
Estimating optical flow



Outline

• Bightness constancy 

• Aperture problem 

• Small-motion assumption 

• Motion segmentation



Last lecture:  
biological importance of optical flow

Time-to-contact Parallax reveals depth



Problem Definition: Optical Flow

• How to estimate pixel motion from image H to image I?

– Find pixel correspondences 
• Given a pixel in H, look for nearby pixels of the same color in I

• Key assumption 
– color constancy:  a point in H looks “the same” in image I 

• For grayscale images, this is brightness constancy



Brightness constancy
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Brightness constancy equation gives us:

1) a constraint on flow vector (u,v) 
2) a linear approximation of pixel error



Aperature problem
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We can only determine flow in direction parallel to gradient



Challenges

• Aperture problem
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• Small motion assumption

Soln to brightness constancy equation may not be unique

First-order taylor approximation does not hold for large motions



Soln for aperture problem

2. Assume neighboring flow vectors are similar 
    (enforce spatial smoothness in dense flow feild)

1. Don’t try to estimate flow at unreliable points 
(sparse flow; similar to feature point alignment!)



 Simple approach:  
assume flow is constant over a neighborhood

u(x,y) = u 
v(x,y) = v

min
u,v
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Low Texture Region - Bad

17

SSD in Homogeneous Area

SSD surface



Edges – so,so (aperture problem)
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SSD Surface at an Edge

SSD surface



High Textured Region - Good
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SSD Surface in Textured Area

SSD surface



Sparse flow estimation (feature tracking)
1. User Harris corner score to find trackable patches 

2. Appy Lucas Kanade on those patches
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Local motion estimation is hard

Where does false “t-junctions” appear to move?

We’d like to integrate local signals globally



Dense flow (I)

E(p) =
X

x

[I(W(x;p))� T (x)]2

Apply Lucas Kanade on successive frames of a video sequence

Generalize translation to other 2D warps (affine, homographies,…)



Homography warp works for some cases (rotations, planar scenes).  
We’ll discuss a solution for others in a bit…

Applications: mosaicing



Dense flow (II)

min
u(x,y)
v(x,y)
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Aside: continuous case

Formal math is known as calculus of variations (we’re minimizing over the space of functions)

https://en.wikipedia.org/wiki/Calculus_of_variations

Solve for global flow feild
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https://en.wikipedia.org/wiki/Calculus_of_variations


Dense variational flow
If we assume small motions….
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above is “shorthand” for…



Spatial regularization
Penalize differences in nearby flow vectors

1. Unknowns (u,v) appear quadratically in above expression => 
discretize above and solve for them with a giant linear system

2. Challenge: outliers will overwhelm squared error term
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Challenges with regularization

ground-truth flowestimated flow

https://en.wikipedia.org/wiki/Horn-Schunck_method
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Can we use ransac to fit flow?
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(a) Ego (b) 3rd person (c) Self-facing

Figure 9: Visualization of IDT trajectories for frames sam-
pled from videos with different camera viewpoint capture
modes (best viewed in color). The image in (a) shows the
egocentric view of a person on a boat, (b) shows the third-
person view of someone performing a cartwheel, and (c)
shows an image of a girl posing for a selfie. The white tracks
are those filtered out by the IDT algorithm while the green
ones are kept for descriptor computation. In the third person
and self-facing cases, we can see that IDT isolates salient
motions. However, in the ego-centric mode, the camera
motion is tied to the actor and hence a strong cue in under-
standing action in the videos making filtering inappropriate
in many cases.

4.3. Classification
We learn tag classifiers that combine our features

through kernel combination. We experimented extensively
with various feature encodings and kernel combinations.
Good results were obtained with the following strategy. We
compute the similarity between two video clips xi and xj

by averaging their motion and static-feature similarities:
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1

2
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We measure the static-image similarity between two
clips using a linear kernel:

Ks(xi, xj) =
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j ),

summed over the N = 9 static feature channels extracted
by the CNN.

The combined kernel is used in a (kernelized) multi-class
SVM. We use the LIBSVM package to learn parameters for

a one-vs-all multi-class predictor [3]. Given a test video x,
its predicted class label is given by:

Pred(x) = argmax

c

X

i

↵icK(x, xi) (1)

where ↵ic are the learned dual variables associated with
training example i and class label c. We note that the pre-
diction computation can be sped up by computing the kernel
matrix once for each pairing of training and test examples,
and the result cached for later reuse (e.g., for scoring each
class c in the above expression).

Viewpoint mixtures: Different viewpoints of the same
tag can have significant differences in video content, as
shown in Fig. 1. For example, a third-person and egocen-
tric bicycling video contain very different motions and
appearances. To model such variations, we train viewpoint-
specific mixtures models. Let ↵ivc be the learned dual vari-
ables for viewpoint v of class c for training example i. The
final predictor is as follows:

Pred(x) = argmax

c
max

v

X

i

↵ivcK(x, xi) (2)

Once again, the above computation can be made efficient
by computing the kernel matrix independently of class and
viewpoint and caching it.

5. Experiments
We present an extensive set of experiments on our

dataset. We ask the reader to look at Supplementary Mate-
rials for the full set of tables and figures. We focus on three
sets of experiments here: feature analysis, viewpoint anal-
ysis, and finally a comparison with existing popular bench-
marks such as HMDB [14].

Feature comparisons: We begin by comparing the per-
formance of various combinations of our appearance fea-
tures: Overfeat (OFx9) and motion features: Dense Track
(DT), Improved Dense Track (IDT), and temporally pooled
CNN features (OF-PoT). Table 2 summarize the results of
these experiments. (1) In general, IDT is the best single
feature. It outperforms DT in most cases. IDT is most
helpful for third-person views, consistent with the intuition
from Fig. 9. (2) OFx9 is a surprisingly strong static feature,
particularly for tags with characteristic scene and objects
shapes such as the “Competitive” and “Object” categories.
(3) OF-PoT outperforms IDT for egocentric videos, but is
worse for third-person and self-facing videos (validating
its usefulness as an egocentric descriptor). (4) Trajectory-
based motion features and static-image deep features are
particularly effective when combined, indicating that they
capture complementary cues. Fig. 10 shows the confusion
matrix for the IDT+OFx9 feature combinations.

View-specific mixtures: We next evaluate the perfor-
mance of view-specific tag classifiers from (2), comparing
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Yes, but historically optical flow methods take a more continuous optimization (variational) perspective



Recall RANSAC

x

y

Underlying problem: squared error penalizes outliers too much

Deeper reason: Gaussian statistics (e-||x-u||^2) are too simplistic for real world



truncated quadratic lorentzian

Optimization over model parameters (u,v) not convex

It turns out, we can generalize RANSAC to an algorithm for maximum-
likelihood model fitting robust error models (MLESAC, Torr & Zisserman 00)

RANSAC as robust model-fitting

Instead of scoring a candidate model with # of inliers, score it under robust error function



“Intermediate” approach:  
robust statistics that are convex

 

 

Energy function(u,v) is still globally optimizable with local search



Robust variational optical flow

first image quadratic flow lorentzian flow detected outliers

Reference 
• Black, M. J. and Anandan, P., A framework for the robust estimation of optical flow, Fourth International 

Conf. on Computer Vision (ICCV), 1993, pp. 231-236 http://www.cs.washington.edu/education/courses/
576/03sp/readings/black93.pdf  

min
u,v

Z Z
⇢(I2(x+ u, y + v)� I1(x, y)

�
+ ⇢(||ru||) + ⇢(||rv||)dxdy

where rho = robust error function (instead of quadratic error)

Typical approach: initialize solution with quadratic flow and locally optimize

http://www.cs.washington.edu/education/courses/576/03sp/readings/black93.pdf
http://www.cs.washington.edu/education/courses/576/03sp/readings/black93.pdf


Outline

• Bightness constancy 

• Aperture problem 

• Small-motion assumption 

• Motion segmentation

(sparse flow, spatial regularization)



Revisting the small motion assumption
Is the motion small enough to make Taylor-series linearization valid?



One soln: reduce the resolution!



image Iimage J

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H

run iterative OF

run iterative OF

upsample

. 

. 

.

Soln 1: Coarse-to-fine Optical Flow



Soln 2: discrete optical flow estimation
ui 2 {�5 . . . 5}
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zi = (ui, vi)

E(z) =
X

i2V

�i(zi) +
X

ij2E

 (zi, zj)

Discrete Markov Random Feild (MRF) with pixel-grid graph G=(V,E)

E(z) =
X

i2V

�i(zi) +
X

ij2E

 ij(zi, zj)

�i(zi) = ⇢(||I2(xi + ui, yi + vi)� I(xi, yi)||)
 ij(zi, zj) = ⇢(ui � uj , vi � vj)

Int J Comput Vis (2011) 92: 1–31
DOI 10.1007/s11263-010-0390-2

A Database and Evaluation Methodology for Optical Flow

Simon Baker · Daniel Scharstein · J.P. Lewis ·
Stefan Roth · Michael J. Black · Richard Szeliski

Received: 18 December 2009 / Accepted: 20 September 2010 / Published online: 30 November 2010
© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract The quantitative evaluation of optical flow algo-
rithms by Barron et al. (1994) led to significant advances
in performance. The challenges for optical flow algorithms
today go beyond the datasets and evaluation methods pro-
posed in that paper. Instead, they center on problems as-
sociated with complex natural scenes, including nonrigid
motion, real sensor noise, and motion discontinuities. We
propose a new set of benchmarks and evaluation methods
for the next generation of optical flow algorithms. To that
end, we contribute four types of data to test different as-
pects of optical flow algorithms: (1) sequences with non-
rigid motion where the ground-truth flow is determined by

A preliminary version of this paper appeared in the IEEE International
Conference on Computer Vision (Baker et al. 2007).
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tracking hidden fluorescent texture, (2) realistic synthetic
sequences, (3) high frame-rate video used to study inter-
polation error, and (4) modified stereo sequences of static
scenes. In addition to the average angular error used by Bar-
ron et al., we compute the absolute flow endpoint error, mea-
sures for frame interpolation error, improved statistics, and
results at motion discontinuities and in textureless regions.
In October 2007, we published the performance of several
well-known methods on a preliminary version of our data
to establish the current state of the art. We also made the
data freely available on the web at http://vision.middlebury.
edu/flow/. Subsequently a number of researchers have up-
loaded their results to our website and published papers us-
ing the data. A significant improvement in performance has
already been achieved. In this paper we analyze the results
obtained to date and draw a large number of conclusions
from them.

Keywords Optical flow · Survey · Algorithms · Database ·
Benchmarks · Evaluation · Metrics

1 Introduction

As a subfield of computer vision matures, datasets for
quantitatively evaluating algorithms are essential to ensure
continued progress. Many areas of computer vision, such
as stereo (Scharstein and Szeliski 2002), face recognition
(Philips et al. 2005; Sim et al. 2003; Gross et al. 2008;
Georghiades et al. 2001), and object recognition (Fei-Fei
et al. 2006; Everingham et al. 2009), have challenging
datasets to track the progress made by leading algorithms
and to stimulate new ideas. Optical flow was actually one
of the first areas to have such a benchmark, introduced by
Barron et al. (1994). The field benefited greatly from this



Example: SIFTFlow

TO APPEAR AT IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

(a) (b) (c) (d) (e) (f) (g)

(1)

(2)

(3)

(4)

(5)

Fig. 11. SIFT flow for image pairs depicting the same scene/object. (a) shows the query image and (b) its densely extracted SIFT
descriptors. (c) and (d) show the best (lowest energy) match from the database and its SIFT descriptors, respectively. (e) shows
(c) warped onto (a). (f) shows the warped SIFT image (d). (g) shows the estimated displacement field with the minimum alignment
energy shown to the right.

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

Fig. 12. SIFT flow computed for image pairs depicting the same scene/object category where the visual correspondence is
obvious.

Allows us to do nearest-neighbor label transfer for scene analysis

Liu et al, PAMI 2011

Measure local appearances of patches using SIFT descriptors

Turns out that this can be used to align images of different scenes!



Outline

• Bightness constancy 

• Aperture problem 

• Small-motion assumption 

• Motion segmentation

(sparse flow, spatial regularization)

(coarse-to-fine, discrete optimization)

[Some remaining challenges]



Remaining challenges: long-term optical flow

Combine long-term sparse feature tracking with variational flow regularization
 (http://rvsn.csail.mit.edu/pv/)

Note the difficulty in getting regularization “right”!

http://rvsn.csail.mit.edu/pv/


Remaining challenges: 
 small things that move fast

Large Displacement Optical Flow⇤
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Abstract

The literature currently provides two ways to establish
point correspondences between images with moving ob-
jects. On one side, there are energy minimization methods
that yield very accurate, dense flow fields, but fail as dis-
placements get too large. On the other side, there is descrip-
tor matching that allows for large displacements, but corre-
spondences are very sparse, have limited accuracy, and due
to missing regularity constraints there are many outliers. In
this paper we propose a method that can combine the ad-
vantages of both matching strategies. A region hierarchy is
established for both images. Descriptor matching on these
regions provides a sparse set of hypotheses for correspon-
dences. These are integrated into a variational approach
and guide the local optimization to large displacement so-
lutions. The variational optimization selects among the hy-
potheses and provides dense and subpixel accurate esti-
mates, making use of geometric constraints and all avail-
able image information.

1. Introduction
Optical flow estimation has been declared as a solved

problem several times. For restricted cases this is true, but
in more general cases, we are still far from a satisfactory so-
lution. For instance estimating a dense flow field of people
with fast limb motions cannot yet be achieved reliably with
state-of-the-art techniques. This is of importance for many
applications, like long range tracking, motion segmentation,
or flow based action recognition techniques [5, 7].
Most contemporary optical flow techniques are based on

two important ingredients, the energy minimization frame-
work of Horn and Schunck [6], and the concept of coarse-
to-fine image warping introduced by Lucas and Kanade [10]
to overcome large displacements. Both approaches have
been extended by robust statistics, which allow the treat-
ment of outliers in either the matching or the smoothness
assumption, particularly due to occlusions or motion dis-
continuities [3, 14]. The technique in [4] further introduced
gradient constancy as a constraint which is robust to illu-

⇤This work was funded by the German Academic Exchange Service
(DAAD) and the ONR-MURI program.

Figure 1. Top row: Image of a sequence where the person is step-
ping forward and moving his hands. The optical flow estimated
with the method from [4] is quite accurate for the main body and
the legs, but the hands are not accurately captured. Bottom row,
left: Overlay of two successive frames showing the motion of one
of the hands. Center: The arm motion is still good but the hand
has a smaller scale than its displacement leading to a local mini-
mum. Right: Color map used to visualize flow fields in this paper.
Smaller vectors are darker and color indicates the direction.

mination changes and proposed a numerical scheme that al-
lows for a very high accuracy, provided the displacements
are not too large.
The reason why differential techniques can deal with dis-

placements larger than a few pixels at all is that they initial-
ize the flow by estimates from coarser image scales, where
displacements are small enough to be estimated by local
optimization. Unfortunately, the downsampling not only
smoothes the way to the global optimum, but also removes
information that may be vital for establishing the correct
matches. Consequently, the method cannot refine the flow
of structures that are smaller than their displacement, sim-
ply because the structure is smoothed away just at the level
when its flow is small enough to be estimated in the varia-
tional setting. The resulting flow is then close to the motion
of the larger scale structure. This still works well if the mo-
tion varies smoothly with the scale of the structures, and
even precise 3D reconstruction of buildings becomes pos-
sible [16]. Figure 1, however, shows an example, where
the hand motion is not estimated correctly because the hand

1
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Figure 1. Top row: Image of a sequence where the person is step-
ping forward and moving his hands. The optical flow estimated
with the method from [4] is quite accurate for the main body and
the legs, but the hands are not accurately captured. Bottom row,
left: Overlay of two successive frames showing the motion of one
of the hands. Center: The arm motion is still good but the hand
has a smaller scale than its displacement leading to a local mini-
mum. Right: Color map used to visualize flow fields in this paper.
Smaller vectors are darker and color indicates the direction.

mination changes and proposed a numerical scheme that al-
lows for a very high accuracy, provided the displacements
are not too large.
The reason why differential techniques can deal with dis-

placements larger than a few pixels at all is that they initial-
ize the flow by estimates from coarser image scales, where
displacements are small enough to be estimated by local
optimization. Unfortunately, the downsampling not only
smoothes the way to the global optimum, but also removes
information that may be vital for establishing the correct
matches. Consequently, the method cannot refine the flow
of structures that are smaller than their displacement, sim-
ply because the structure is smoothed away just at the level
when its flow is small enough to be estimated in the varia-
tional setting. The resulting flow is then close to the motion
of the larger scale structure. This still works well if the mo-
tion varies smoothly with the scale of the structures, and
even precise 3D reconstruction of buildings becomes pos-
sible [16]. Figure 1, however, shows an example, where
the hand motion is not estimated correctly because the hand
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Estimate dense or sparse correspondences across 2 frames with classic descriptor matching

{(xi, yi, ui, vi)}

Ematch(u, v) =
X

i

(u(xi, yi)� ui)
2 + (v(xi, yi)� vi)

2

min Eintensity + Esmooth + Ematch

Set of matchable points and estimated offsets:

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

Fig. 4. Evolution of estimated flow. Left: Overlayed input images. Right: Evolving flow field from coarse (left) to fine
(right). The correspondences dominate the estimate at the beginning, pushing the solution towards the fast motion of
the leg and the racket. Some wrong matches are also visible, e.g. at the tip of the racket. These outliers are removed
over time as more and more data from the image is taken into account.

Fig. 5. Comparison of descriptors used for matching. From left to right: Overlaid input images, region descriptors
as proposed in [10], HOG descriptors, GB descriptors. The region descriptors produce more mismatches than HOG
descriptors and miss more parts like the racket than HOG and GB. GB is best in recovering all parts, like the racket in
the second example, whereas HOG produces fewer false matches.

used at all. In the setting here, further iterations yield only
very little improvement, but increase the computational cost
considerably.

5 EXPERIMENTS

5.1 Comparison among the used descriptors
As we suggested three alternative ways for descriptor match-
ing, in a first experiment we evaluated which one works best.
For a quantitative measurement, we ran the methods on all 8
sequences of the Middlebury benchmark with public ground
truth [3]. It is important to note that the Middlebury benchmark
does not include any ground truth examples with large motion.
All the examples can be easily handled with conventional
warping techniques. The additional descriptor matching cannot
be expected to improve the accuracy in the case of small
displacements, as it usually produces some disturbing false
large displacement matches, while the correct matches do
not have positive effects as the warping already produces
very good solutions with subpixel accuracy. Therefore, this
experiment cannot tell which of the descriptors is best for
dealing with large displacement situations, but which one

produces the least false matches. By comparing the numbers to
the baseline method without descriptor matching, i.e. β = 0,
we can also measure the accuracy that is lost by adding the
ability to deal with large displacement scenarios.

The parameters σ (presmoothing of the images), α, and
γ were optimized as to produce the best average angular
error among all 8 sequences. β = 300 was kept at the
same value as in all the other examples, ensuring that fast
motion could be estimated, if it was present in the sequences.
Table 1 shows the average angular error. As expected, the
baseline method performs best on this benchmark. Among
the descriptor matching techniques, the HOG descriptor leads
to the smallest loss in accuracy, followed by GB and region
matching. With 16%, the loss in accuracy is a price worth
paying for the ability to capture much larger displacements.

The conjecture that HOG descriptors lead to the smallest
number of mismatches is also confirmed by a qualitative
analysis. Fig. 5 shows two examples from a tennis sequence
including large displacements. Both region matching and GB
descriptors lead to some artifacts in the final flow that result
from false descriptor matching and that could not be pruned by
the variational method, whereas the result with HOG matching

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
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Fig. 4. Evolution of estimated flow. Left: Overlayed input images. Right: Evolving flow field from coarse (left) to fine
(right). The correspondences dominate the estimate at the beginning, pushing the solution towards the fast motion of
the leg and the racket. Some wrong matches are also visible, e.g. at the tip of the racket. These outliers are removed
over time as more and more data from the image is taken into account.

Fig. 5. Comparison of descriptors used for matching. From left to right: Overlaid input images, region descriptors
as proposed in [10], HOG descriptors, GB descriptors. The region descriptors produce more mismatches than HOG
descriptors and miss more parts like the racket than HOG and GB. GB is best in recovering all parts, like the racket in
the second example, whereas HOG produces fewer false matches.

used at all. In the setting here, further iterations yield only
very little improvement, but increase the computational cost
considerably.

5 EXPERIMENTS

5.1 Comparison among the used descriptors
As we suggested three alternative ways for descriptor match-
ing, in a first experiment we evaluated which one works best.
For a quantitative measurement, we ran the methods on all 8
sequences of the Middlebury benchmark with public ground
truth [3]. It is important to note that the Middlebury benchmark
does not include any ground truth examples with large motion.
All the examples can be easily handled with conventional
warping techniques. The additional descriptor matching cannot
be expected to improve the accuracy in the case of small
displacements, as it usually produces some disturbing false
large displacement matches, while the correct matches do
not have positive effects as the warping already produces
very good solutions with subpixel accuracy. Therefore, this
experiment cannot tell which of the descriptors is best for
dealing with large displacement situations, but which one

produces the least false matches. By comparing the numbers to
the baseline method without descriptor matching, i.e. β = 0,
we can also measure the accuracy that is lost by adding the
ability to deal with large displacement scenarios.

The parameters σ (presmoothing of the images), α, and
γ were optimized as to produce the best average angular
error among all 8 sequences. β = 300 was kept at the
same value as in all the other examples, ensuring that fast
motion could be estimated, if it was present in the sequences.
Table 1 shows the average angular error. As expected, the
baseline method performs best on this benchmark. Among
the descriptor matching techniques, the HOG descriptor leads
to the smallest loss in accuracy, followed by GB and region
matching. With 16%, the loss in accuracy is a price worth
paying for the ability to capture much larger displacements.

The conjecture that HOG descriptors lead to the smallest
number of mismatches is also confirmed by a qualitative
analysis. Fig. 5 shows two examples from a tennis sequence
including large displacements. Both region matching and GB
descriptors lead to some artifacts in the final flow that result
from false descriptor matching and that could not be pruned by
the variational method, whereas the result with HOG matching

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
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Fig. 1. Left: The fast motion of a hand is a typical ex-
ample where conventional warping methods fail. Center
Left: Optical flow field computed with such a warping
method [11]: the hand motion is missed. Center Right:
For comparison the optical flow field with the technique
presented in this paper: the motion of the hand is esti-
mated correctly. Right: Color code for visualizing the flow
fields.

ods to reliably capture large displacements as the most limiting
factor when applying optical flow in other computer vision
tasks. The contribution of the present paper is a variational
model and a corresponding numerical scheme that can deal far
more reliably with large displacements than previous methods.

The basic idea is to support the continuation method, which
is responsible for estimating large displacements in classic
warping methods, by another technique that is well known for
its ability to estimate arbitrarily large displacements: descriptor
matching. In contrast to single pixels, rich local descriptors,
such as SIFT or HOG, are usually unique enough to allow
for global matching without additional regularity constraints.
This renders matching without limitations on the magnitude of
the displacement extremely simple and efficient, and explains
the enormous success of descriptive features in structure from
motion, image search, and object detection.

In optical flow estimation, descriptor matching has not been
a success story so far. The reasons for this are quite evident: (i)
although most descriptors can be uniquely matched between
images, some of them are confused or their counterpart in
the other image is missing due to occlusions. This causes
a certain amount of mismatches that are very disturbing for
most optical flow applications. (ii) Descriptor matching is a
discrete technique, which only allows for pixel accuracy. This
quantization effect prevents distinguishing small motions and
causes drift in tracking applications. (iii) The most successful
descriptors are all based on spatial histograms. Histograms
are not well localized, and thus the precision of the motion
estimates, especially at motion discontinuities, is lower than
with, e.g., variational techniques.

One would like to benefit both from the ability of descriptor
matching to produce a large amount of correct large dis-
placement correspondences and from the ability of variational
techniques to efficiently produce highly accurate, dense motion
fields without outliers. We achieve this by integrating the
correspondences from descriptor matching into a variational
optical flow model. As we will describe later in more detail,
descriptor matching and the continuation method used as
an optimization heuristic in warping techniques are mostly
complementary in the way how they avoid local minima in
the energy. In conjunction with a coarse-to-fine optimization,
descriptor matching can guide the solution towards large dis-

Fig. 2. Straightforward combinations of descriptor match-
ing and variational methods do not work as well as the
proposed large displacement optical flow. Left: Transpar-
ent overlay of input frames. Center Left: Initialization of
[11] with descriptor correspondences. The initialization
is already smoothed away at the coarsest resolution
and does not help to estimate the fast hand motion.
Center Right: Postsmoothing of dense HOG correspon-
dences with TV regularization. Smoothing alone cannot
remove all mismatches. Moreover, motion discontinuities
are severely dislocated. Right: Proposed large displace-
ment optical flow (LDOF).

placements of small, independently moving structures, while
the other constraints in the variational model successively
remove the mismatches and provide the accuracy known from
variational methods. Fig. 2 demonstrates that straightforward
postsmoothing of descriptor matches or simple initialization
of a variational optical flow technique with the descriptor
matching result generally does not work. In contrast, the
results we obtain with the proposed large displacement optical
flow approach prove to be very reliable on a wide variety of
video data.

2 RELATED WORK

The use of richer descriptors in optical flow estimation goes
back to Weber and Malik, who employed a multi-scale set
of filter responses, so-called jets, in a Lucas-Kanade like
setting [33]. The linearization involved in this method keeps
it from estimating large displacements. In contrast, Liu et al.
[23] have recently proposed a method that computes dense
correspondence fields between two different scenes. Clearly,
the matching of scenes induces very large displacements and
requires invariance to intra-category variations. The idea in
[23] is to compute a dense field of SIFT descriptors and
then run an approximative discrete optimization via belief
propagation from [29] on top of these descriptors. In contrast
to simple nearest neighbor matching, SIFT flow tries to
minimize an energy that also includes regularity constraints.
The model and numerical scheme we present in the present
paper differs from SIFT flow in three ways. First, as we focus
more on classic motion analysis rather than scene matching,
our model does not fully rely on histogram based features such
as SIFT. Such features are only a supplement in our approach
that allows avoiding local minima, but we still match features
such as the color and gradient of single pixels, which have
a high spatial resolution. Second, the optimization strategies
are different. While SIFT flow considers all possible matches

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
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Outline

• Bightness constancy 

• Aperture problem 

• Small-motion assumption 

• Motion segmentation

(sparse flow, spatial regularization)

(coarse-to-fine, discrete optimization)



Apparent motion due to parallax

Background motion due to 
camera motion (ego-motion)

Object’s independent motion



E(p) =
X

x

⇢(I(W(x;p)))� T (x))

1. Assume parametric warp (typically homography)
2. Treat moving/non-planar objects as outliers in robust error function

Motion segmentation (I):  
robustly estimate dominant motion





Motion segmentation (II)
Treat as clustering problem

1. Obtain an initial estimate of flow (sparse or dense) 
2. Cluster pixels using feature vectors (consisting of flow, RGB, etc.)

Generalize K-means to fit a parametric model (e.g., affine warp) rather than a centroid

Uses “soft” K-means or EM algorithm
Weiss & Adelson, CVPR 96



Treat as clustering problem

Ideally, estimate flow and warp parameters jointly in one giant variational optimization
(I haven’t seen this; looks hard because of joint discrete / continous optimization)

Motion segmentation (II)



Background subtraction
Once we have background image/mosiac (trivial for a stationary camera), how do we identify foreground?

CSE486, Penn State

Robert Collins

Lecture 24

Video Change Detection

FRAME-0 FRAME-35 FRAME-70

MHI-0 MHI-35 MHI-70

Figure 1. Top row: Keyframes of an arm
stretching exercise movement. Bottom row:
MHIs corresponding to keyframes in the top
row.

method focuses on accumulating and recognizing holistic
“patterns of motion” rather than trajectories of structural
features. Similar use of templates for characterizing motion
include work by [22, 19, 12], but are constrained to very
particular domains (e.g., periodicity, facial motion). Our
general template method is targeted at representing arbi-
trary human (and other) movements. The strength of the
approach is the use of a compact, yet descriptive, real-time
representation capturing a sequence of motions in a single
static image (similar to [18]). The MHI is constructed by
successively layering selected image regions over time us-
ing a simple update rule:

if
else if (1)

where each pixel (x,y) in the MHI is marked with a current
timestamp if the function signals object presence (or
motion) in the current video image ; the remaining
timestamps in the MHI are removed if they are older than
the decay value . This update function is called for
every new video frame analyzed in the sequence.
The function that selects a pixel location in the input

image for inclusion into the MHI can be arbitrarily spec-
ified. Since the template representation captures both the
position and temporal history of a moving object, many pos-
sibilities for selecting regions of interest are applicable. De-
tectors may include background subtraction, image differ-
encing, optical flow, edges, stereo-depth silhouettes, flesh-

Figure 2. Effect of altering the decay parame-
ter (in seconds) in Eqn. 1.

colored regions, etc. With an object selection process for
(e.g., background subtraction), the representation can ac-

commodate slowly moving regions ( 1 pixel/frame) that
would otherwise be missed by image differencing or stan-
dard optical flow. For the results presented here, we used a
threshold-difference background subtraction method.
To illustrate the construction of an MHI, keyframes from

a sequence of a person performing an “arm stretch” move-
ment and the corresponding (cumulative) MHIs are pre-
sented in Fig. 1 ( sec.). For display purposes the
timestamp pixel values in the templates are linearly mapped
to graylevel values 0–255. Here the brightness of a pixel
corresponds to its recency in time (i.e., brighter pixels are
the most current timestamps). Depending on the value cho-
sen for the decay parameter , an MHI can encode a wide
history of movement (See Fig. 2).
Our initial approach to recognition with MHIs [9] was

to extract several higher-order scale and translation invari-
ant moment features [16] (also from a binarized version)
and statistically match them to stored model examples using
the Mahalanobis distance [25]. Though successful in con-
strained situations with single and multiple cameras, a limi-
tation with that recognition method was the holistic genera-
tion (and matching) of the moment features computed from
the entire template. Any occlusions of the body or errors
from the implementation of resulted in serious recog-
nition failures. Also the recognition method was limited
to only label-based (token) recognition, where it could not
yield any information other than specific identity matches
(e.g., it could not report that “upward” motion was occur-
ring at a particular image location). This led us to consider
a more localized approach to motion analysis of the MHI.

3. Motion Gradients

From Eqn. 1, the MHI layers the regions over time in
such a way that the visual appearance of the layered regions
gives the impression of motion directly from the intensity

Very commonly-used technique, so we’ll spend a few slides on it…



CSE486, Penn State

Robert Collins

Simple Background Subtraction

• Background model is a static image (assumed to have no objects present).

• Pixels are labeled as object (1) or not object (0) based on thresholding the

       absolute intensity difference between current frame and background.

B = I(0);

…

loop time t

   I(t) = next frame;

   diff = abs[B – I(t)];

   M(t) = threshold(diff,!);

   …

end

M(t)absI(t)

B

!

T

A naive approach

M(t) = ||B � I(t)|| > �
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Robert Collins

BG Observations

Objects that enter the scene and stop continue to

be detected, making it difficult to detect new objects

that pass in front of them. 

If part of the assumed static background starts

moving, both the object and its negative ghost

(the revealed background) are detected

Difficulties

CSE486, Penn State

Robert Collins

BG Observations

Objects that enter the scene and stop continue to

be detected, making it difficult to detect new objects

that pass in front of them. 

If part of the assumed static background starts

moving, both the object and its negative ghost

(the revealed background) are detected

Overlapping foreground 
objects are merged together

Formerlly static objects (that now 
move) result in ghostingCSE486, Penn State

Robert Collins

BG Observations

Background subtraction is sensitive to changing

illumination and unimportant movement of the

background (for example, trees blowing in the

wind, reflections of sunlight off of cars or water).

Background subtraction cannot handle movement

of the camera.  

Senstive to small movements in scene (trees) 
and changes in illumination (sunlight)

CSE486, Penn State

Robert Collins

BG Observations

Background subtraction is sensitive to changing

illumination and unimportant movement of the

background (for example, trees blowing in the

wind, reflections of sunlight off of cars or water).

Background subtraction cannot handle movement

of the camera.  

Senstive to small movements of camera



Frame-differencingCSE486, Penn State

Robert Collins

Simple Frame Differencing

• Background model is replaced with the previous image.

M(t)abs

B(0) = I(0);

…

loop time t

   I(t) = next frame;

   diff = abs[B(t-1) – I(t)];

   M(t) = threshold(diff,!);

   …

   B(t) = I(t);

end

delay

I(t)

B(t-1)

!

T

M(t) = ||B � I(t)|| > �

B = I(t� 1)



Adjusting temporal scale of differencingCSE486, Penn State

Robert Collins

Differencing and Temporal Scale

Define D(N) = || I(t) - I(t+N) ||

Note what happens when we adjust the temporal scale (frame rate) 

at which we perform two-frame differencing …

I(t) D(-1) D(-3) D(-5) D(-9) D(-15)

more complete object silhouette, but two copies 

(one where object used to be, one where it is now).



A neat “trick”: 3-frame differencing
CSE486, Penn State

Robert Collins

Three-Frame Differencing

AND

D(-15)

D(+15)

The previous observation is the motivation behind three-frame differencing

where object was, 
and where it is now

where object is now, 
and where it will be

where object is now!



But its hard to find a 
good frame rate

CSE486, Penn State

Robert Collins

Three-Frame Differencing

5

15

25

35

45

55

65

1

Choice of good frame-rate for three-frame differencing

 depends on the size and speed of the object

This worked well

for the person

# frames

skipped 



(x,y)

Statistical color models:

What’s a “principled” way to build background model?

(a) 2-D rendering of 3-D histogram model

viewed along the green-magenta axis.

(b) Surface plot of the marginal density formed by integrating

along the viewing direction in (a).

  Red

  Blue

Full Color Model, Green−Magenta Axis Marginal

Black White

(c) Equiprobability contours from the surface plot in

(b).

Red 

Blue 

Green 

Full Color Model, Gray Axis Marginal

(d) Contour plot for an integration of (a) along the

gray axis.

Figure 1: Four visualizations of a full color RGB histogram model constructed from nearly 2 billion Web image pixels.

4

pixel-specific color histogram

P (I) = N(I;µ,⌃) P (I) =
X

i

⇡iN(I;µ,⌃)

P (I(x, y)|bg) > �
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Adaptive Background Subtraction

• Current image is “blended” into the background model with parameter "

• " = 0 yields simple background subtraction, " = 1 yields frame differencing

M(t)abs

B(0) = I(0);

…

loop time t

   I(t) = next frame;

   diff = abs[B(t-1) – I(t)];

   M(t) = threshold(diff,!);

   …

   B(t) = " I(t)+(1–")B(t-1);

end

I(t)

B(t-1)

!

T

" I(t) + (1–")B(t-1)

B(t)

delay

"

Online statistical learning (of say, mean)

B(1) = I(1)

B(2) = .5I(2) + .5I(1)

B(3) = .5I(3) + .25I(2) + .5I(1)

... exponential decay

alpha=1: frame differencing 
alpha=0: fixed (initial) background image

M(t) = [B(t� 1)� I(t)] > �

B(t) = ↵I(t) + (1� ↵)B(t� 1)



Adaptive background subtraction 



Nifty visualizations: persistant frame differencing

Mark each pixel with the last “time” is was declared foreground

FRAME-0 FRAME-35 FRAME-70

MHI-0 MHI-35 MHI-70

Figure 1. Top row: Keyframes of an arm
stretching exercise movement. Bottom row:
MHIs corresponding to keyframes in the top
row.

method focuses on accumulating and recognizing holistic
“patterns of motion” rather than trajectories of structural
features. Similar use of templates for characterizing motion
include work by [22, 19, 12], but are constrained to very
particular domains (e.g., periodicity, facial motion). Our
general template method is targeted at representing arbi-
trary human (and other) movements. The strength of the
approach is the use of a compact, yet descriptive, real-time
representation capturing a sequence of motions in a single
static image (similar to [18]). The MHI is constructed by
successively layering selected image regions over time us-
ing a simple update rule:

if
else if (1)

where each pixel (x,y) in the MHI is marked with a current
timestamp if the function signals object presence (or
motion) in the current video image ; the remaining
timestamps in the MHI are removed if they are older than
the decay value . This update function is called for
every new video frame analyzed in the sequence.
The function that selects a pixel location in the input

image for inclusion into the MHI can be arbitrarily spec-
ified. Since the template representation captures both the
position and temporal history of a moving object, many pos-
sibilities for selecting regions of interest are applicable. De-
tectors may include background subtraction, image differ-
encing, optical flow, edges, stereo-depth silhouettes, flesh-

Figure 2. Effect of altering the decay parame-
ter (in seconds) in Eqn. 1.

colored regions, etc. With an object selection process for
(e.g., background subtraction), the representation can ac-

commodate slowly moving regions ( 1 pixel/frame) that
would otherwise be missed by image differencing or stan-
dard optical flow. For the results presented here, we used a
threshold-difference background subtraction method.
To illustrate the construction of an MHI, keyframes from

a sequence of a person performing an “arm stretch” move-
ment and the corresponding (cumulative) MHIs are pre-
sented in Fig. 1 ( sec.). For display purposes the
timestamp pixel values in the templates are linearly mapped
to graylevel values 0–255. Here the brightness of a pixel
corresponds to its recency in time (i.e., brighter pixels are
the most current timestamps). Depending on the value cho-
sen for the decay parameter , an MHI can encode a wide
history of movement (See Fig. 2).
Our initial approach to recognition with MHIs [9] was

to extract several higher-order scale and translation invari-
ant moment features [16] (also from a binarized version)
and statistically match them to stored model examples using
the Mahalanobis distance [25]. Though successful in con-
strained situations with single and multiple cameras, a limi-
tation with that recognition method was the holistic genera-
tion (and matching) of the moment features computed from
the entire template. Any occlusions of the body or errors
from the implementation of resulted in serious recog-
nition failures. Also the recognition method was limited
to only label-based (token) recognition, where it could not
yield any information other than specific identity matches
(e.g., it could not report that “upward” motion was occur-
ring at a particular image location). This led us to consider
a more localized approach to motion analysis of the MHI.

3. Motion Gradients

From Eqn. 1, the MHI layers the regions over time in
such a way that the visual appearance of the layered regions
gives the impression of motion directly from the intensity

Use some previous method to identify foreground/background pixels



Motion History Images
[Bobick & Davis]

CSE486, Penn State

Robert Collins

Persistent Frame Differencing

• Motion images are combined with a linear decay term

• also known as motion history images (Davis and Bobick)

H(t)

B(0) = I(0);

H(0) = 0;

loop time t

   I(t) = next frame;

   diff = abs[B(t-1) – I(t)];

   M(t) = threshold(diff,!);

   tmp = max[H(t-1)-#,0)];

   H(t) = max[255*M(t),tmp)];

   …

   B(t) = I(t);

end

M(t)

abs

delay

I(t)

B(t-1)

!

T

max

maxX

255

0 #

H(t-1)

H(t) = max(255 ⇤M(t),max(H(t)� 1, 0))



Motion History Images



Outline

• Bightness constancy 

• Aperture problem 

• Small-motion assumption 

• Motion segmentation

(sparse flow, spatial regularization)

(coarse-to-fine, discrete optimization)

(dominant motion estimation,  
background subtraction,  

layered models)



Layered model

Direct analogy with layers in photoshop



Mathematical formalism
Layer 0 (BG)

Layer 1

Alpha composite

Ii(x, y) = ↵i(x, y)Li(x, y) + (1� ↵i(x, y))Ii�1(x, y)



 

 

   

   

   



Inferring layers, motion, and appearance with EM



Takeaways

• Bightness constancy 

• Aperture problem 

• Small-motion assumption 

• Motion segmentation

(sparse flow, spatial regularization)

(coarse-to-fine, discrete optimization)

(dominant motion estimation,  
background subtraction,  

layered models)


