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Cost function
min
Z,D

C(Z,D,X) where C(Z,D,X) =
X

i

||xi � dzi ||2

xi: ith input vector (to be clustered)

zi 2 {1 . . .K} : ith label 

dk: kth dictionairy element (or mean) 



Coordinate descent optimization

1.

2.

min
Z,D

C(Z,D,X) where C(Z,D,X) =
X

i

||xi � dzi ||2

min
Z

C(Z,D,X)

min
D

C(Z,D,X)

Aside: what happens if we are just given a matrix of pairwise distances?



Sparse reconstructions
min
D,Z

||X �DZ||2F +R(Z)

X = [x1, . . . xn]

D = [d1, . . . , dK ]

Z = [z1, . . . zn]

 subject to sparse constraints on Z

K-means: zi = [. . . , 0, 1, 0, . . .]

L0 sparse-coding: ||zi||0  M

L1 sparse-coding: ||zi||1  M (convex program)

(greedy algorithms known as “matching pursuit”)



Dictionary learning

Some folks claim that k-means should always be replaced by sparse 
coding (never hurts, sometimes better) even for bag-of-words 

… k-means is far simpler, right?

min
D,Z

||X �DZ||2F +R(Z)



“In between” k-means and sparse coding

min
D,Z

||X �DZ||2F +R(Z) subject to sparse constraints on Z

K-means: zi = [. . . , 0, 1, 0, . . .]

L0 sparse-coding: ||zi||0  M (For M = 1, we can solve for Z in closed form)

Histograms of Sparse Codes for Object Detection

Xiaofeng Ren⇤

Amazon.com
xiaofenr@amazon.com
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dramanan@ics.uci.edu

Abstract

Object detection has seen huge progress in recent years,
much thanks to the heavily-engineered Histograms of Ori-
ented Gradients (HOG) features. Can we go beyond gradi-
ents and do better than HOG? We provide an affirmative an-
swer by proposing and investigating a sparse representation
for object detection, Histograms of Sparse Codes (HSC).
We compute sparse codes with dictionaries learned from
data using K-SVD, and aggregate per-pixel sparse codes
to form local histograms. We intentionally keep true to the
sliding window framework (with mixtures and parts) and
only change the underlying features. To keep training (and
testing) efficient, we apply dimension reduction by comput-
ing SVD on learned models, and adopt supervised training
where latent positions of roots and parts are given exter-
nally e.g. from a HOG-based detector. By learning and
using local representations that are much more expressive
than gradients, we demonstrate large improvements over
the state of the art on the PASCAL benchmark for both root-
only and part-based models.

1. Introduction

Object detection is a fundamental problem in computer
vision and has been a major focus of research activities.
There has been huge progress in object detection in recent
years, much thanks to the celebrated Histograms of Ori-
ented Gradients (HOG) features [8, 13]. The HOG fea-
tures are the basis of the original Dalal-Triggs person detec-
tor [8], the popular Deformable Parts Model (DPM) [13],
the Exemplar-SVM model [21], and pretty much every
other modern object detector. HOG is also seeing increas-
ing use in other domains such as pose estimation [34], face
recognition [35], and scene classification [32].

The HOG features, heavily engineered for both accu-
racy and speed, are not without issues or limits. They
are gradient-based and lack the ability to directly represent

⇤Work done while the author was at the Intel Science and Technology
Center for Pervasive Computing, Intel Labs.

How to represent a local patch for object detection? 

Learned Sparse Codebook 

Local Patch 

(Histogram of) Sparse Codes 

Sliding 
Window 

Detection 

Figure 1: Can we find better features than HOG for ob-
ject detection? We develop Histograms-of-Sparse-Codes
(HSC), which represents local patches through learned
sparse codes instead of gradients and outperforms HOG by
a large margin in state-of-the-art sliding window detection.

richer (and larger) patterns. There are multiple ad-hoc de-
signs, such as 4-way normalization and 9 orientations, that
are non-intuitive and unappealing. More importantly, such
hand-crafted features are difficult to generalize or expand to
novel domains (such as depth images or the time-domain),
and they increasingly become a bottleneck as the Moore’s
Law drives up computational capabilities. There are evi-
dences that local features are most crucial for detection [23],
and we may already be saturating the capacity of HOG [36].

Can we learn representations that outperform a hand-
engineered HOG? In the wake of recent advances in feature
learning [16, 1] and its successes in many vision problems
such as recognition [19] and grouping [26], it is promising
to consider employing local features automatically learned
from data. However, feature learning for detection is a chal-
lenging problem, which has seen only limited successes so
far [7, 9], partly because the massive number of windows
one needs to scan. One could also argue that HOG is al-
ready a high dimensional representation (for the entire ob-
ject template), much higher than the number of typical pos-
itive training examples, and therefore it remains to be an-
swered whether a richer, learned representation would fur-

1

Similar to k-means using cosine distance,  
but allows for negative matches

Histograms of Sparse Codes for Object Recognition, CVPR13
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Universal texton dictionary

histogram

Recall texture pipeline



Recall texture pipelineExample Natural Materials 

Terrycloth Rough Plastic Plaster-b 

Sponge Rug-a Painted Spheres 

Columbia-Utrecht Database (http://www.cs.columbia.edu/CAVE) 

match
polka-dot

brick

mesh



Alternative to quantization:  
explicitly compute matchings between image pairs

optimal partial 
matching

Grauman & Darrell



Digression: alternative to quantization
Approximate matching with histogram similarity



Aside: what’s the “right” way to 
compare histograms?

Dr(x, y) =
�X

i

(xi � yi)
r
� 1

r

Chi(x, y) =

X

i

(xi � yi)
2

xi + yi

DKL(x, y) =

X

i

xi log
xi

yi

euclidean (r=2)  or manhattan (r=1) 



Aside: what’s the “right” way to 
compare histograms?

Dr(x, y) =
�X

i

(xi � yi)
r
� 1

r

Chi(x, y) =

X

i

(xi � yi)
2

xi + yi

DKL(x, y) =

X

i

xi log
xi

yi

chi-squared distance 
[derived from chi-squared text in statistics]

euclidean (r=2)  
or manhattan (r=1) 

K-L divergence 
[log probability of seeing x under model y]



Earth mover’s distance

In [11], the histogram unfolding method is introduced
for grey-level images and is extended to more dimensions
in [18]. An “unfolded histogram” is simply the image itself
reshaped to a vector and with its pixels sorted in increas-
ing order of value. The distance between two unfolded
histograms is then defined as the norm of their vec-
tor difference. However, the computational complexity of
this method is very high, because unfolded histograms are
as large as the original pictures they come from. Even
more importantly, unfolded histograms, as the other meth-
ods described above, cannot be used for partial matching,
an essential requirement for image retrieval.

3 The Earth Mover’s Distance
In this section we propose the Earth Mover’s Distance

(EMD) between distributions in order to address the diffi-
culties discussed above. Intuitively,given twodistributions,
one can be seen as a mass of earth properly spread in space,
the other as a collection of holes in that same space. We
can always assume that there is at least as much earth as
needed to fill all the holes to capacity by switching what
we call earth and what we call holes if necessary. Then,
the EMD measures the least amount of work needed to fill
the holes with earth. Here, a unit of work corresponds to
transporting a unit of earth by a unit of (ground) distance.
Computing the EMD is based on a solution to the old

transportationproblem [1]. This is a bipartite networkflow
problem which can be formalized as the following linear
programming problem: Let be a set of suppliers, a
set of consumers, and the cost to ship a unit of supply
from to . Figure 1 shows an example with
three suppliers and two consumers. We want to find a set
of flows that minimize the overall cost

(3)

subject to the following constraints:

(4)

(5)

(6)

where is the total supply of supplier and is the total
capacity of consumer . Constraint 4 allows shipping of
supplies from a supplier to a consumer and not vice versa.
Constraint 5 forces the consumers to fill up all of their
capacities and constraint 6 limits the supply that a supplier
can send to its total amount. A feasibility condition is that
the total demand does not exceed the total supply

suppliers consumers

I J
Cij

Figure 1: An example of a transportation problem with
three suppliers and two consumers.

The transportation problem can be naturally used for
signature matching by defining one signature as the sup-
plier and the other as the consumer, and solving the trans-
portation problem where the cost is the ground distance
between element in the first signature and element in the
second. When the total weights of the signatures are not
equal (partial matches), the smaller signature will be the
consumer in order to satisfy the feasibility condition. Once
the transportation problem is solved, and we have found the
optimal flow , the earth mover’s distance is defined as

EMD

where the denominator is a normalization factor that avoids
favoring signatures with smaller total weights. In general,
the ground distance can be any distance and it will be
chosen according to the problem at hand. Examples are
given in section 4.
Thus, the EMD naturally extends the notion of distance

between single elements to distance between sets of ele-
ments, or distributions. The advantages of the EMD over
previous definitions of distributiondistances should now be
apparent. First, the EMD applies to signatures, which sub-
sume histograms. The greater compactness and flexibility
of signatures is in itself an advantage, and having a distance
measure that can handle these variable-size structures is
important. Second, the costs of moving “earth” reflect the
notion of nearness properly, without the quantization prob-
lems of most current measures. Even for histograms, in
fact, items from neighboring bins contribute similar costs.
Third, the EMD allows for partial matches in a natural way.
This is important in order to deal with occlusions and clut-
ter in image retrieval. Fourth, if the ground distance is a
metric and the total weights of two signatures are equal,
the EMD is a true metric. Computational advantages are
discussed in section 5.

4 Applications to Image Databases
In this section we show a few examples of application of

the earth mover’s distance in the areas of color and texture

Cast as “transportation problem”



Earth mover’s distance

In [11], the histogram unfolding method is introduced
for grey-level images and is extended to more dimensions
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In this section we propose the Earth Mover’s Distance
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the holes with earth. Here, a unit of work corresponds to
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Computing the EMD is based on a solution to the old
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problem which can be formalized as the following linear
programming problem: Let be a set of suppliers, a
set of consumers, and the cost to ship a unit of supply
from to . Figure 1 shows an example with
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capacities and constraint 6 limits the supply that a supplier
can send to its total amount. A feasibility condition is that
the total demand does not exceed the total supply
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Figure 1: An example of a transportation problem with
three suppliers and two consumers.

The transportation problem can be naturally used for
signature matching by defining one signature as the sup-
plier and the other as the consumer, and solving the trans-
portation problem where the cost is the ground distance
between element in the first signature and element in the
second. When the total weights of the signatures are not
equal (partial matches), the smaller signature will be the
consumer in order to satisfy the feasibility condition. Once
the transportation problem is solved, and we have found the
optimal flow , the earth mover’s distance is defined as

EMD

where the denominator is a normalization factor that avoids
favoring signatures with smaller total weights. In general,
the ground distance can be any distance and it will be
chosen according to the problem at hand. Examples are
given in section 4.
Thus, the EMD naturally extends the notion of distance

between single elements to distance between sets of ele-
ments, or distributions. The advantages of the EMD over
previous definitions of distributiondistances should now be
apparent. First, the EMD applies to signatures, which sub-
sume histograms. The greater compactness and flexibility
of signatures is in itself an advantage, and having a distance
measure that can handle these variable-size structures is
important. Second, the costs of moving “earth” reflect the
notion of nearness properly, without the quantization prob-
lems of most current measures. Even for histograms, in
fact, items from neighboring bins contribute similar costs.
Third, the EMD allows for partial matches in a natural way.
This is important in order to deal with occlusions and clut-
ter in image retrieval. Fourth, if the ground distance is a
metric and the total weights of two signatures are equal,
the EMD is a true metric. Computational advantages are
discussed in section 5.

4 Applications to Image Databases
In this section we show a few examples of application of

the earth mover’s distance in the areas of color and texture

min
fij

X

ij

cijfij s.t.

fij � 0
X

i

fij = yj

X

j

fij = xi

EMD(x,y) =
X

ij

cijfij

Bipartite network flow

https://www.cs.duke.edu/~tomasi/papers/rubner/rubnerTr98.pdf

https://www.cs.duke.edu/~tomasi/papers/rubner/rubnerTr98.pdf


Similarity Kernals
D(x, y) = K(x, x) +K(y, y)� 2K(x, y)

Klin(x, y) =
X

i

xiyi

Kint(x, y) =
X

i

min(xi, yi)

Kbat(x, y) =
X

i

p
xiyi

[sometimes more intuitive to define than distance functions]

[what’s corresponding distance function?]



Similarity Kernals
D(x, y) = K(x, x) +K(y, y)� 2K(x, y)

Klin(x, y) =
X

i

xiyi

Kint(x, y) =
X

i

min(xi, yi)

Kbat(x, y) =
X

i

p
xiyi

[sometimes more intuitive to define than distance functions]

What happens if x,y are binary vectors?



Similarity Kernals
D(x, y) = K(x, x) +K(y, y)� 2K(x, y)

Klin(x, y) =
X

i

xiyi

Kint(x, y) =
X

i

min(xi, yi)

Kbat(x, y) =
X

i

p
xiyi

It turns out, we can compute transformations f(x) and f(y) such that L2 distance in 
transformed space corresponds to these kernals (allows use of linear predictors)

http://www.robots.ox.ac.uk/~vgg/software/homkermap/

[sometimes more intuitive to define than distance functions]



Histogram intersection kernal

I(H(X), X(Y)) =
X

k

min(H(Xk), X(Yk))



Back to correspondence matching

approximate match

But what about bin effects (partial credit for near matches)?



Back to correspondence matching

approximate match

Count matches obtained from larger bins 



Counting new matches

Difference in histogram intersections across 
levels counts number of new pairs matched

matches at this level matches at previous level

Histogram 
intersection



Giving partial credit for new matches

Weight new matches inversely porportional to bin size

1 1/2 1/4

i=0 i=1 i=2

1

2i



Pyramid match kernel

•  Weights inversely proportional to bin size  

•  Normalize kernel values to avoid favoring large sets

measure of difficulty of a 
match at level i

histogram pyramids

number of newly matched pairs at level i



Spatial Pyramid Matching
Quantize features into words, but build pyramid in space

4

Level 0 

Level 1 

Level 2 

Feature histograms:

Level 3 

Total weight (value of pyramid match kernel):

Pyramid matching
Find maximum-weight matching (weight is inversely proportional to distance)

Indyk & Thaper (2003), Grauman & Darrell (2005)

Original images

Nifty way to encode constraints like “eye” words lie near top of image
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Motivation

= ++... + + ...

Figure 1: Staircase approximation to a continuous-time signal.

Representing signals with impulses. Any signal can be expressed as a sum of scaled and
shifted unit impulses. We begin with the pulse or “staircase” approximation to a continuous
signal , as illustrated in Fig. 1. Conceptually, this is trivial: for each discrete sample of the
original signal, we make a pulse signal. Then we add up all these pulse signals to make up the
approximate signal. Each of these pulse signals can in turn be represented as a standard pulse
scaled by the appropriate value and shifted to the appropriate place. In mathematical notation:

As we let approach zero, the approximation becomes better and better, and the in the limit
equals . Therefore,

Also, as , the summation approaches an integral, and the pulse approaches the unit impulse:

(1)

In other words, we can represent any signal as an infinite sum of shifted and scaled unit impulses. A
digital compact disc, for example, stores whole complex pieces of music as lots of simple numbers
representing very short impulses, and then the CD player adds all the impulses back together one
after another to recreate the complex musical waveform.

This no doubt seems like a lot of trouble to go to, just to get back the same signal that we
originally started with, but in fact, we will very shortly be able to use Eq. 1 to perform a marvelous
trick.

Linear Systems

A system or transform maps an input signal into an output signal :

where denotes the transform, a function from input signals to output signals.

Systems come in a wide variety of types. One important class is known as linear systems. To
see whether a system is linear, we need to test whether it obeys certain rules that all linear systems
obey. The two basic tests of linearity are homogeneity and additivity.

4

Representing a signal as a linear combination of impulse functions

..allows us to characterize linear-shift invariant (LSI) systems by their impulse response

What about other basis functions besides impulses?

.1* +.2* +.3* +…



Lets pick a smooth basis

= ++... + + ...

Figure 1: Staircase approximation to a continuous-time signal.

Representing signals with impulses. Any signal can be expressed as a sum of scaled and
shifted unit impulses. We begin with the pulse or “staircase” approximation to a continuous
signal , as illustrated in Fig. 1. Conceptually, this is trivial: for each discrete sample of the
original signal, we make a pulse signal. Then we add up all these pulse signals to make up the
approximate signal. Each of these pulse signals can in turn be represented as a standard pulse
scaled by the appropriate value and shifted to the appropriate place. In mathematical notation:

As we let approach zero, the approximation becomes better and better, and the in the limit
equals . Therefore,

Also, as , the summation approaches an integral, and the pulse approaches the unit impulse:

(1)

In other words, we can represent any signal as an infinite sum of shifted and scaled unit impulses. A
digital compact disc, for example, stores whole complex pieces of music as lots of simple numbers
representing very short impulses, and then the CD player adds all the impulses back together one
after another to recreate the complex musical waveform.

This no doubt seems like a lot of trouble to go to, just to get back the same signal that we
originally started with, but in fact, we will very shortly be able to use Eq. 1 to perform a marvelous
trick.

Linear Systems

A system or transform maps an input signal into an output signal :

where denotes the transform, a function from input signals to output signals.

Systems come in a wide variety of types. One important class is known as linear systems. To
see whether a system is linear, we need to test whether it obeys certain rules that all linear systems
obey. The two basic tests of linearity are homogeneity and additivity.

4

= .1* + .3* + …

.1* +.2* +.3* +…

sine functions (sinusoids)

to reflect fact that real-world signals tend to be slow-changing 



Where we are headed…



Why sinusoidal basis functions?

= .1* + .3* + …

1. Efficient representation

Punchline: better compression (only need to encode low-frequency sinusoids - basis of jpeg)

2. Sinusoids are eigenfunctions of LSI systems

.2*

Punchline: LSI systems (or convolutions) can be implemented by …



Implement LSI operations by multiplication

.1*

.3*

…

.02*.2 

.3 .09*

… …

Projection Scaling Reconstruction

“Replace convolutions with multiplications”



Background: sinusoids

A
t

�

f(t)

A: amplitude 
   : phase 
  f: frequency (cycles in t=1 sec)

�

f(t) = A sin(2⇡ft+ �) = A sin(!x+ �)

�

 (angular freqency)! : 2⇡f

� :
1

f (wavelength)



Background:  
complex numbers

(often “j” instead of “i”)

Alternative parameterizations: z = x+ iy = re

i✓

Re(z) = x = r cos(✓)

Im(z) = y = r sin(✓)

z

⇤
= x� iy = re

�i✓

ei✓ = cos ✓ + i sin ✓ (Euler’s formula)

✓



Background:  
complex numbers

What’s the product of two complex numbers?

What’s the inverse of a complex number?

z = x+ jy = re

j✓

z⇤ = x� jy = re

�j✓

Re(z) = x = r cos(✓)

Im(z) = y = r sin(✓)

Inv(z) =
1

r
e�j✓

= z⇤ for r = 1

r1e
j✓1r2e

j✓2 = r1r2e
j(✓1+✓2)

✓



Background:  
complex sinusoid

f(t) = ej!t

Re{f(t)} = cos(!t)

Im{f(t)} = sin(!t)

f(t) = ej!t

Re{f(t)} = cos(!t)

Im{f(t)} = sin(!t)

f(t) = ej!t

Re{f(t)} = cos(!t)

Im{f(t)} = sin(!t)

Think of point travelling around unit circle on imaginary plane at        cycles per sec         
!

2⇡



Proof: complex sinusoids are 
eigenfunctions of LSI systems

g[u] =
X

v

h[v]f [u� v], f [u] = ej!u

= ej!u
X

v

h[v]e�j!v

= ej!uH(w) where H(w) =
X

v

h[v]e�j!v

= f [u]H(!)



Proof: complex sinusoids are 
eigenfunctions of LSI systems

g[u] =
X

v

h[v]f [u� v], f [u] = ej!u

= ej!u
X

v

h[v]e�j!v

= ej!uH(w) where H(w) =
X

v

h[v]e�j!v

= f [u]H(!)

If we hit a LSI system with a sinuoid, output is that sinusoid 
scaled by H(w) (a function of system’s impulse response)



Proof: complex sinusoids are 
eigenfunctions of LSI systems

g[u] =
X

v

h[v]f [u� v], f [u] = ej!u

= ej!u
X

v

h[v]e�j!v

= ej!uH(w) where H(w) =
X

v

h[v]e�j!v

= f [u]H(!)

Aside: Could this have worked for f [u] = zu ?

The resulting H[z] is known as a z-transform: https://en.wikipedia.org/wiki/Z-transform



Discrete Fourier Transform (DFT)

Evaluate below transformation at N different frequencies

F (!k) =
X

u

f [u]e�j!ku !k =
2⇡k

N
, k = {0, . . . , N � 1}

k=0: point not moving 
k=1: travels around unit circle once every N steps 
k=2: travels around unit circle twice every N steps 
….



Discrete Fourier Transform (DFT)

f[u] F[k]

F [k] =
1

N

N�1X

u=0

f [u]e
�j2⇡ku

N

N-long sequence N-long sequence

Re(F [k]) =
1

N

N�1X

u=0

f [u] cos(
�2⇡ku

N
)



Discrete Fourier Transform (DFT)

F [k = 0] =
1

N

NX

u=0

f [u]

F [k = 1] =
1

N

NX

u=0

f [u]e
�j2⇡u

N

. . .

F [k = N/2] =
1

N

NX

u=0

f [u]e�j⇡u

. . .

F [k = N ] =?
Comput F[k] by taking inner product of f[u] with a complex sinusoid gk[u]

What does the (real part of) this sinuoidal functions look like?



Discrete Fourier Transform (DFT)

F [k = 0] =
1

N

NX

u=0

f [u]

F [k = 1] =
1

N

NX

u=0

f [u]e
�j2⇡u

N

. . .

F [k = N/2] =
1

N

NX

u=0

f [u]e�j⇡u

. . .

F [k = N ] =?

basis “images”



Discrete Fourier Transform (DFT)

F [k = 0] =
1

N

NX

u=0

f [u]

F [k = 1] =
1

N

NX

u=0

f [u]e
�j2⇡u

N

. . .

F [k = N/2] =
1

N

NX

u=0

f [u]e�j⇡u

. . .

F [k = N ] =?
F [k] =

1

N

N�1X

u=0

f [u]e
�j2⇡ku

N



Linear transformation

=

How expensive is the conversion?

f[u] F[k][ejwku]



45!

Fourier!transform!visualiza>on!

real 

imaginary 

input signal Fourier transform matrix color key 
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Complex matrix multiplication

f[u] F[k]
N-long sequence N-long sequence



Complex orthonormality

U⇤ = [U⇤
ij ]

T

(U⇤)U = I

Implies the inverse transform is obtained by transpose  + flipping imaginary part
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(U⇤)F = f

(



Inverse DFT

f[u]F[k]

F [k] =
1

N

N�1X

u=0

f [u]e
�j2⇡ku

N

N-long sequence N-long sequence

Sometimes the 1/N is moved or factored  
(really need sqrt(N) to make transform self-inverting)

f [u] =
N�1X

k=0

F [k]e
j2⇡ku

N

(DFT)

(IDFT)



General fourier terminology

Decompose any continuous periodic signal into a summation of sinusoids of increasing frequency

https://en.wikipedia.org/wiki/Fourier_transform

https://en.wikipedia.org/wiki/Fourier_transform


General fourier terminology

• Continuous fourier transfrom 

• Discrete-time fourier transform  

• Discrete fourier transform (DFT)

https://en.wikipedia.org/wiki/Discrete-time_Fourier_transform

https://en.wikipedia.org/wiki/Discrete_Fourier_transform

https://en.wikipedia.org/wiki/Fourier_transform

(useful for analyzing samples of a continuous fn)

https://en.wikipedia.org/wiki/Discrete-time_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Fourier_transform


DFTs as a change of basis

How do we interpret complex weighting coefficients?
F [k] = a+ bj = rej✓

rej✓e
j2⇡ku

N
= rej(

2⇡ku
N +✓)

Re{·} = r cos(
2⇡ku

N
+ ✓)

Scaling coefficients allow us to shift sinusoids!

r

✓

u

=

f[u] F[k][ejwku]



Visualize frequencies from [-N/2..N/2] instead of [0..N]

(Equivalent info because FTs are periodic)

Visualizing DFTs

=

f[u] F[k][ejwku]

f[u] F[k]



F [k] =
1

N

N�1X

u=0

f [u]e
�j2⇡ku

N

F ⇤[�k] =
1

N

N�1X

u=0

f [u]e
�j2⇡ku

N

= F [k]

Proof: DFT of real signal



• Symmetric for real-valued f[u]: F[k] = F[-k]* (we only really need N/2 values) 

• Periodic: F[k+N] = F[k].  (we only need to encode N values; often use k = [-N/2…N/2]) 

• Eigenfunction property: the DFT of the convolution of two functions is the product of 
their DFTs (convolution in time domain is multiplication in frequency domain) 

• DFT of a Gaussian with variance sigma is a another Gaussian with variance 1/sigma

Properties of DFT



Crucial property: convolution is 
multiplication in frequency space

.1*

.3*

…

.02*.2 

.3 .09*

… …

Projection Scaling Reconstruction

DFT  
of impluse reponse

DFT  
of input
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Extensions to  2D

magnitude of [k,l] gives the frequency


k
l

�T 
u
v

�
= ||a||||b|| cos ✓

To get some sense of what 
basis elements look like, we 
plot a basis element --- or 
rather, its real part ---!
as a function of x,y for some 
fixed u, v. We get a function 
that is constant when (ux+vy) 
is constant. The magnitude of 
the vector (u, v) gives a 
frequency, and its direction 
gives an orientation. The 
function is a sinusoid with 
this frequency along the 
direction, and constant 
perpendicular to the 
direction. !

u!

v!
( )vyuxie +−π

( )vyuxie +π

F [k, l] =
1

N2

NX

u

NX

v

f [u, v]e�2j⇡( ku+lv
N )

g[u, v] = cos(�2⇡
ku+ lv

N
)

u

v 
k
l

�



Visualizing DFTs in 2D

F[k,l]

.e
�2j⇡( ku+lv

N )

To get some sense of what 
basis elements look like, we 
plot a basis element --- or 
rather, its real part ---!
as a function of x,y for some 
fixed u, v. We get a function 
that is constant when (ux+vy) 
is constant. The magnitude of 
the vector (u, v) gives a 
frequency, and its direction 
gives an orientation. The 
function is a sinusoid with 
this frequency along the 
direction, and constant 
perpendicular to the 
direction. !

u!

v!
( )vyuxie +−π

( )vyuxie +π u

v

Real part of basis image 

Arrange coefficients into an image



F[k,l]
To get some sense of what 
basis elements look like, we 
plot a basis element --- or 
rather, its real part ---!
as a function of x,y for some 
fixed u, v. We get a function 
that is constant when (ux+vy) 
is constant. The magnitude of 
the vector (u, v) gives a 
frequency, and its direction 
gives an orientation. The 
function is a sinusoid with 
this frequency along the 
direction, and constant 
perpendicular to the 
direction. !

u!

v!
( )vyuxie +−π

( )vyuxie +π u

v

Real part of basis image 

.
e2j⇡(

ku+lv
N )

.e
�2j⇡( ku+lv

N )

Visualizing DFTs in 2D
What does basis image look like for [-k,-l]?



To get some sense of what 
basis elements look like, we 
plot a basis element --- or 
rather, its real part ---!
as a function of x,y for some 
fixed u, v. We get a function 
that is constant when (ux+vy) 
is constant. The magnitude of 
the vector (u, v) gives a 
frequency, and its direction 
gives an orientation. The 
function is a sinusoid with 
this frequency along the 
direction, and constant 
perpendicular to the 
direction. !

u!

v!
( )vyuxie +−π

( )vyuxie +π

Here u and 
v are larger 
than in the 
previous 
slide.!

u!

v!( )vyuxie +−π

( )vyuxie +π

..

.
.

e2j⇡(
ku+lv

N )

e�2j⇡( ku+lv
N )

e2j⇡(
ku+lv

N )

F[k,l]

u

v

u

v



Extension to 2D



Extension to 2D

in Matlab, check out: imagesc(log(abs(fftshift(fft2(im)))));



Fourier analysis in images

Intensity Image

Fourier Image

http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering



Signals can be composed

+ =

http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering 
More: http://www.cs.unm.edu/~brayer/vision/fourier.html



Let’s build up a signal by randomly 
adding in fourier transform coefficients2 



136 



2094 



15366 



49190. 



3 

Now, an analogous sequence of images, but selecting Fourier 
components in descending order of magnitude. 



5 



33 



257 



16385 



65536 



Man-made Scene



?

Man-made Scene



?

Man-made Scene



?

Man-made Scene



?

Man-made Scene
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Example 2D Fourier transform

Image with periodic structure

f(x,y) |F(u,v)|

FT has peaks at spatial frequencies of repeated texture
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Example – Forensic application

Periodic background removed

|F(u,v)|

remove 
peaks
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Recall: convolution is multiplication in 
frequency space

.1*

.3*

…

.02*.2 

.3 .09*

… …

Projection Scaling Reconstruction

DFT  
of impluse reponse

DFT  
of input



Recall: convolution is multiplication in 
frequency space

.1*

.3*

…

.02*.2 

.3 .09*

… …

Projection Scaling Reconstruction

DFT of impluse reponseDFT  
of input

(join lines 
removed)

Implies that previous frequency manipulations 
can be implemented with convolutions!

IDFT of multiplied result



Fast Fourier transform (FFT)

“The most important numerical algorithm of our lifetime”

Compute (I)DFTs in NlogN instead of N2(standard matrix multiplication)

Strang, Gilbert (May-June 1994). "Wavelets". American Scientist 82 (3): 253 

= versus=

Recursively compute N-element DFT with 2 N/2-element DFT
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Why does the Gaussian give a nice smooth 
image, but the square filter give edgy 
artifacts?

Gaussian Box filter

Filtering



Recall…



Another look: blurring

original



smoothed (5x5 Gaussian)

Another look: blurring



A “High-Pass” filter
smoothed – original

Gaussianunit impulse Laplacian of Gaussian



Hybrid Images
Gaussian Filter

Laplacian Filter

 A. Oliva, A. Torralba, P.G. Schyns,  
“Hybrid Images,” SIGGRAPH 2006

Gaussianunit impulse Laplacian of Gaussian

http://cvcl.mit.edu/hybridimage.htm
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Da Vinci and Peripheral Vision DaVinci and Hybrid Images

Humans have less resolution (fewer sensors) near periphery
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Leonardo playing with peripheral vision 

low frequencies middle frequencies high frequencies



Low-pass, Band-pass, High-pass filters
low-pass:

band-pass:



Efficient construction of a collection of bandpass images

Bandpass Images

Lowpass Images
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Gabor filters

reason for a “quadrature pair”
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Phase!and!Magnitude!

•  Curious!fact!
–  all!natural!images!have!about!the!same!magnitude!transform!
–  hence,!phase!seems!to!maler,!but!magnitude!largely!doesn’t!

•  Demonstra>on!
–  Take!two!pictures,!swap!the!phase!transforms,!compute!the!

inverse!4!what!does!the!result!look!like?!
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This is the 
magnitude 
transform of 
the cheetah 
pic!

This is the 
magnitude 
transform of 
the zebra pic!

This is the 
phase 
transform of 
the cheetah 
pic!

This is the 
phase 
transform of 
the zebra pic!
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Reconstruction 
with zebra phase, 
cheetah 
magnitude!
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Reconstruction 
with cheetah phase, 
zebra magnitude!
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Phase!and!Magnitude!

Computer Vision - A Modern Approach - Set:  Pyramids and Texture - Slides by D.A. Forsyth!

Image with cheetah phase  
(and zebra magnitude) 

Image with zebra phase 
(and cheetah magnitude) 
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Application: JPEG compression

Optimize DFT for real images; we only need to encode half the values

Turns out we don’t need complex exponentials, only cosine functions  
= > discrete cosine transforms (DCT)



Block-based DCT

Apply DCT on 8x8 pixel blocks

Using DCT in JPEG    
The first coefficient B(0,0) is the DC component, 

the average intensity 
The top-left coeffs represent low frequencies, 

the bottom right – high frequencies 
 

low frequencies

high frequencies
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Image compression using DCT 
Quantize  

• More coarsely for high frequencies (which also tend to have smaller 
values) 

• Many quantized high frequency values will be zero 

Encode 
• Can decode with inverse dct 

Quantization table 

Filter responses 

Quantized values 
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JPEG compression comparison 

89k 12k 



Application: 
“Style Transfer for Headshot Portraits” (SIGGRAPH ‘14)











Example Laplacian Local energy Gaussian kernel at this scale



At each scale: match local energy

Example energyInput energy



At each scale: match local energy

Compute   
the gain map

Example Laplacian

Input Laplacian

Local energy S[E]

Local energy S[I]

Gain map = S[E] / S[I]



At each scale: match local energy

Compute   
the gain map

Example Laplacian

Input Laplacian

Local energy S[E]

Local energy S[I]

Modulate  
the input Laplacian

Input Laplacian Gain map Output Laplacian

× =

Gain map = S[E] / S[I]
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https://www.youtube.com/watch?v=Hj5lGFzlubU


