Frequencies

Agenda

- Texture
- Pyramid matching
- Frequencies

Cost function

 $\min_{Z,D} C(Z, D, X) \quad \text{where} \quad C(Z, D, X) = \sum_{i} ||x_i - d_{z_i}||^2$

 x_i : ith input vector (to be clustered) $z_i \in \{1 \dots K\}$: ith label

d_k: kth dictionairy element (or mean)

Coordinate descent optimization

 $\min_{Z,D} C(Z, D, X) \quad \text{where} \quad C(Z, D, X) = \sum_{i} ||x_i - d_{z_i}||^2$

1.
$$\min_{Z} C(Z, D, X)$$

2. $\min_{D} C(Z, D, X)$

Aside: what happens if we are just given a *matrix* of pairwise distances?

Sparse reconstructions

 $\min_{D,Z} ||X - DZ||_F^2 \quad \text{subject to sparse constraints on Z}$

$$X = [x_1, \dots x_n]$$
$$D = [d_1, \dots, d_K]$$
$$Z = [z_1, \dots z_n]$$

K-means: $z_i = [..., 0, 1, 0, ...]$ LO sparse-coding: $||z_i||_0 \leq M$ (greedy algorithms known as "matching pursuit") L1 sparse-coding: $||z_i||_1 \leq M$

(convex program)

Dictionary learning

 $\min_{D,Z} ||X - DZ||_F^2$

Some folks claim that k-means should always be replaced by sparse coding (never hurts, sometimes better) even for bag-of-words

... k-means is far simpler, right?

"In between" k-means and sparse coding

 $\min_{D,Z} ||X - DZ||_F^2 \quad \text{subject to sparse constraints on Z}$

K-means: $z_i = [\dots, 0, 1, 0, \dots]$ L0 sparse-coding: $||z_i||_0 \le M$ (For M = 1, we can solve for Z in closed form)

Similar to k-means using cosine distance, but allows for negative matches

Histograms of Sparse Codes for Object Recognition, CVPR13

Agenda

- Texture
- Pyramid matching
- Frequencies

Recall texture pipeline

Recall texture pipeline

mesh

Alternative to quantization: explicitly compute matchings between image pairs

Grauman & Darrell

Digression: alternative to quantization

Approximate matching with histogram similarity

Aside: what's the "right" way to compare histograms? $D_r(x,y) = \left(\sum_i (x_i - y_i)^r\right)^{\frac{1}{r}}$

Aside: what's the "right" way to compare histograms?

euclidean (r=2)
or manhattan (r=1)
$$D_r(x,y) = \left(\sum_i (x_i - y_i)^r\right)^{\frac{1}{r}}$$
chi-squared distance
[derived from chi-squared text in statistics]
$$Chi(x,y) = \sum_i \frac{(x_i - y_i)^2}{x_i + y_i}$$
[log probability of seeing x under model y]
$$D_{KL}(x,y) = \sum_i x_i \log \frac{x_i}{y_i}$$

eu or m

chi-squ [derived from chi-

K-L

Earth mover's distance

Cast as "transportation problem"

Earth mover's distance

Bipartite network flow

 $\min_{f_{ij}} \sum_{ij} c_{ij} f_{ij} \quad s.t.$ $f_{ij} \ge 0$ $\sum_{i} f_{ij} = y_j$ $\sum_{j} f_{ij} = x_i$

$$EMD(\mathbf{x}, \mathbf{y}) = \sum_{ij} c_{ij} f_{ij}$$

https://www.cs.duke.edu/~tomasi/papers/rubner/rubnerTr98.pdf

Similarity Kernals

[sometimes more intuitive to define than distance functions]

$$D(x,y) = K(x,x) + K(y,y) - 2K(x,y)$$

 $K_{lin}(x,y) = \sum_{i} x_{i}y_{i}$ [what's corresponding distance function?]

Similarity Kernals

[sometimes more intuitive to define than distance functions]

$$D(x, y) = K(x, x) + K(y, y) - 2K(x, y)$$
$$K_{lin}(x, y) = \sum_{i} x_{i} y_{i}$$
$$K_{int}(x, y) = \sum_{i} \min(x_{i}, y_{i})$$

What happens if x,y are binary vectors?

Similarity Kernals

[sometimes more intuitive to define than distance functions]

$$D(x, y) = K(x, x) + K(y, y) - 2K(x, y)$$
$$K_{lin}(x, y) = \sum_{i} x_{i}y_{i}$$
$$K_{int}(x, y) = \sum_{i} \min(x_{i}, y_{i})$$
$$K_{bat}(x, y) = \sum_{i} \sqrt{x_{i}y_{i}}$$

It turns out, we can compute transformations f(x) and f(y) such that L2 distance in transformed space corresponds to these kernals (allows use of linear predictors)

http://www.robots.ox.ac.uk/~vgg/software/homkermap/

Histogram intersection kernal

$$\mathcal{I}(H(\mathbf{X}), X(\mathbf{Y})) = \sum_{k} \min(H(\mathbf{X}_{k}), X(\mathbf{Y}_{k}))$$

= 4

Back to correspondence matching

But what about bin effects (partial credit for near matches)?

Back to correspondence matching

Count matches obtained from larger bins

Counting new matches

-listogram
$$\mathcal{I}\left(H(\mathbf{X}),H(\mathbf{Y})\right) = \sum_{j=1}^{r}\min\left(H(\mathbf{X})_{j},H(\mathbf{Y})_{j}\right)$$

Giving partial credit for new matches

Weight new matches inversely porportional to bin size

 $\frac{1}{2^i}$

Pyramid match kernel

- Weights inversely proportional to bin size
- Normalize kernel values to avoid favoring large sets

Spatial Pyramid Matching

Quantize features into words, but build pyramid in space Nifty way to encode constraints like "eye" words lie near top of image

Agenda

- Texture
- Pyramid matching
- Frequencies

Motivation

Representing a signal as a linear combination of impulse functions

..allows us to characterize linear-shift invariant (LSI) systems by their impulse response

What about other basis functions besides impulses?

Lets pick a smooth basis

to reflect fact that real-world signals tend to be slow-changing

sine functions (sinusoids)

Where we are headed...

Why sinusoidal basis functions?

$$(1*) = .1* (1*) + .3* (1*) + ...$$

1. Efficient representation

Punchline: better compression (only need to encode low-frequency sinusoids - basis of jpeg)

-

2. Sinusoids are *eigenfunctions* of LSI systems

$$\bigwedge \longrightarrow \mathbb{I} \longrightarrow \mathbb{I}^*$$

Punchline: LSI systems (or convolutions) can be implemented by ...

Implement LSI operations by multiplication

"Replace convolutions with multiplications"

Background: sinusoids

$$f(t) = A\sin(2\pi ft + \phi) = A\sin(\omega x + \phi)$$

A: amplitude
φ: phase
f: frequency (cycles in t=1 sec)
ω:
λ:

Background: complex numbers

(often "j" instead of "i")

Alternative parameterizations: $z = x + iy = re^{i\theta}$ $e^{i\theta} = \cos \theta + i \sin \theta$ (Euler's formula) Re(z) = Im(z) = $z^* =$

Background: complex numbers

What's the product of two complex numbers?

$$r_1 e^{j\theta_1} r_2 e^{j\theta_2} = r_1 r_2 e^{j(\theta_1 + \theta_2)}$$

What's the inverse of a complex number?

$$Inv(z) = \frac{1}{r}e^{-j\theta} = z^* \quad \text{for} \quad r = 1$$

Think of point travelling around unit circle on imaginary plane at $\frac{\omega}{2\pi}$ cycles per sec
Proof: complex sinusoids are eigenfunctions of LSI systems

$$g[u] = \sum_{v} h[v]f[u-v], \quad f[u] = e^{j\omega u}$$

Proof: complex sinusoids are eigenfunctions of LSI systems

 $g[u] = \sum_{v} h[v]f[u - v], \quad f[u] = e^{j\omega u}$ $= e^{j\omega u} \sum_{v} h[v]e^{-j\omega v}$ $= e^{j\omega u}H(w) \quad \text{where} \quad H(w) = \sum_{v} h[v]e^{-j\omega v}$ $= f[u]H(\omega)$

If we hit a LSI system with a sinuoid, output is that sinusoid scaled by H(w) (a function of system's impulse response)

Proof: complex sinusoids are eigenfunctions of LSI systems

$$\begin{split} g[u] &= \sum_{v} h[v] f[u-v], \quad f[u] = e^{j\omega u} \\ &= e^{j\omega u} \sum_{v} h[v] e^{-j\omega v} \\ &= e^{j\omega u} H(w) \quad \text{where} \quad H(w) = \sum_{v} h[v] e^{-j\omega v} \\ &= f[u] H(\omega) \end{split}$$

Aside: Could this have worked for $f[u] = z^u$?

The resulting H[z] is known as a z-transform: <u>https://en.wikipedia.org/wiki/Z-transform</u>

Evaluate below transformation at N different frequencies

$$F[k] = \frac{1}{N} \sum_{u=0}^{N-1} f[u] e^{\frac{-j2\pi ku}{N}}$$

$$Re(F[k]) = \frac{1}{N} \sum_{u=0}^{N-1} f[u] \cos(\frac{-2\pi ku}{N})$$

N-long sequence N-long sequence

$$F[k = 0] = \frac{1}{N} \sum_{u=0}^{N} f[u]$$
$$F[k = 1] = \frac{1}{N} \sum_{u=0}^{N} f[u] e^{\frac{-j2\pi u}{N}}$$

$$F[k = N/2] = \frac{1}{N} \sum_{u=0}^{N} f[u] e^{-j\pi u}$$

• • •

Comput F[k] by taking inner product of f[u] with a complex sinusoid $g_k[u]$ What does the (real part of) this sinuoidal functions look like?

$$F[k = 0] = \frac{1}{N} \sum_{u=0}^{N} f[u]$$
$$F[k = 1] = \frac{1}{N} \sum_{u=0}^{N} f[u] e^{\frac{-j2\pi u}{N}}$$

$$F[k = N/2] = \frac{1}{N} \sum_{u=0}^{N} f[u] e^{-j\pi u}$$

• • •

$$F[k = 0] = \frac{1}{N} \sum_{u=0}^{N} f[u]$$
$$F[k = 1] = \frac{1}{N} \sum_{u=0}^{N} f[u] e^{\frac{-j2\pi u}{N}}$$

$$F[k = N/2] = \frac{1}{N} \sum_{u=0}^{N} f[u] e^{-j\pi u}$$

$$F[k] = \frac{1}{N} \sum_{u=0}^{N-1} f[u] e^{\frac{-j2\pi ku}{N}}$$

F[k=N] = ?

. . .

Linear transformation

How expensive is the conversion?

Complex matrix multiplication

Complex orthonormality

$$U^* = [U_{ij}^*]^T \quad "$$
$$(U^*)U = I$$
$$(\bigcirc) \bigcirc = I = I$$

"complex conjugate or adjoint"

Implies the inverse transform is obtained by transpose + flipping imaginary part

$$F = Uf$$
$$(U^*)F = f$$

Inverse DFT

$$f[u] = \sum_{k=0}^{N-1} F[k] e^{\frac{j2\pi ku}{N}} \quad \text{(IDFT)}$$
$$F[k] = \frac{1}{N} \sum_{u=0}^{N-1} f[u] e^{\frac{-j2\pi ku}{N}} \quad \text{(DFT)}$$

Sometimes the 1/N is moved or factored (really need sqrt(N) to make transform self-inverting)

General fourier terminology

https://en.wikipedia.org/wiki/Fourier_transform

$a_n \cos(nx) + b_n \sin(nx)$

Decompose any continuous periodic signal into a summation of sinusoids of increasing frequency

General fourier terminology

• Continuous fourier transfrom

https://en.wikipedia.org/wiki/Fourier_transform

• Discrete-time fourier transform

https://en.wikipedia.org/wiki/Discrete-time_Fourier_transform

(useful for analyzing samples of a continuous fn)

• Discrete fourier transform (DFT)

https://en.wikipedia.org/wiki/Discrete_Fourier_transform

DFTs as a change of basis

How do we interpret complex weighting coefficients?

$$F[k] = a + bj = re^{j\theta}$$

$$re^{j\theta}e^{\frac{j2\pi ku}{N}} = re^{j(\frac{2\pi ku}{N} + \theta)}$$

$$Re\{\cdot\} = r\cos(\frac{2\pi ku}{N} + \theta)$$

u

Scaling coefficients allow us to shift sinusoids!

Visualizing DFTs

Visualize frequencies from [-N/2..N/2] instead of [0..N]

(Equivalent info because FTs are periodic)

Proof: DFT of real signal

$$F[k] = \frac{1}{N} \sum_{u=0}^{N-1} f[u] e^{\frac{-j2\pi ku}{N}}$$

$$F^*[-k] =$$

Properties of DFT

- Symmetric for real-valued f[u]: $F[k] = F[-k]^*$ (we only really need N/2 values)
- Periodic: F[k+N] = F[k]. (we only need to encode N values; often use k = [-N/2...N/2])
- Eigenfunction property: the DFT of the convolution of two functions is the product of their DFTs (convolution in time domain is multiplication in frequency domain)
- DFT of a Gaussian with variance sigma is a another Gaussian with variance 1/sigma

Crucial property: convolution is multiplication in frequency space

Extensions to 2D

$$F[k,l] = \frac{1}{N^2} \sum_{u=v}^{N} \sum_{v=v}^{N} f[u,v] e^{-2j\pi(\frac{ku+lv}{N})}$$

 $e^{\pi i (ux+vy)}$

$$g[u, v] = \cos(-2\pi \frac{ku + lv}{N})$$

$$\begin{bmatrix} k \\ l \end{bmatrix}^T \begin{bmatrix} u \\ v \end{bmatrix} = ||a||||b||\cos\theta$$

magnitude of [k,1] gives the frequency $e^{-\pi i(ux+vy)}$

u

Visualizing DFTs in 2D

Arrange coefficients into an *image*

Visualizing DFTs in 2D

What does basis image look like for [-k,-l]?

Extension to 2D

Extension to 2D

in Matlab, check out: imagesc(log(abs(fftshift(fft2(im)))));

Fourier analysis in images

http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering

Signals can be composed

http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering More: http://www.cs.unm.edu/~brayer/vision/fourier.html

Let's build up a signal by randomly adding in fourier transform coefficients

Example 2D Fourier transform

Image with periodic structure

f(x,y)

|F(u,v)|

FT has peaks at spatial frequencies of repeated texture

Example – Forensic application

Recall: convolution is multiplication in frequency space

Recall: convolution is multiplication in frequency space

Implies that previous frequency manipulations can be implemented with convolutions!

Fast Fourier transform (FFT)

"The most important numerical algorithm of our lifetime"

Strang, Gilbert (May-June 1994). "Wavelets". American Scientist 82 (3): 253

Compute (I)DFTs in NlogN instead of N²(standard matrix multiplication)

Recursively compute N-element DFT with 2 N/2-element DFT

Filtering

Why does the Gaussian give a nice smooth image, but the square filter give edgy artifacts?

Gaussian

Box filter

Recall...

Another look: blurring

original

Another look: blurring

smoothed (5x5 Gaussian)

A "High-Pass" filter

smoothed – original

Hybrid Images

Gaussian Filter

A. Oliva, A. Torralba, P.G. Schyns, <u>"Hybrid Images,"</u> SIGGRAPH 2006

DaVinci and Hybrid Images

Humans have less resolution (fewer sensors) near periphery

low frequencies

middle frequencies

high frequencies

Low-pass, Band-pass, High-pass filters

low-pass:

band-pass:

Efficient construction of a collection of bandpass images

Lowpass Images

Bandpass Images

Gabor filters

reason for a "quadrature pair"

Phase and Magnitude

- Curious fact
 - all natural images have about the same magnitude transform
 - hence, phase seems to matter, but magnitude largely doesn't
- Demonstration
 - Take two pictures, swap the phase transforms, compute the inverse - what does the result look like?

Reconstruction vith zebra phase, heetah nagnitude

Reconstruction with cheetah phase, zebra magnitude

Phase and Magnitude

Image with cheetah phase (and zebra magnitude)

Computer Vision - A Modern Approach - Set: Pyramids and Texture - Slides by D.A. Forsyth

Image with zebra phase (and cheetah magnitude)

Optimize DFT for real images; we only need to encode half the values

Turns out we don't need complex exponentials, only cosine functions = > discrete cosine transforms (DCT)

$$X_{k} = \sum_{n=0}^{N-1} x_{n} \cos \left[\frac{\pi}{N} \left(n + \frac{1}{2} \right) k \right] \qquad k = 0, \dots, N-1.$$

Apply DCT on 8x8 pixel blocks

low frequencies

Quantize

More coarsely for high frequencies (which also tend to have smaller values)

v

Many quantized high frequency values will be zero

Encode

• Can decode with inverse dct

Quantization table

	[16	11	10	16	24	40	51	61
Q =	12	12	14	19	26	58	60	55
	14	13	16	24	40	57	69	56
	14	17	22	29	51	87	80	62
	18	22	37	56	68	109	103	77
	24	35	55	64	81	104	113	92
	49	64	78	87	103	121	120	101
	72	92	95	98	112	100	103	99

89k

12k

Application: <u>"Style Transfer for Headshot Portraits" (SIGGRAPH '14)</u>

Example

Step 2: multi-scale local transfer

Input

Example
Step 2: multi-scale local transfer

Construct Laplacian stacks for the input and the example.

Example

Step 2: multi-scale local transfer

1. Construct Laplacian stacks for the input and the example

 Local match at each scale

Step 2: multiscale transfer of local statistics

1. Construct Laplacian stacks for the input and the example

Local energy S

Example Laplacian Local energy Gaussian kernel at this scale

At each scale: match local energy

Input energy

Example energy

At each scale: match local energy

Compute the gain map

At each scale: match local energy

Compute the gain map

Modulate

https://www.youtube.com/watch?v=Hj5IGFzIubU