piazza is not a complaint forum. 

We encourage you to be an active participant and help your fellow students out by answering questions on Piazza. Avoid 
becoming overzealous and giving the answer though. Full lines of code should never be posted on Piazza, and hints rather 
than solutions should be given. For example: 

Question: "I tried subtracting the vectur mu from the matrix A and MATLAB keeps breaking with the error message "...". I've 
tried several things and can't figure out how to make MATLAB subtract mu from each column." 

Poor Answer: "bsxfun(@minus, A, mu)" 

Good Answer: "Look into MATLAB's documentation/help on "bsxfun". MATLAB's minus function only works on matrices 
that are the same dimension; you actually want to perform several subtraction operations on the matrix A.” 

Instructor-approved answers will contribute toward class participation grade!



Academic honesty

Homeworks can be discussed, but each student must independently write up their 
own solutions. In particular, no sharing of code. Please see the university policy on 
academic honesty. It is fine to use reference materials found online, but do not 
search for homework solutions. Rather, students are strongly encouraged to ask 
questions at both office hours and on the class discussion group. 



Syllabus



HW0
Required to submit, but not graded (those enrolled in class must submit something to keep their spot)

Warning: If you find that HW0 is difficult, class will be quite challenging

Figure 1: Combining the red, green, and blue channels without shifting

Figure 2: Aligned image
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Figure 1: Combining the red, green, and blue channels without shifting

Figure 2: Aligned image

2

automatic alignment 
 of R,G,B planes

Figure 3: See script.m.
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• Implement a function that warps image im using the a�ne transform A:

warp_im=warpA(im, A, out_size)

Inputs: im is a grayscale double typed height⇥width⇥1 matrix4, A is a 3⇥3 matrix de-
scribing the transform (pi

warped

⌘ Api

source

), and out_size=[out_height,out_width];

of the warped output image.
Outputs: warp_im of size out_size(1) ⇥ out_size(2) is the warped output image.
The coordinates of the sampled output image points pi

warped

should be the rectangular

range (1, 1) to (width, height) of integer values. The points pi

source

must be chosen such
that their image, Api
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, transforms to this rectangle.

4
Images in Matlab are indexed as im(row, col, channel) where row corresponds to the y coordinate

(height), and col to the x coordinate (width).
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Figure 3: See script.m.
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affine warp of an image



Scene recognition using bag-of-words models

Concepts: spatial correspondence, filter banks, clustering

HW1

16-720 Computer Vision: Homework 1

Spatial Pyramid Matching for Scene Classification

Instructors: Deva Ramanan
TAs: Allie Del Giornio, Jai Prakash, Esha Uboweja

Guanhang Wu
Due: Refer to course website: http://16720.courses.cs.cmu.edu/

airport auditorium bedroom campus

desert
 football
stadium landscape rainforest

Figure 1: Scene Classification: Given an image, can a computer program determine
where it was taken? In this homework, you will build a representation based on bags of
visual words and use spatial pyramid matching for classifying the scene categories.

Instructions/Hints

1. Please pack your system and write-up into a single file named <AndrewId>.zip, see
the complete submission checklist in the overview.

2. All questions marked with a Q require a submission.

3. For the implementation part, please stick to the headers, variable names,

and file conventions provided.

4. Start early! This homework will take a long time to complete.

5. Attempt to verify your implementation as you proceed: If you don’t verify
that your implementation is correct on toy examples, you will risk having a huge mess
when you put everything together.

6. If you have any questions, please contact TAs - Allie (adelgior@andrew.cmu.edu),
Jai (jprakash@andrew.cmu.edu), Esha (euboweja@andrew.cmu.edu),
Guanhang (guanhanw@andrew.cmu.edu).

1



HW2

(a) incline L.jpg (img1) (b) incline R.jpg (img2) (c) img2 warped to img1’s frame

Figure 5: Example output for Q6.1: Original images img1 and img2 (left and center) and
img2 warped to fit img1 (right). Notice that the warped image clips out of the image. We
will fix this in Q6.2

H2to1=computeH(p1,p2)

Inputs: p1 and p2 should be 2⇥N matrices of corresponding (x, y)T coordinates
between two images.
Outputs: H2to1 should be a 3⇥ 3 matrix encoding the homography that best matches
the linear equation derived above for Equation 8 (in the least squares sense). Hint:
Remember that a homography is only determined up to scale. The Matlab functions
eig() or svd() will be useful. Note that this function can be written without an
explicit for-loop over the data points.

6 Stitching it together: Panoramas (30 pts)

We can also use homographies to create a panorama image from multiple views of the same
scene. This is possible for example when there is no camera translation between the views
(e.g., only rotation about the camera center), as we saw in Q4.2.

First, you will generate panoramas using matched point correspondences between images
using the BRIEF matching you implemented in Q2.4. We will assume that there is no error
in your matched point correspondences between images (Although there might be some
errors).

In the next section you will extend the technique to use (potentially noisy) keypoint
matches.

You will need to use the provided function warp im=warpH(im, H, out size), which
warps image im using the homography transform H. The pixels in warp_im are sampled
at coordinates in the rectangle (1, 1) to (out_size(2), out_size(1)). The coordinates of
the pixels in the source image are taken to be (1, 1) to (size(im,2), size(im,1)) and
transformed according to H.

• Q6.1 (15pts) In this problem you will implement and use the function (stub provided
in matlab/imageStitching.m):

[panoImg] = imageStitching(img1, img2, H2to1)

on two images from the Dusquesne incline. This function accepts two images and the
output from the homography estimation function. This function will:

10

Figure 6: Final panorama view. With homography estimated with RANSAC.

• a folder matlab containing all the .m and .mat files you were asked to write and
generate

• a pdf named writeup.pdf containing the results, explanations and images asked for
in the assignment along with to the answers to the questions on homographies.

Submit all the code needed to make your panorama generator run. Make sure all the .m

files that need to run are accessable from the matlab folder without any editing of the path
variable. If you downloaded and used a feature detector for the extra credit, include the
code with your submission and mention it in your writeup. You may leave the data folder
in your submission, but it is not needed. Please zip your homework as usual and submit it
using blackboard.

Appendix: Image Blending

Note: This section is not for credit and is for informational purposes only.

For overlapping pixels, it is common to blend the values of both images. You can sim-
ply average the values but that will leave a seam at the edges of the overlapping images.
Alternatively, you can obtain a blending value for each image that fades one image into the
other. To do this, first create a mask like this for each image you wish to blend:

mask = zeros(size(im,1), size(im,2));

mask(1,:) = 1; mask(end,:) = 1; mask(:,1) = 1; mask(:,end) = 1;

mask = bwdist(mask, ’city’);

mask = mask/max(mask(:));

The function bwdist computes the distance transform of the binarized input image, so this
mask will be zero at the borders and 1 at the center of the image. You can warp this mask
just as you warped your images. How would you use the mask weights to compute a linear
combination of the pixels in the overlap region? Your function should behave well where
one or both of the blending constants are zero.

13

Concepts: interest points, descriptors, RANSAC, homographies

Panoramic Mosaics



HW3

tracker aims to move it by an o↵set (�u,�v) to obtain another rectangle R

t+1 on frame
I

t+1, so that the pixel squared di↵erence in the two rectangles is minimized:

min
u,v

J(u, v) =
X

(x,y)2Rt

(I
t+1(x+ u, y + v)� I

t

(x, y))2 (1)

Q1.1 (5 points) Starting with an initial guess of (u, v) (for instance, (0, 0)), we can
compute the optimal (u⇤

, v

⇤) iteratively. In each iteration, the objective function is locally
linearized by first-order Taylor expansion and optimized by solving a linear system that has
the form A�p = b, where �p = (u, v)T , the template o↵set.

• What is AT

A?

• What conditions must AT

Ameet so that the template o↵set can be calculated reliably?

Q1.2 (15 points) Implement a function with the following signature

[u,v] = LucasKanade(It, It1, rect)

that computes the optimal local motion from frame I
t

to frame I
t+1 that minimizes Equation

??. Here It is the image frame I

t

, It1 is the image frame I

t+1, and rect is the 4-by-
1 vector that represents a rectangle on the image frame I

t

. The four components of the
rectangle are [x1, y1, x2, y2], where (x1, y1) is the top-left corner and (x2, y2) is the bottom-
right corner. The rectangle is inclusive, i.e., in includes all the four corners. To deal
with fractional movement of the template, you will need to interpolate the image using the
MATLAB function interp2. You will also need to iterate the estimation until the change in
(u, v) is below a threshold. It is recommended, but not required, to implement the inverse
compositional version of the Lucas-Kanade tracker (Section 2.2 in [2]).

Q1.3 (10 points) Write a script testCarSequence.m that loads the video frames from
carseq.mat, and runs the Lucas-Kanade tracker that you have implemented in the previous
task to track the car. carseq.mat can be located in the data directory and it contains one
single three-dimensional matrix: the first two dimensions correspond to the height and width
of the frames respectively, and the third dimension contain the indices of the frames (that
is, the first frame can be visualized with imshow(frames(:, :, 1))). The rectangle in the
first frame is [x1, y1, x2, y2] = [60, 117, 146, 152]. Report your tracking performance (image
+ bounding rectangle) at frames 1, 100, 200, 300 and 400 in a format similar to Figure ??.
Also, create a file called carseqrects.mat, which contains one single n ⇥ 4 matrix rects,
where each row stores the rect that you have obtained for each frame, and n is the total
number of frames.

Figure 1: Lucas-Kanade Tracking with One Single Template

2

Concepts: Templates, Lucas-Kanade alignment

Tracking



HW4

Concepts: Epipolar geometry, triangulation

3D Reconstruction



HW5
Deep learning

Concepts: Pattern classification



Projects
A typical class project might be implementing and evaluating an algorithm from a research paper. The choice of projects can be very open-
ended; ideally you can incorporate their own research. But your class project must be about new things you have done this semester; you 
can't use results you have developed in previous semesters. People can work in groups of size 1 to 3, though we encourage students to work 
in groups because the projects tend to be more substantial. 

Previous course projects have resulted in papers - you are encouraged to explore wacky ideas!



Suggestions for this class
Its all about the assignments

A big factor in success will be your comfort and debugging capability in Matlab
(I probably spent 80 percent of my time as a grad student “debugging”)

Previous evaluations of this class

Difficulty: 7/10 (10 = impossible to get through)

“I really appreciate the use of blackboards in addition to slides”
“Lectures go a bit fast”

“This is a demanding course, but is well worth it. I really appreciate how the assignments require 
reading of academic papers. This is sometimes frustrating, but a skill that is very useful to develop.”



Related courses
16-822: Geometry-based Methods in Vision 

The course focuses on the geometric aspects of computer vision: the geometry of image formation and its use for 3D reconstruction and 
calibration. The objective of the course is to introduce the formal tools and results that are necessary for developing multi-view 
reconstruction algorithms. The fundamental tools introduced study affine and projective geometry, which are essential to the development 
of image formation models. Additional algebraic tools, such as exterior algebras are also introduced at the beginning of the course. These 
tools are then used to develop formal models of geometric image formation for a single view (camera model), two views (fundamental 
matrix), and three views (trifocal tensor); 3D reconstruction from multiple images; and auto-calibration.

16-421: Vision Sensors
This course covers the fundamentals of vision cameras and other sensors - how they function, how they are built, and how to use them 
effectively. The course presents a journey through the fascinating five-hundered-year history of "camera-making" from the early 1500's 
"camera obscura" through the advent of film and lenses, to today's mirror-based and solid-state devices. The course includes a significant 
hands-on component where students learn how to use the sensors and understand, model and deal with the uncertainty (noise) in their 
measurements. While the first half of the course deals with conventional "single viewpoint" or "perspective" cameras, the second half of the 
course covers much more recent "multi-viewpoint" or "multi-perspective" cameras that include an array of lenses and mirrors. These 
sensors provide unusual and compelling forms of visualizations of the world around us that also drive new display technologies.

16-824: Visual Learning and Recognition

A graduate course in Computer Vision with emphasis on representation and reasoning for large amounts of data (images, videos and 
associated tags, text, gps-locations etc) toward the ultimate goal of Image Understanding. We will be reading an eclectic mix of classic and 
recent papers on topics including: Theories of Perception, Mid-level Vision (Grouping, Segmentation, Poselets), Object and Scene 
Recognition, 3D Scene Understanding, Action Recognition, Contextual Reasoning, Image Parsing, Joint Language and Vision Models, etc. 
We will be covering a wide range of supervised, semi-supervised and unsupervised approaches for each of the topics above.



CMU Computer Vision

• Ten faculty covering all areas of Computer Vision research. 

• State of the art laboratory facilities with strong staff researchers. 

• Large class of graduate/undergraduate students. 

• Over 10 courses in subareas of computer vision. 

• Collaborations with Robotics, Machine Learning, AI, Systems,  
 Computer Science, Medicine, Transportation, Arts, etc.



Outline

• What is this class about? 
• Logistics for class (homeworks, grading) 
• Historical perspective in computer vision 
• HW0



Camera Obscura

Lecture 1 -  !
!
!

Fei-Fei Li & Andrej Karpathy!

Camera 
Obscura 

5"Jan"15'8'

Leonardo da Vinci 
16th Century, A.D. 

Camera Obscura

4th century BC (Aristotle)



Neuroscience

Lecture 1 -  !
!
!

Fei-Fei Li & Andrej Karpathy! 5"Jan"15'9'

Hubel & Wiesel, 1959 Huber & Wiesel, 1959



The start of modern computer vision

1963 



Lecture 1 -  !
!
!

Fei-Fei Li & Andrej Karpathy! 5"Jan"15'11'



Influential approach: ecological perspective

Philosophical approach
J. J. Gibson 79

Number of interesting arguments we’ll look at towards the end of class

Excellent review in Palmer’s Vision Science textbook



Lecture 1 -  !
!
!

Fei-Fei Li & Andrej Karpathy! 5"Jan"15'12'

David Marr, 1970s 

David Marr, 1982

Influential approach: computational perspective



David Marr

Low-level Mid-level High-level

Credited with early computational approach for vision



(Aside) 3 R’s: Another taxonomy of 
vision

(from Jitendra Malik)

Reconstruction

Recognition

Reorganization

1. Joint recognition and reconstruction (e.g., learning to infer 3D) 
2. Joint recognition and reorganization (e.g., learning to group pixels)
3. Joint reconstruction and reorganization (e.g., grouping point clouds into surfaces)

Future research directions seem to lie “in the middle”



(Aside) 4 R’s: 3R’s + rudiments
(from Serge Belongie)

Reconstruction

Recognition

Reorganization

Toolboxes: linear algebra, probability, physics, statistics, machine learning 



Syllabus



Geometric models
Funny things happen… 



Geometric models 
(cont’d)

Lecture 1 -  !
!
!

Fei-Fei Li & Andrej Karpathy! 5"Jan"15'14'

•  Generalized Cylinder •  Pictorial Structure 
Brooks & Binford, 1979 Fischler and Elschlager, 1973  

IEEE TRANSACTIONS ON COMPUTERS, JANUARY 1973
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Noisy picture (sensed scene) as used in experiment.

HAIR WAS LOCATED AT (6, 18)
L/EDGE WAS LOCATED AT (18, 10)
R/EDGE WAS LOCATED AT (18, 25)
L/EYE WAS LOCATED AT (17,13)
R/EYE WAS LOCATED AT (17, 21)
NOSE WAS LOCATtD AT (22,18)
MOUTH WAS LOCATED AT (24,17)

123456 7°9'l23456 7890 12 34567 89 C12 3456 78q0

L(EV)A for eye. (Density at a point is proportional to
probability that an eye is present at that location.)

(a)
Fig. 4. Examples of image-matching experiments using faces. (a) Successful embedding under coherent nioise.
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Noisy picture (sensed scene) as used in experiment.

HAIR WAS LOCATED AT (6, 18)
L/EDGE WAS LOCATED AT (18, 10)
R/EDGE WAS LOCATED AT (18, 25)
L/EYE WAS LOCATED AT (17,13)
R/EYE WAS LOCATED AT (17, 21)
NOSE WAS LOCATtD AT (22,18)
MOUTH WAS LOCATED AT (24,17)
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L(EV)A for eye. (Density at a point is proportional to
probability that an eye is present at that location.)

(a)
Fig. 4. Examples of image-matching experiments using faces. (a) Successful embedding under coherent nioise.
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Columbia Dataset (1996)

Flickr dataset (05-12)

Contemporary vision: big data

“In-the-wild”

Caltech 101/256 
Image Net



PASCAL Visual Object Challenge

5000 training images 5000 testing images

20 everyday object categories from Flickr

airplane bike bird boat bottle bus car cat chair cow table dog 
horse motorbike person plant sheep sofa train tv



6 years of PASCAL people detection

average 
precision

 1% to 90% in 10 years

Matching results

(after non-maximum suppression)

~1 second to search all scales
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Precision-recall (2006)



A glimpse into the current future…
8 Olga Russakovsky* et al.

PASCAL ILSVRC

b
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· · ·
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· · ·
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· · ·

Fig. 2 The ILSVRC dataset contains many more fine-grained classes compared to the standard PASCAL VOC benchmark;
for example, instead of the PASCAL “dog” category there are 120 di↵erent breeds of dogs in ILSVRC2012-2014 classification
and single-object localization tasks.

are 1000 object classes and approximately 1.2 million
training images, 50 thousand validation images and 100
thousand test images. Table 2 (top) documents the size
of the dataset over the years of the challenge.

3.2 Single-object localization dataset construction

The single-object localization task evaluates the ability
of an algorithm to localize one instance of an object
category. It was introduced as a taster task in ILSVRC
2011, and became an o�cial part of ILSVRC in 2012.

The key challenge was developing a scalable crowd-
sourcing method for object bounding box annotation.
Our three-step self-verifying pipeline is described in Sec-
tion 3.2.1. Having the dataset collected, we perform
detailed analysis in Section 3.2.2 to ensure that the
dataset is su�ciently varied to be suitable for evalu-
ation of object localization algorithms.

Object classes and candidate images. The object classes
for single-object localization task are the same as the
object classes for image classification task described
above in Section 3.1. The training images for localiza-
tion task are a subset of the training images used for
image classification task, and the validation and test
images are the same between both tasks.

Bounding box annotation. Recall that for the image
classification task every image was annotated with one

object class label, corresponding to one object that is
present in an image. For the single-object localization
task, every validation and test image and a subset of the
training images are annotated with axis-aligned bound-
ing boxes around every instance of this object.

Every bounding box is required to be as small as
possible while including all visible parts of the object
instance. An alternate annotation procedure could be
to annotate the full (estimated) extent of the object:
e.g., if a person’s legs are occluded and only the torso
is visible, the bounding box could be drawn to include
the likely location of the legs. However, this alterna-
tive procedure is inherently ambiguous and ill-defined,
leading to disagreement among annotators and among
researchers (what is the true “most likely” extent of
this object?). We follow the standard protocol of only
annotating visible object parts (Russell et al., 2007; Ev-
eringham et al., 2010).5

3.2.1 Bounding box object annotation system

We summarize the crowdsourced bounding box anno-
tation system described in detail in (Su et al., 2012).
The goal is to build a system that is fully automated,

5 Some datasets such as PASCAL VOC (Everingham et al.,
2010) and LabelMe (Russell et al., 2007) are able to provide
more detailed annotations: for example, marking individual
object instances as being truncated. We chose not to provide
this level of detail in favor of annotating more images and
more object instances.

Imagenet large-scale visual recognition challenge

1000 classes, ~1000 examples per class



Imagenet 2014 image classification results

Model Resolution Crops Models Top-1 error Top-5 error
GoogLeNet ensemble 224 144 7 - 6.67%
Deep Image low-res 256 - 1 - 7.96%
Deep Image high-res 512 - 1 24.88 7.42%
Deep Image ensemble variable - - - 5.98%
BN-Inception single crop 224 1 1 25.2% 7.82%
BN-Inception multicrop 224 144 1 21.99% 5.82%
BN-Inception ensemble 224 144 6 20.1% 4.9%*

Figure 4: Batch-Normalized Inception comparison with previous state of the art on the provided validation set com-
prising 50000 images. *BN-Inception ensemble has reached 4.82% top-5 error on the 100000 images of the test set of
the ImageNet as reported by the test server.

plies to sub-networks and layers, and removing it from
internal activations of the network may aid in training.
Our proposed method draws its power from normalizing
activations, and from incorporating this normalization in
the network architecture itself. This ensures that the nor-
malization is appropriately handled by any optimization
method that is being used to train the network. To en-
able stochastic optimization methods commonly used in
deep network training, we perform the normalization for
each mini-batch, and backpropagate the gradients through
the normalization parameters. Batch Normalization adds
only two extra parameters per activation, and in doing so
preserves the representation ability of the network. We
presented an algorithm for constructing, training, and per-
forming inference with batch-normalized networks. The
resulting networks can be trained with saturating nonlin-
earities, are more tolerant to increased training rates, and
often do not require Dropout for regularization.

Merely adding Batch Normalization to a state-of-the-
art image classification model yields a substantial speedup
in training. By further increasing the learning rates, re-
moving Dropout, and applying other modifications af-
forded by Batch Normalization, we reach the previous
state of the art with only a small fraction of training steps
– and then beat the state of the art in single-network image
classification. Furthermore, by combining multiple mod-
els trained with Batch Normalization, we perform better
than the best known system on ImageNet, by a significant
margin.

Interestingly, our method bears similarity to the stan-
dardization layer of (Gülçehre & Bengio, 2013), though
the two methods stem from very different goals, and per-
form different tasks. The goal of Batch Normalization
is to achieve a stable distribution of activation values
throughout training, and in our experiments we apply it
before the nonlinearity since that is where matching the
first and second moments is more likely to result in a
stable distribution. On the contrary, (Gülçehre & Bengio,
2013) apply the standardization layer to the output of the
nonlinearity, which results in sparser activations. In our
large-scale image classification experiments, we have not
observed the nonlinearity inputs to be sparse, neither with
nor without Batch Normalization. Other notable differ-

entiating characteristics of Batch Normalization include
the learned scale and shift that allow the BN transform
to represent identity (the standardization layer did not re-
quire this since it was followed by the learned linear trans-
form that, conceptually, absorbs the necessary scale and
shift), handling of convolutional layers, deterministic in-
ference that does not depend on the mini-batch, and batch-
normalizing each convolutional layer in the network.
In this work, we have not explored the full range of

possibilities that Batch Normalization potentially enables.
Our future work includes applications of our method to
Recurrent Neural Networks (Pascanu et al., 2013), where
the internal covariate shift and the vanishing or exploding
gradients may be especially severe, and which would al-
low us to more thoroughly test the hypothesis that normal-
ization improves gradient propagation (Sec. 3.3). We plan
to investigate whether Batch Normalization can help with
domain adaptation, in its traditional sense – i.e. whether
the normalization performed by the network would al-
low it to more easily generalize to new data distribu-
tions, perhaps with just a recomputation of the population
means and variances (Alg. 2). Finally, we believe that fur-
ther theoretical analysis of the algorithm would allow still
more improvements and applications.
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A recent dataset
http://mscoco.org/

http://mscoco.org/


A recent toolbox…

http://www.vlfeat.org/matconvnet/

http://www.vlfeat.org/matconvnet/


Next class
Basic image processing


