Estimating optical flow
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Biological importance of
optical flow

Time-to-contact Parallax reveals depth



Importance of low-level motion




Videos as spacetime cubes

- I(x,p,1)




Visualizing spacetime cubes

In this example, the circle 1s in front of the square and the camera 1s moving horigontally to the left



Digression: visualizing space-time cube

me (¢) Spatiotemporal YT slices

Plot I(x,y,t) for a fixed t Plot I(x,y,t) for a fixed x

/W\\/

Plot I(x,y,t) for a fixed (x,y)




Ampliftying temporal signals

Radial artery

Ulnar artery fime

Motion Magnification in Natural Videos

Eulerian Video Magnification for Revealing Subtle Changes in the World



Problem Definition: Optical Flow
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* How to estimate pixel motion from image H to image |7

— Find pixel correspondences
* Given a pixel in H, look for nearby pixels of the same color in |

« Key assumption
— color constancy: a point in H looks “the same” in image |
* For grayscale images, this is brightness constancy



Caution:
2D measured optical flow 3D scene flow
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Brightness constancy
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Brightness constancy equation gives us:

1) a constraint on flow vector (u,v)
2) a linear approximation of pixel error



Aperature problem

We can only determine flow in direction parallel to gradient
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Challenges

® Aperture problem

Soln to brightness constancy equation may not be unique

I{z,y,t) = I({x + Az, y + Ay, t + At)

e Small motion assumption

First-order taylor approximation does not hold for large motions
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Soln for aperture problem

1. Don’t try to estimate flow at unreliable points
(sparse flow)

2. Assume neighboring flow vectors are similar
(enforce spatial smoothness in dense flow feild)



Simple approach:
assume flow 1s constant over a neighborhood

i 3 (b4 1)

x,ycW




Low Texture Region - Bad

SSD surface



Edges — so,so0 (aperture problem)

[ B A -

SSD surface



High Textured Region - Good

SSD surface



Sparse flow estimation (feature tracking)

1. User Harris corner score to find trackable patches

La(o + .y + ) = Do) = V1) [ ] + (o)

2. Appy Lucas Kanade on those patches

Good Features to Track

Jianbo Shi Carlo Tomasi
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Local motion estimation I1s hard

Where does false “t-junctions” appear to move?

We’d like to integrate local signals globally



Dense flow (1)

FY

Apply Lucas Kanade on successive frames of a video sequence

Generalize translation to other 2D warps (affine, homographies,...)



Applications: mosaicing

Homography warp works for some cases (rotations, planar scenes).
We’ll discuss a solution for others 1n a bit...




Dense tlow (I)

Solve for global flow feild

min > [1(z + u(r,y),y +v(z,9) = iz y))°
u(z,y
v(z,y) Y

Aside: continuous case

mm// Ir(x + u,y +v) — I (x, y)) dxdy

Formal math 1s known as calculus of variations (we’re minimizing over the space of functions)

https://en.wikipedia.org/wiki/Calculus of variations



https://en.wikipedia.org/wiki/Calculus_of_variations

Dense variational tlow

If we assume small motions....

Iz +u,y+v) - L(z,y) ~ VI - M L

min//(V[- N+ 1) 2dxdy

U,V

: <

above 1s “shorthand” for...

min Y [w(a;, y) - [ZL

u(z,y)
v(z,y) Y
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Spatial regularization

Penalize differences in nearby flow vectors

Iﬁlyl Eintensity + Esmooth

Buensiy(0) = [ [(91- 4] 4 102dsay Ermooth (t1,0) = / / IVul? + || Vo] Pdady

1. Unknowns (u,v) appear quadratically in above expression =>
discretize above and solve for them with a giant linear system

2. Challenge: outliers will overwhelm squared error term



Robust statistics

A S
Least-squares estimation

Y(s) = s?

aplace distribution
Y(s) = \/52 + €%

[.L1 estimation
Total variation
W(s) = |s|

>

Energy function(u,v) is still convex (and globally optimizable with local search)



Robust statistics
(cont’d)
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Y otherwise
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Energy function(u,v) not convex



Robust variational optical flow

min / / (Io(z +u,y + ) — Li(@,5)) + p([Vul]) + p(|IVo]))dedy

first | |mage quadratic flow Iorent2|an flow detected outliers

Reference

« Black, M. J. and Anandan, P., A framework for the robust estimation of optical flow, Fourth International
Conf. on Computer Vision (ICCV), 1993, pp. 231-236 http://www.cs.washington.edu/education/courses/
576/03sp/readings/black93.pdf



http://www.cs.washington.edu/education/courses/576/03sp/readings/black93.pdf
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Revisiting the Small Motion Assumption

Is this motion small enough?

— Probably not—it’'s much larger than one pixel (2"d order terms dominate)
— How might we solve this problem?



Reduce the Resolution!




Soln 1: Coarse-to-fine Optical Flow

, run iterative OF
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Gaussian pyramid of image H

Gaussian pyramid of image /



Soln 2: discrete optical flow estimation

u; € {—55}

V; € {—5...5}
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o[ La(xs + wiyyi +vi) — Iz, y:)||)
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NN AT
A
Discrete Markov Random Feild (MRF) with pixel-grid graph G=(V,E)

A Database and Evaluation Methodology for Optical Flow

Simon Baker - Daniel Scharstein - J.P. Lewis -
Stefan Roth - Michael J. Black - Richard Szeliski



Example: SIFTFlow

Measure local appearances of patches using SIFT descriptors

Turns out that this can be used to align images of different scenes!
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Liu et al, PAMI 2011

Allows us to do nearest-neighbor label transfer for scene analysis
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[Some remaining challenges]



Remaining challenges: long-term optical flow

Combine long-term sparse feature tracking with variational flow regularization

(http://rvsn.csail.mit.edu/pv/)

99'

Note the difficulty in getting regularization “right


http://rvsn.csail.mit.edu/pv/

Remaining challenges:
small things that move fast

Figure 1. Top row: Image of a sequence where the person is step-
ping forward and moving his hands. The optical flow estimated
with the method from [4] 1s quite accurate for the main body and
the legs, but the hands are not accurately captured. Bottom row,



Large Displacement Optical Flow*

Thomas Brox! Christoph Bregler? Jitendra Malik!
'University of California, Berkeley 2Courant Institute, New York University
Berkeley, CA, 94720, USA New York, NY, 10003, USA
{brox,malik}@eecs.berkeley.edu bregler@courant.nyu.edu

Estimate dense or sparse correspondences across 2 frames with classic descriptor matching

Set of matchable points and estimated offsets: {(x;, y;, u;, v;)}

Ematch(ua U) — Z(u(xw yz) — ui)2 + (U(:Ez’a yz) o vi)Q

()

min Eintensity + Esmooth T Ematch
u,v



Examples

Nno Ematch with Ematch
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(sparse flow, spatial regularization)

(coarse-to-fine, discrete optimization)






Motion segmentation (I):
robustly estimate dominant motion

1. Assume parametric warp (typically homography)

2. Treat moving/non-planar objects as outliers 1n robust error function

E(p)=>» p(I(W(x;p))) — T(x))






Motion segmentation (|

Treat as clustering problem

1. Obtain an initial estimate of flow (sparse or dense)
2. Cluster pixels using feature vectors (consisting of flow, RGB, etc.)

Generalize K-means to fit a parametric model (e.g., affine warp) rather than a centroid

; 534 ;- Weiss & Adelson, CVPR 96

A% Uses “soft” K-means or EM algorithm




Motion segmentation (I1)

Treat as clustering problem

Ideally, estimate flow and warp parameters jointly in one giant variational optimization

(I haven’t seen this; looks hard because of joint discrete / continous optimization)



Background subtraction

Once we have background image/mosiac (trivial for a stationary camera), how do we identify foreground?

Very commonly-used technique, so we’ll spend a few slides on it...



A naive approach

A

M(t)

loop time t

I(t) = next frame;
diff = abs[B - I(t)];
M(t) = threshold(diff,\);

end

(Note: pseudocode 1s written for grayscale images)



Difficulties (I)

Objects that enter the scene and stop continue to
be detected, making 1t difficult to detect new objects
that pass in front of them.

If part of the assumed static background starts
moving, both the object and its negative ghost
(the revealed background) are detected




Daifficulties (1I)

Background subtraction is sensitive to changing
illumination and unimportant movement of the
background (for example, trees blowing in the
wind, reflections of sunlight off of cars or water).

Background subtraction cannot handle movement
of the camera.




Frame-differencing

e Background model is replaced with the previous image.

B(t-1) | . loop time t

I(t) = next frame;
diff = abs[B(t-1) - I(t)];
M(t) = threshold(diff,A);

B(t)
end

I(t);



How well does 1t work?

Frame differencing is very quick to adapt to changes in
lighting or camera motion.

Objects that stop are no longer detected. Objects that
start up do not leave behind ghosts.

However, frame differencing only detects the leading

and trailing edge of a uniformly colored object. As a result
very few pixels on the object are labeled, and it 1s very hard
to detect an object moving towards or away from the camera.




Adjusting temporal scale of differencing

Note what happens when we adjust the temporal scale (frame rate)
at which we perform two-frame differencing ...

Define D(N) = || I(t) - I(t+N) ||

I(t) D(-1) D(-3) D(-5) D(-9) D(-15)

more complete object silhouette, but two copies
(one where object used to be, one where 1t 1s now).



A neat “‘trick”: 3-frame differencing

The previous observation 1s the motivation behind three-frame differencing

D(-15)

where object was,
and where 1t 1S now

where object 1s now!

D(+15)

where object 1s now,
and where 1t will be



But 1ts hard to find a
good frame rate

Choice of good frame-rate for three-frame differencing
depends on the size and speed of the object

# frames
skipped

1

This worked well
for the person ~ —» 15

25




What’s a “principled” way to build background model?

pixel-specific color histogram

Statistical color models

(xX,))

P(I(z,y)|bg) > threshold

P(I) = N(I; n, X)




Online statistical learning (of say, mean)

 Current image 1s “blended” into the background model with parameter o
» a. = ( yields simple background subtraction, o = 1 yields frame differencing

loop time t

I(t) = next frame;
delay diff = abs[B(t-1) - I(t)];
B(t) M(t) = threshold(diff,A);
4N7@+(1Q)B(t_1) B(t) = aI(t)+(l-a)B(t-1);
end
o
B(1)=1(1)

B(2) = .5I(2) + .51(1)
B(3) = .5I(3) + .251(2) + .51(1)

exponential decay
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Nifty visualizations: persistant frame differencing

FRAME-0 FRAME-35 FRAME-70

$

MHI-0 MHI-35 MHI-70

Use some previous method to identify foreground/background pixels

Mark each pixel with the last “time” 1s was declared foreground



Efficient implementation

* Motion images are combined with a linear decay term
e also known as motion history images (Davis and Bobick)

A

next frame;

diff = abs[B(t-1) - I(t)];
M(t) = threshold(diff,A);
tmp = max[H(t-1)-vy,0)1;
H(t) = max[255*M(t), tmp) ];
B(t) = I(t);

end



Motion History Images
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| ayered model

Background

Frame 1 Frame 2 Frame 3



Mathematical formalism

i
Layer 1 w m : .T Tj
Alpha composite - - -

Li(x,y) = a;(x,y)Li(x,y) + (1 — a;(x,y)) L;_1(x, y)
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Representing Moving Images with Layers

John Y. A. Wang ano Edward H. Adelson
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Figure 12: The layers corresponding to the tree, the flower bed, and the house shown in figures (a-c), respectively. The
affine flow field for each layer is superimposed.

Figure 14: The sequence reconstructed without the tree layer shown in figures (a-c), respectively.



Inferring layers, motion, and appearance with EM

Input video

Learning Flexible Sprites in Video Layers

Nebojsa Jojic Brendan J. Frey
Microsoft Research University of Toronto
http://www.ifp.uiuc.edu/~jojic http://www.psi.toronto.edu
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