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• Bightness constancy 

• Aperture problem 

• Small-motion assumption 

• Motion segmentation
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Importance of low-level motion
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Visualizing spacetime cubes
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Figure 2. The epipolar plane image. In this example, the circle is
in front of the square and the camera is moving horizontally to the
left. The spatial image in (a) is from the middle of the sequence
while the EPI in (b) is at the scanline shown by the dotted line in
(a).

frame subsequences are approximately EPI. This allows ar-
bitrary camera motion as long as the camera centre’s path is
smooth and continuous. Second, we learn the appearance
of spatiotemporal T-junctions from natural images instead
of adapting an ad-hoc spatial model to the spatiotemporal
domain. Learning the appearance of T-junctions helps mit-
igate errors in the approximation of locally linear camera
motion that cause the T-junctions to warp. Third, we show
that the spatiotemporal domain is a lucrative workspace for
occlusion detection even with arbitrary camera motion.

2. Previous Work

2.1. Motion segmentation

Global approaches to motion analysis based on the
Epipolar Plane Image (EPI) were pioneered by Bolles and
Baker [9] who used it to build a 3D description of a static
scene. They constrained the problem to constant horizon-
tal camera motion, which ensures that image features stay
in the same scanline and move continuously over the image
sequence. Hence, an XT slice1 of a complex scene reduces
to an image with a set of straight edges whose gradient is
relative to their depth in the scene (figure 2). In this case, the
termination of an edge by another edge is an indicator of oc-
clusion and presents a similar profile to the T-junction in the
spatial domain. This technique was shown to be quite pow-
erful at determining visible 3D structure within a scene, but
was inherently limited to constant horizontal camera mo-
tion. They extended this work to include arbitrary camera
rotation by working in the dual-space of cylindrical epipolar
plane coordinates [3]. Feldmann et al. relax the constraints
of EPI analysis to circular camera movements by defining a
set of trajectories that define the depth of a point within an
image volume [14].
There have been a number of applications of EPI analy-

sis for spatiotemporal image sequences. Niyogi and Adel-
1An XT or spatiotemporal image is a slice through the volume of im-

ages at a constant scanline.

son observed that walkers generate a helix-like signature
in space-time and exploit this characteristic to detect and
model a persons gait from a stationary camera [27, 28].
Later Niyogi analyzed kinetic occlusion in space-time using
a layering framework and a motion energy scheme adapted
from models of biological vision [25]. In a slightly less
restrictive approach Criminisi et al. exploit the structure
within epipolar plane to detect occluding edges for a dense
reconstruction of the scene [12].
At the other extreme, local approaches make no assump-

tions on the camera path and the motion is estimated lo-
cally over a small number of frames. A classic example
of this is optical flow where spatiotemporal image deriva-
tives are calculated to estimate a velocity field that adheres
to the brightness consistency constraint [17]. Because these
methods are local and based on small regions that carry little
information, they are often inaccurate and noisy. To com-
pensate for this, constraints to smooth the velocity fields
spatially [17, 24, 2] and temporally [6] for segmentation are
used. These global constraints either limit the range of cam-
era motion like EPI or introduce artificial smoothing that is
highly inaccurate at motion boundaries.
In an alternative approach, Irani et al. use temporal inte-

gration to localize and track moving objects [19] by register-
ing frames by the dominant motion, but are limited to track-
ing non-articulated objects. Later, Irani showed that flow
fields of a rigid scene reside in a low-dimensional subspace
and constrain the flow field to reduce the noise in the esti-
mate [18]. Niyogi, Adelson and Bergen [1, 26] also present
methods of detection motion boundaries using oriented spa-
tiotemporal energy models that detect surface texture accre-
tion and deletion.
The work most similar to ours is that of Laptev who

searches for events in the spatiotemporal volume using a
3D Harris corner detector [21]. These events are velocity
and scale adapted before a set of motion descriptors are
learnt for event classification. The learnt events typically
feature changes in motion such as a walkers swinging arm
or a runners legs; however, they also fire at occlusion and
dis-occlusion events. We shall show in this paper that ex-
plicitly learning occlusion events gives better performance.

2.2. T-junction detection

A natural indicator of occlusion is the T-junction—a
photometric profile shaped like a “T”, which is formed
where the edge of an object occludes a change in inten-
sity in the background (figure 1). Until recently, there have
been two predominant approaches to T-junctions detection:
gradient or filter-based approaches [5, 16, 22, 30, 32], and
model-based template matching [29].
Gradient-based methods assume that there is a distinct

gradient profile in a region close to a junction. In [22],
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In this example, the circle is in front of the square and the camera is moving horigontally to the left



Digression: visualizing space-time cube

Plot I(x,y,t) for a fixed xPlot I(x,y,t) for a fixed t

Plot I(x,y,t) for a fixed (x,y)



Amplifying temporal signals
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(a) Input (wrist)
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(b) Motion-amplified

Figure 7: Eulerian video magnification used to amplify subtle motions of blood vessels arising from blood flow. For this video, we tuned the
temporal filter to a frequency band that includes the heart rate—0.88 Hz (53 bpm)—and set the amplification factor to ↵ = 10. To reduce
motion magnification of irrelevant objects, we applied a user-given mask to amplify the area near the wrist only. Movement of the radial and
ulnar arteries can barely be seen in the input video (a) taken with a standard point-and-shoot camera, but is significantly more noticeable in
the motion-magnified output (b). The motion of the pulsing arteries is more visible when observing a spatio-temporal Y T slice of the wrist
(a) and (b). The full wrist sequence can be found in the supplemental video.

baby face2 guitar

subway baby2 shadow

Figure 8: Representative frames from additional videos demon-
strating our technique. The videos can be found in the accompany-
ing video and on the project webpage.

We first select the temporal bandpass filter to pull out the motions
or signals that we wish to be amplified (step 1 above). The choice of
filter is generally application dependent. For motion magnification,
a filter with a broad passband is preferred; for color amplification
of blood flow, a narrow passband produces a more noise-free result.
Figure 9 shows the frequency responses of some of the temporal
filters used in this paper. We use ideal bandpass filters for color am-
plification, since they have passbands with sharp cutoff frequencies.
Low-order IIR filters can be useful for both color amplification and
motion magnification and are convenient for a real-time implemen-
tation. In general, we used two first-order lowpass IIR filters with
cutoff frequencies !

l

and !

h

to construct an IIR bandpass filter.

Next, we select the desired magnification value, ↵, and spatial fre-
quency cutoff, �

c

(steps 2 and 3). While Eq. 14 can be used as a
guide, in practice, we may try various ↵ and �

c

values to achieve a
desired result. Users can select a higher ↵ that violates the bound to
exaggerate specific motions or color changes at the cost of increas-
ing noise or introducing more artifacts. In some cases, one can
account for color clipping artifacts by attenuating the chrominance
components of each frame. Our approach achieves this by doing all
the processing in the YIQ space. Users can attenuate the chromi-
nance components, I and Q, before conversion to the original color
space.

For human pulse color amplification, where we seek to emphasize
low spatial frequency changes, we may force ↵ = 0 for spatial
wavelengths below �

c

. For motion magnification videos, we can
choose to use a linear ramp transition for ↵ (step 4).
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(a) Ideal 0.8-1 Hz (face)
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(b) Ideal 175-225 Hz (guitar)
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(c) Butterworth 3.6-6.2 Hz (subway)
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(d) Second-order IIR (pulse detection)

Figure 9: Temporal filters used in the paper. The ideal filters (a)
and (b) are implemented using DCT. The Butterworth filter (c) is
used to convert a user-specified frequency band to a second-order
IIR structure and is used in our real-time application. The second-
order IIR filter (d) also allows user input. These second-order filters
have a broader passband than an ideal filter.

We evaluated our method for color amplification using a few
videos: two videos of adults with different skin colors and one of a
newborn baby. An adult subject with lighter complexion is shown
in face (Figure 1), while an individual with darker complexion is
shown in face2 (Figure 8). In both videos, our objective was to am-
plify the color change as the blood flows through the face. In both
face and face2, we applied a Laplacian pyramid and set ↵ for the
finest two levels to 0. Essentially, we downsampled and applied a
spatial lowpass filter to each frame to reduce both quantization and
noise and to boost the subtle pulse signal that we are interested in.
For each video, we then passed each sequence of frames through an
ideal bandpass filter with a passband of 0.83 Hz to 1 Hz (50 bpm
to 60 bpm). Finally, a large value of ↵ ⇡ 100 and �

c

⇡ 1000 was
applied to the resulting spatially lowpass signal to emphasize the
color change as much as possible. The final video was formed by
adding this signal back to the original. We see periodic green to red
variations at the heart rate and how blood perfuses the face.

baby2 is a video of a newborn recorded in situ at the Nursery De-
partment at Winchester Hospital in Massachusetts. In addition to
the video, we obtained ground truth vital signs from a hospital-
grade monitor. We used this information to confirm the accuracy of
our heart rate estimate and to verify that the color amplification sig-
nal extracted from our method matches the photoplethysmogram,
an optically obtained measurement of the perfusion of blood to the
skin, as measured by the monitor.

Eulerian Video Magnification for Revealing Subtle Changes in the World
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Figure 1: An example of using our Eulerian Video Magnification framework for visualizing the human pulse. (a) Four frames from the
original video sequence (face). (b) The same four frames with the subject’s pulse signal amplified. (c) A vertical scan line from the input (top)
and output (bottom) videos plotted over time shows how our method amplifies the periodic color variation. In the input sequence the signal
is imperceptible, but in the magnified sequence the variation is clear. The complete sequence is available in the supplemental video.

Abstract

Our goal is to reveal temporal variations in videos that are diffi-
cult or impossible to see with the naked eye and display them in
an indicative manner. Our method, which we call Eulerian Video
Magnification, takes a standard video sequence as input, and ap-
plies spatial decomposition, followed by temporal filtering to the
frames. The resulting signal is then amplified to reveal hidden in-
formation. Using our method, we are able to visualize the flow
of blood as it fills the face and also to amplify and reveal small
motions. Our technique can run in real time to show phenomena
occurring at temporal frequencies selected by the user.

CR Categories: I.4.7 [Image Processing and Computer Vision]:
Scene Analysis—Time-varying Imagery;

Keywords: video-based rendering, spatio-temporal analysis, Eu-
lerian motion, motion magnification

Links: DL PDF WEB

1 Introduction

The human visual system has limited spatio-temporal sensitivity,
but many signals that fall below this capacity can be informative.

For example, human skin color varies slightly with blood circu-
lation. This variation, while invisible to the naked eye, can be ex-
ploited to extract pulse rate [Verkruysse et al. 2008; Poh et al. 2010;
Philips 2011]. Similarly, motion with low spatial amplitude, while
hard or impossible for humans to see, can be magnified to reveal
interesting mechanical behavior [Liu et al. 2005]. The success of
these tools motivates the development of new techniques to reveal
invisible signals in videos. In this paper, we show that a combina-
tion of spatial and temporal processing of videos can amplify subtle
variations that reveal important aspects of the world around us.

Our basic approach is to consider the time series of color values at
any spatial location (pixel) and amplify variation in a given tempo-
ral frequency band of interest. For example, in Figure 1 we auto-
matically select, and then amplify, a band of temporal frequencies
that includes plausible human heart rates. The amplification reveals
the variation of redness as blood flows through the face. For this
application, temporal filtering needs to be applied to lower spatial
frequencies (spatial pooling) to allow such a subtle input signal to
rise above the camera sensor and quantization noise.

Our temporal filtering approach not only amplifies color variation,
but can also reveal low-amplitude motion. For example, in the sup-
plemental video, we show that we can enhance the subtle motions
around the chest of a breathing baby. We provide a mathematical
analysis that explains how temporal filtering interplays with spatial
motion in videos. Our analysis relies on a linear approximation re-
lated to the brightness constancy assumption used in optical flow
formulations. We also derive the conditions under which this ap-
proximation holds. This leads to a multiscale approach to magnify
motion without feature tracking or motion estimation.

Previous attempts have been made to unveil imperceptible motions
in videos. [Liu et al. 2005] analyze and amplify subtle motions and
visualize deformations that would otherwise be invisible. [Wang
et al. 2006] propose using the Cartoon Animation Filter to create
perceptually appealing motion exaggeration. These approaches fol-
low a Lagrangian perspective, in reference to fluid dynamics where
the trajectory of particles is tracked over time. As such, they rely



Problem Definition: Optical Flow

• How to estimate pixel motion from image H to image I?

– Find pixel correspondences 
• Given a pixel in H, look for nearby pixels of the same color in I

• Key assumption 
– color constancy:  a point in H looks “the same” in image I 

• For grayscale images, this is brightness constancy



Motion field exists but no optical flow No motion field but shading changes

 Caution: 
2D measured optical flow         3D scene flow6=



Brightness constancy
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Brightness constancy equation gives us:

1) a constraint on flow vector (u,v) 
2) a linear approximation of pixel error



Aperature problem
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We can only determine flow in direction parallel to gradient



Challenges

• Aperture problem
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• Small motion assumption

Soln to brightness constancy equation may not be unique

First-order taylor approximation does not hold for large motions



Soln for aperture problem

2. Assume neighboring flow vectors are similar 
    (enforce spatial smoothness in dense flow feild)

1. Don’t try to estimate flow at unreliable points 
(sparse flow)



 Simple approach:  
assume flow is constant over a neighborhood

u(x,y) = u 
v(x,y) = v

min
u,v

X

x,y2W

⇣
I2(x+ u, y + v)� I1(x, y)

⌘2



Low Texture Region - Bad

17

SSD in Homogeneous Area

SSD surface



Edges – so,so (aperture problem)

16

SSD Surface at an Edge

SSD surface



High Textured Region - Good
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SSD Surface in Textured Area

SSD surface



Sparse flow estimation (feature tracking)
1. User Harris corner score to find trackable patches 

2. Appy Lucas Kanade on those patches
0 10 20

0.1

0

0

1

0
-0.6

0

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

frame

di
ss
im
ila
rit
y

89

58

78

21
3

4

24

30

1

60

53

I2(x+ u, y + v)� I1(x, y) ⇡ rI(x, y)


u

v

�
+ It(x, y)



Local motion estimation is hard

Where does false “t-junctions” appear to move?

We’d like to integrate local signals globally



Dense flow (I)

E(p) =
X

x

[I(W(x;p))� T (x)]2

Apply Lucas Kanade on successive frames of a video sequence

Generalize translation to other 2D warps (affine, homographies,…)



Homography warp works for some cases (rotations, planar scenes).  
We’ll discuss a solution for others in a bit…

Applications: mosaicing



Dense flow (II)

min
u(x,y)
v(x,y)

X

x,y

[I2(x+ u(x, y), y + v(x, y))� I1(x, y)]
2

Aside: continuous case

Formal math is known as calculus of variations (we’re minimizing over the space of functions)

https://en.wikipedia.org/wiki/Calculus_of_variations

Solve for global flow feild

min
u,v

Z Z �
I2(x+ u, y + v)� I1(x, y)

�2
dxdy

https://en.wikipedia.org/wiki/Calculus_of_variations


Dense variational flow
If we assume small motions….

min
u(x,y)
v(x,y)
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above is “shorthand” for…



Spatial regularization
Penalize differences in nearby flow vectors

1. Unknowns (u,v) appear quadratically in above expression => 
discretize above and solve for them with a giant linear system

2. Challenge: outliers will overwhelm squared error term

min Eintensity + Esmoothu,v
E
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Z Z
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(rI ·


u

v

�
+ It)

2
dxdy



Robust statistics

 

 

 

Energy function(u,v) is still convex (and globally optimizable with local search)



Robust statistics 
(cont’d)

truncated quadratic lorentzian

Energy function(u,v) not convex



Robust variational optical flow

first image quadratic flow lorentzian flow detected outliers

Reference 
• Black, M. J. and Anandan, P., A framework for the robust estimation of optical flow, Fourth International 

Conf. on Computer Vision (ICCV), 1993, pp. 231-236 http://www.cs.washington.edu/education/courses/
576/03sp/readings/black93.pdf  

min
u,v

Z Z
⇢(I2(x+ u, y + v)� I1(x, y)

�
+ ⇢(||ru||) + ⇢(||rv||)dxdy

http://www.cs.washington.edu/education/courses/576/03sp/readings/black93.pdf


Outline

• Bightness constancy 

• Aperture problem 

• Small-motion assumption 

• Motion segmentation

(sparse flow, spatial regularization)



Revisiting the Small Motion Assumption

• Is this motion small enough? 
– Probably not—it’s much larger than one pixel (2nd order terms dominate) 
– How might we solve this problem?



Reduce the Resolution!



image Iimage J

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H

run iterative OF

run iterative OF

upsample

. 

. 

.

Soln 1: Coarse-to-fine Optical Flow



Soln 2: discrete optical flow estimation
ui 2 {�5 . . . 5}
vi 2 {�5 . . . 5}
zi = (ui, vi)
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 (zi, zj)

Discrete Markov Random Feild (MRF) with pixel-grid graph G=(V,E)
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Abstract The quantitative evaluation of optical flow algo-
rithms by Barron et al. (1994) led to significant advances
in performance. The challenges for optical flow algorithms
today go beyond the datasets and evaluation methods pro-
posed in that paper. Instead, they center on problems as-
sociated with complex natural scenes, including nonrigid
motion, real sensor noise, and motion discontinuities. We
propose a new set of benchmarks and evaluation methods
for the next generation of optical flow algorithms. To that
end, we contribute four types of data to test different as-
pects of optical flow algorithms: (1) sequences with non-
rigid motion where the ground-truth flow is determined by

A preliminary version of this paper appeared in the IEEE International
Conference on Computer Vision (Baker et al. 2007).
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tracking hidden fluorescent texture, (2) realistic synthetic
sequences, (3) high frame-rate video used to study inter-
polation error, and (4) modified stereo sequences of static
scenes. In addition to the average angular error used by Bar-
ron et al., we compute the absolute flow endpoint error, mea-
sures for frame interpolation error, improved statistics, and
results at motion discontinuities and in textureless regions.
In October 2007, we published the performance of several
well-known methods on a preliminary version of our data
to establish the current state of the art. We also made the
data freely available on the web at http://vision.middlebury.
edu/flow/. Subsequently a number of researchers have up-
loaded their results to our website and published papers us-
ing the data. A significant improvement in performance has
already been achieved. In this paper we analyze the results
obtained to date and draw a large number of conclusions
from them.

Keywords Optical flow · Survey · Algorithms · Database ·
Benchmarks · Evaluation · Metrics

1 Introduction

As a subfield of computer vision matures, datasets for
quantitatively evaluating algorithms are essential to ensure
continued progress. Many areas of computer vision, such
as stereo (Scharstein and Szeliski 2002), face recognition
(Philips et al. 2005; Sim et al. 2003; Gross et al. 2008;
Georghiades et al. 2001), and object recognition (Fei-Fei
et al. 2006; Everingham et al. 2009), have challenging
datasets to track the progress made by leading algorithms
and to stimulate new ideas. Optical flow was actually one
of the first areas to have such a benchmark, introduced by
Barron et al. (1994). The field benefited greatly from this



Example: SIFTFlow

TO APPEAR AT IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

(a) (b) (c) (d) (e) (f) (g)

(1)

(2)

(3)

(4)

(5)

Fig. 11. SIFT flow for image pairs depicting the same scene/object. (a) shows the query image and (b) its densely extracted SIFT
descriptors. (c) and (d) show the best (lowest energy) match from the database and its SIFT descriptors, respectively. (e) shows
(c) warped onto (a). (f) shows the warped SIFT image (d). (g) shows the estimated displacement field with the minimum alignment
energy shown to the right.

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

Fig. 12. SIFT flow computed for image pairs depicting the same scene/object category where the visual correspondence is
obvious.

Allows us to do nearest-neighbor label transfer for scene analysis

Liu et al, PAMI 2011

Measure local appearances of patches using SIFT descriptors

Turns out that this can be used to align images of different scenes!



Outline

• Bightness constancy 

• Aperture problem 

• Small-motion assumption 

• Motion segmentation

(sparse flow, spatial regularization)

(coarse-to-fine, discrete optimization)

[Some remaining challenges]



Remaining challenges: long-term optical flow

Combine long-term sparse feature tracking with variational flow regularization
 (http://rvsn.csail.mit.edu/pv/)

Note the difficulty in getting regularization “right”!

http://rvsn.csail.mit.edu/pv/


Remaining challenges: 
 small things that move fast

Large Displacement Optical Flow⇤

In Proc. IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2009.
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Abstract

The literature currently provides two ways to establish
point correspondences between images with moving ob-
jects. On one side, there are energy minimization methods
that yield very accurate, dense flow fields, but fail as dis-
placements get too large. On the other side, there is descrip-
tor matching that allows for large displacements, but corre-
spondences are very sparse, have limited accuracy, and due
to missing regularity constraints there are many outliers. In
this paper we propose a method that can combine the ad-
vantages of both matching strategies. A region hierarchy is
established for both images. Descriptor matching on these
regions provides a sparse set of hypotheses for correspon-
dences. These are integrated into a variational approach
and guide the local optimization to large displacement so-
lutions. The variational optimization selects among the hy-
potheses and provides dense and subpixel accurate esti-
mates, making use of geometric constraints and all avail-
able image information.

1. Introduction
Optical flow estimation has been declared as a solved

problem several times. For restricted cases this is true, but
in more general cases, we are still far from a satisfactory so-
lution. For instance estimating a dense flow field of people
with fast limb motions cannot yet be achieved reliably with
state-of-the-art techniques. This is of importance for many
applications, like long range tracking, motion segmentation,
or flow based action recognition techniques [5, 7].
Most contemporary optical flow techniques are based on

two important ingredients, the energy minimization frame-
work of Horn and Schunck [6], and the concept of coarse-
to-fine image warping introduced by Lucas and Kanade [10]
to overcome large displacements. Both approaches have
been extended by robust statistics, which allow the treat-
ment of outliers in either the matching or the smoothness
assumption, particularly due to occlusions or motion dis-
continuities [3, 14]. The technique in [4] further introduced
gradient constancy as a constraint which is robust to illu-

⇤This work was funded by the German Academic Exchange Service
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Figure 1. Top row: Image of a sequence where the person is step-
ping forward and moving his hands. The optical flow estimated
with the method from [4] is quite accurate for the main body and
the legs, but the hands are not accurately captured. Bottom row,
left: Overlay of two successive frames showing the motion of one
of the hands. Center: The arm motion is still good but the hand
has a smaller scale than its displacement leading to a local mini-
mum. Right: Color map used to visualize flow fields in this paper.
Smaller vectors are darker and color indicates the direction.

mination changes and proposed a numerical scheme that al-
lows for a very high accuracy, provided the displacements
are not too large.
The reason why differential techniques can deal with dis-

placements larger than a few pixels at all is that they initial-
ize the flow by estimates from coarser image scales, where
displacements are small enough to be estimated by local
optimization. Unfortunately, the downsampling not only
smoothes the way to the global optimum, but also removes
information that may be vital for establishing the correct
matches. Consequently, the method cannot refine the flow
of structures that are smaller than their displacement, sim-
ply because the structure is smoothed away just at the level
when its flow is small enough to be estimated in the varia-
tional setting. The resulting flow is then close to the motion
of the larger scale structure. This still works well if the mo-
tion varies smoothly with the scale of the structures, and
even precise 3D reconstruction of buildings becomes pos-
sible [16]. Figure 1, however, shows an example, where
the hand motion is not estimated correctly because the hand

1



Large Displacement Optical Flow⇤

In Proc. IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2009.

Thomas Brox1

1University of California, Berkeley
Berkeley, CA, 94720, USA

{brox,malik}@eecs.berkeley.edu

Christoph Bregler2 Jitendra Malik1

2Courant Institute, New York University
New York, NY, 10003, USA
bregler@courant.nyu.edu

Abstract

The literature currently provides two ways to establish
point correspondences between images with moving ob-
jects. On one side, there are energy minimization methods
that yield very accurate, dense flow fields, but fail as dis-
placements get too large. On the other side, there is descrip-
tor matching that allows for large displacements, but corre-
spondences are very sparse, have limited accuracy, and due
to missing regularity constraints there are many outliers. In
this paper we propose a method that can combine the ad-
vantages of both matching strategies. A region hierarchy is
established for both images. Descriptor matching on these
regions provides a sparse set of hypotheses for correspon-
dences. These are integrated into a variational approach
and guide the local optimization to large displacement so-
lutions. The variational optimization selects among the hy-
potheses and provides dense and subpixel accurate esti-
mates, making use of geometric constraints and all avail-
able image information.

1. Introduction
Optical flow estimation has been declared as a solved

problem several times. For restricted cases this is true, but
in more general cases, we are still far from a satisfactory so-
lution. For instance estimating a dense flow field of people
with fast limb motions cannot yet be achieved reliably with
state-of-the-art techniques. This is of importance for many
applications, like long range tracking, motion segmentation,
or flow based action recognition techniques [5, 7].
Most contemporary optical flow techniques are based on

two important ingredients, the energy minimization frame-
work of Horn and Schunck [6], and the concept of coarse-
to-fine image warping introduced by Lucas and Kanade [10]
to overcome large displacements. Both approaches have
been extended by robust statistics, which allow the treat-
ment of outliers in either the matching or the smoothness
assumption, particularly due to occlusions or motion dis-
continuities [3, 14]. The technique in [4] further introduced
gradient constancy as a constraint which is robust to illu-
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Figure 1. Top row: Image of a sequence where the person is step-
ping forward and moving his hands. The optical flow estimated
with the method from [4] is quite accurate for the main body and
the legs, but the hands are not accurately captured. Bottom row,
left: Overlay of two successive frames showing the motion of one
of the hands. Center: The arm motion is still good but the hand
has a smaller scale than its displacement leading to a local mini-
mum. Right: Color map used to visualize flow fields in this paper.
Smaller vectors are darker and color indicates the direction.

mination changes and proposed a numerical scheme that al-
lows for a very high accuracy, provided the displacements
are not too large.
The reason why differential techniques can deal with dis-

placements larger than a few pixels at all is that they initial-
ize the flow by estimates from coarser image scales, where
displacements are small enough to be estimated by local
optimization. Unfortunately, the downsampling not only
smoothes the way to the global optimum, but also removes
information that may be vital for establishing the correct
matches. Consequently, the method cannot refine the flow
of structures that are smaller than their displacement, sim-
ply because the structure is smoothed away just at the level
when its flow is small enough to be estimated in the varia-
tional setting. The resulting flow is then close to the motion
of the larger scale structure. This still works well if the mo-
tion varies smoothly with the scale of the structures, and
even precise 3D reconstruction of buildings becomes pos-
sible [16]. Figure 1, however, shows an example, where
the hand motion is not estimated correctly because the hand
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Estimate dense or sparse correspondences across 2 frames with classic descriptor matching

{(xi, yi, ui, vi)}

Ematch(u, v) =
X

i

(u(xi, yi)� ui)
2 + (v(xi, yi)� vi)

2

min Eintensity + Esmooth + Ematch

Set of matchable points and estimated offsets:
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Fig. 4. Evolution of estimated flow. Left: Overlayed input images. Right: Evolving flow field from coarse (left) to fine
(right). The correspondences dominate the estimate at the beginning, pushing the solution towards the fast motion of
the leg and the racket. Some wrong matches are also visible, e.g. at the tip of the racket. These outliers are removed
over time as more and more data from the image is taken into account.

Fig. 5. Comparison of descriptors used for matching. From left to right: Overlaid input images, region descriptors
as proposed in [10], HOG descriptors, GB descriptors. The region descriptors produce more mismatches than HOG
descriptors and miss more parts like the racket than HOG and GB. GB is best in recovering all parts, like the racket in
the second example, whereas HOG produces fewer false matches.

used at all. In the setting here, further iterations yield only
very little improvement, but increase the computational cost
considerably.

5 EXPERIMENTS

5.1 Comparison among the used descriptors
As we suggested three alternative ways for descriptor match-
ing, in a first experiment we evaluated which one works best.
For a quantitative measurement, we ran the methods on all 8
sequences of the Middlebury benchmark with public ground
truth [3]. It is important to note that the Middlebury benchmark
does not include any ground truth examples with large motion.
All the examples can be easily handled with conventional
warping techniques. The additional descriptor matching cannot
be expected to improve the accuracy in the case of small
displacements, as it usually produces some disturbing false
large displacement matches, while the correct matches do
not have positive effects as the warping already produces
very good solutions with subpixel accuracy. Therefore, this
experiment cannot tell which of the descriptors is best for
dealing with large displacement situations, but which one

produces the least false matches. By comparing the numbers to
the baseline method without descriptor matching, i.e. β = 0,
we can also measure the accuracy that is lost by adding the
ability to deal with large displacement scenarios.

The parameters σ (presmoothing of the images), α, and
γ were optimized as to produce the best average angular
error among all 8 sequences. β = 300 was kept at the
same value as in all the other examples, ensuring that fast
motion could be estimated, if it was present in the sequences.
Table 1 shows the average angular error. As expected, the
baseline method performs best on this benchmark. Among
the descriptor matching techniques, the HOG descriptor leads
to the smallest loss in accuracy, followed by GB and region
matching. With 16%, the loss in accuracy is a price worth
paying for the ability to capture much larger displacements.

The conjecture that HOG descriptors lead to the smallest
number of mismatches is also confirmed by a qualitative
analysis. Fig. 5 shows two examples from a tennis sequence
including large displacements. Both region matching and GB
descriptors lead to some artifacts in the final flow that result
from false descriptor matching and that could not be pruned by
the variational method, whereas the result with HOG matching

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
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used at all. In the setting here, further iterations yield only
very little improvement, but increase the computational cost
considerably.

5 EXPERIMENTS

5.1 Comparison among the used descriptors
As we suggested three alternative ways for descriptor match-
ing, in a first experiment we evaluated which one works best.
For a quantitative measurement, we ran the methods on all 8
sequences of the Middlebury benchmark with public ground
truth [3]. It is important to note that the Middlebury benchmark
does not include any ground truth examples with large motion.
All the examples can be easily handled with conventional
warping techniques. The additional descriptor matching cannot
be expected to improve the accuracy in the case of small
displacements, as it usually produces some disturbing false
large displacement matches, while the correct matches do
not have positive effects as the warping already produces
very good solutions with subpixel accuracy. Therefore, this
experiment cannot tell which of the descriptors is best for
dealing with large displacement situations, but which one

produces the least false matches. By comparing the numbers to
the baseline method without descriptor matching, i.e. β = 0,
we can also measure the accuracy that is lost by adding the
ability to deal with large displacement scenarios.

The parameters σ (presmoothing of the images), α, and
γ were optimized as to produce the best average angular
error among all 8 sequences. β = 300 was kept at the
same value as in all the other examples, ensuring that fast
motion could be estimated, if it was present in the sequences.
Table 1 shows the average angular error. As expected, the
baseline method performs best on this benchmark. Among
the descriptor matching techniques, the HOG descriptor leads
to the smallest loss in accuracy, followed by GB and region
matching. With 16%, the loss in accuracy is a price worth
paying for the ability to capture much larger displacements.

The conjecture that HOG descriptors lead to the smallest
number of mismatches is also confirmed by a qualitative
analysis. Fig. 5 shows two examples from a tennis sequence
including large displacements. Both region matching and GB
descriptors lead to some artifacts in the final flow that result
from false descriptor matching and that could not be pruned by
the variational method, whereas the result with HOG matching
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Fig. 1. Left: The fast motion of a hand is a typical ex-
ample where conventional warping methods fail. Center
Left: Optical flow field computed with such a warping
method [11]: the hand motion is missed. Center Right:
For comparison the optical flow field with the technique
presented in this paper: the motion of the hand is esti-
mated correctly. Right: Color code for visualizing the flow
fields.

ods to reliably capture large displacements as the most limiting
factor when applying optical flow in other computer vision
tasks. The contribution of the present paper is a variational
model and a corresponding numerical scheme that can deal far
more reliably with large displacements than previous methods.

The basic idea is to support the continuation method, which
is responsible for estimating large displacements in classic
warping methods, by another technique that is well known for
its ability to estimate arbitrarily large displacements: descriptor
matching. In contrast to single pixels, rich local descriptors,
such as SIFT or HOG, are usually unique enough to allow
for global matching without additional regularity constraints.
This renders matching without limitations on the magnitude of
the displacement extremely simple and efficient, and explains
the enormous success of descriptive features in structure from
motion, image search, and object detection.

In optical flow estimation, descriptor matching has not been
a success story so far. The reasons for this are quite evident: (i)
although most descriptors can be uniquely matched between
images, some of them are confused or their counterpart in
the other image is missing due to occlusions. This causes
a certain amount of mismatches that are very disturbing for
most optical flow applications. (ii) Descriptor matching is a
discrete technique, which only allows for pixel accuracy. This
quantization effect prevents distinguishing small motions and
causes drift in tracking applications. (iii) The most successful
descriptors are all based on spatial histograms. Histograms
are not well localized, and thus the precision of the motion
estimates, especially at motion discontinuities, is lower than
with, e.g., variational techniques.

One would like to benefit both from the ability of descriptor
matching to produce a large amount of correct large dis-
placement correspondences and from the ability of variational
techniques to efficiently produce highly accurate, dense motion
fields without outliers. We achieve this by integrating the
correspondences from descriptor matching into a variational
optical flow model. As we will describe later in more detail,
descriptor matching and the continuation method used as
an optimization heuristic in warping techniques are mostly
complementary in the way how they avoid local minima in
the energy. In conjunction with a coarse-to-fine optimization,
descriptor matching can guide the solution towards large dis-

Fig. 2. Straightforward combinations of descriptor match-
ing and variational methods do not work as well as the
proposed large displacement optical flow. Left: Transpar-
ent overlay of input frames. Center Left: Initialization of
[11] with descriptor correspondences. The initialization
is already smoothed away at the coarsest resolution
and does not help to estimate the fast hand motion.
Center Right: Postsmoothing of dense HOG correspon-
dences with TV regularization. Smoothing alone cannot
remove all mismatches. Moreover, motion discontinuities
are severely dislocated. Right: Proposed large displace-
ment optical flow (LDOF).

placements of small, independently moving structures, while
the other constraints in the variational model successively
remove the mismatches and provide the accuracy known from
variational methods. Fig. 2 demonstrates that straightforward
postsmoothing of descriptor matches or simple initialization
of a variational optical flow technique with the descriptor
matching result generally does not work. In contrast, the
results we obtain with the proposed large displacement optical
flow approach prove to be very reliable on a wide variety of
video data.

2 RELATED WORK

The use of richer descriptors in optical flow estimation goes
back to Weber and Malik, who employed a multi-scale set
of filter responses, so-called jets, in a Lucas-Kanade like
setting [33]. The linearization involved in this method keeps
it from estimating large displacements. In contrast, Liu et al.
[23] have recently proposed a method that computes dense
correspondence fields between two different scenes. Clearly,
the matching of scenes induces very large displacements and
requires invariance to intra-category variations. The idea in
[23] is to compute a dense field of SIFT descriptors and
then run an approximative discrete optimization via belief
propagation from [29] on top of these descriptors. In contrast
to simple nearest neighbor matching, SIFT flow tries to
minimize an energy that also includes regularity constraints.
The model and numerical scheme we present in the present
paper differs from SIFT flow in three ways. First, as we focus
more on classic motion analysis rather than scene matching,
our model does not fully rely on histogram based features such
as SIFT. Such features are only a supplement in our approach
that allows avoiding local minima, but we still match features
such as the color and gradient of single pixels, which have
a high spatial resolution. Second, the optimization strategies
are different. While SIFT flow considers all possible matches

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
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Outline

• Bightness constancy 

• Aperture problem 

• Small-motion assumption 

• Motion segmentation

(sparse flow, spatial regularization)

(coarse-to-fine, discrete optimization)



Apparent motion due to parallax

Background motion due 
to camera motion (ego-
motion)

Object’s independent motion



E(p) =
X

x

⇢(I(W(x;p)))� T (x))

1. Assume parametric warp (typically homography)
2. Treat moving/non-planar objects as outliers in robust error function

Motion segmentation (I):  
robustly estimate dominant motion





Motion segmentation (II)
Treat as clustering problem

1. Obtain an initial estimate of flow (sparse or dense) 
2. Cluster pixels using feature vectors (consisting of flow, RGB, etc.)

Generalize K-means to fit a parametric model (e.g., affine warp) rather than a centroid

Uses “soft” K-means or EM algorithm
Weiss & Adelson, CVPR 96



Treat as clustering problem

Ideally, estimate flow and warp parameters jointly in one giant variational optimization
(I haven’t seen this; looks hard because of joint discrete / continous optimization)

Motion segmentation (II)



Background subtraction
Once we have background image/mosiac (trivial for a stationary camera), how do we identify foreground?

CSE486, Penn State

Robert Collins

Lecture 24

Video Change Detection

FRAME-0 FRAME-35 FRAME-70

MHI-0 MHI-35 MHI-70

Figure 1. Top row: Keyframes of an arm
stretching exercise movement. Bottom row:
MHIs corresponding to keyframes in the top
row.

method focuses on accumulating and recognizing holistic
“patterns of motion” rather than trajectories of structural
features. Similar use of templates for characterizing motion
include work by [22, 19, 12], but are constrained to very
particular domains (e.g., periodicity, facial motion). Our
general template method is targeted at representing arbi-
trary human (and other) movements. The strength of the
approach is the use of a compact, yet descriptive, real-time
representation capturing a sequence of motions in a single
static image (similar to [18]). The MHI is constructed by
successively layering selected image regions over time us-
ing a simple update rule:

if
else if (1)

where each pixel (x,y) in the MHI is marked with a current
timestamp if the function signals object presence (or
motion) in the current video image ; the remaining
timestamps in the MHI are removed if they are older than
the decay value . This update function is called for
every new video frame analyzed in the sequence.
The function that selects a pixel location in the input

image for inclusion into the MHI can be arbitrarily spec-
ified. Since the template representation captures both the
position and temporal history of a moving object, many pos-
sibilities for selecting regions of interest are applicable. De-
tectors may include background subtraction, image differ-
encing, optical flow, edges, stereo-depth silhouettes, flesh-

Figure 2. Effect of altering the decay parame-
ter (in seconds) in Eqn. 1.

colored regions, etc. With an object selection process for
(e.g., background subtraction), the representation can ac-

commodate slowly moving regions ( 1 pixel/frame) that
would otherwise be missed by image differencing or stan-
dard optical flow. For the results presented here, we used a
threshold-difference background subtraction method.
To illustrate the construction of an MHI, keyframes from

a sequence of a person performing an “arm stretch” move-
ment and the corresponding (cumulative) MHIs are pre-
sented in Fig. 1 ( sec.). For display purposes the
timestamp pixel values in the templates are linearly mapped
to graylevel values 0–255. Here the brightness of a pixel
corresponds to its recency in time (i.e., brighter pixels are
the most current timestamps). Depending on the value cho-
sen for the decay parameter , an MHI can encode a wide
history of movement (See Fig. 2).
Our initial approach to recognition with MHIs [9] was

to extract several higher-order scale and translation invari-
ant moment features [16] (also from a binarized version)
and statistically match them to stored model examples using
the Mahalanobis distance [25]. Though successful in con-
strained situations with single and multiple cameras, a limi-
tation with that recognition method was the holistic genera-
tion (and matching) of the moment features computed from
the entire template. Any occlusions of the body or errors
from the implementation of resulted in serious recog-
nition failures. Also the recognition method was limited
to only label-based (token) recognition, where it could not
yield any information other than specific identity matches
(e.g., it could not report that “upward” motion was occur-
ring at a particular image location). This led us to consider
a more localized approach to motion analysis of the MHI.

3. Motion Gradients

From Eqn. 1, the MHI layers the regions over time in
such a way that the visual appearance of the layered regions
gives the impression of motion directly from the intensity

Very commonly-used technique, so we’ll spend a few slides on it…



CSE486, Penn State

Robert Collins

Simple Background Subtraction

• Background model is a static image (assumed to have no objects present).

• Pixels are labeled as object (1) or not object (0) based on thresholding the

       absolute intensity difference between current frame and background.

B = I(0);

…

loop time t

   I(t) = next frame;

   diff = abs[B – I(t)];

   M(t) = threshold(diff,!);

   …

end

M(t)absI(t)

B

!

T

A naive approach

CSE486, Penn State

Robert Collins

Simple Background Subtraction

• Background model is a static image (assumed to have no objects present).

• Pixels are labeled as object (1) or not object (0) based on thresholding the

       absolute intensity difference between current frame and background.

B = I(0);

…

loop time t

   I(t) = next frame;

   diff = abs[B – I(t)];

   M(t) = threshold(diff,!);

   …

end

M(t)absI(t)

B

!

T

(Note: pseudocode is written for grayscale images)
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BG Observations

Objects that enter the scene and stop continue to

be detected, making it difficult to detect new objects

that pass in front of them. 

If part of the assumed static background starts

moving, both the object and its negative ghost

(the revealed background) are detected

Difficulties (I)



Difficulties (II)
CSE486, Penn State

Robert Collins

BG Observations

Background subtraction is sensitive to changing

illumination and unimportant movement of the

background (for example, trees blowing in the

wind, reflections of sunlight off of cars or water).

Background subtraction cannot handle movement

of the camera.  



Frame-differencingCSE486, Penn State
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Simple Frame Differencing

• Background model is replaced with the previous image.

M(t)abs

B(0) = I(0);

…

loop time t

   I(t) = next frame;

   diff = abs[B(t-1) – I(t)];

   M(t) = threshold(diff,!);

   …

   B(t) = I(t);

end

delay

I(t)

B(t-1)

!

T



How well does it work?

CSE486, Penn State

Robert Collins

FD Observations

Frame differencing is very quick to adapt to changes in 

lighting or camera motion.

Objects that stop are no longer detected.  Objects that

start up do not leave behind ghosts.

However, frame differencing only detects the leading 

and trailing edge of a uniformly colored object.  As a result 

very few pixels on the object are labeled, and it is very hard

to detect an object moving towards or away from the camera.



Adjusting temporal scale of differencingCSE486, Penn State

Robert Collins

Differencing and Temporal Scale

Define D(N) = || I(t) - I(t+N) ||

Note what happens when we adjust the temporal scale (frame rate) 

at which we perform two-frame differencing …

I(t) D(-1) D(-3) D(-5) D(-9) D(-15)

more complete object silhouette, but two copies 

(one where object used to be, one where it is now).



A neat “trick”: 3-frame differencing
CSE486, Penn State

Robert Collins

Three-Frame Differencing

AND

D(-15)

D(+15)

The previous observation is the motivation behind three-frame differencing

where object was, 
and where it is now

where object is now, 
and where it will be

where object is now!



But its hard to find a 
good frame rate

CSE486, Penn State

Robert Collins

Three-Frame Differencing

5

15

25

35

45

55

65

1

Choice of good frame-rate for three-frame differencing

 depends on the size and speed of the object

This worked well

for the person

# frames

skipped 



(x,y)

Statistical color models

What’s a “principled” way to build background model?

(a) 2-D rendering of 3-D histogram model

viewed along the green-magenta axis.

(b) Surface plot of the marginal density formed by integrating

along the viewing direction in (a).

  Red

  Blue

Full Color Model, Green−Magenta Axis Marginal

Black White

(c) Equiprobability contours from the surface plot in

(b).

Red 

Blue 

Green 

Full Color Model, Gray Axis Marginal

(d) Contour plot for an integration of (a) along the

gray axis.

Figure 1: Four visualizations of a full color RGB histogram model constructed from nearly 2 billion Web image pixels.

4

pixel-specific color histogram

P (I) = N(I;µ,⌃) P (I) =
X

i

⇡iN(I;µ,⌃)

P (I(x, y)|bg) > threshold
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Adaptive Background Subtraction

• Current image is “blended” into the background model with parameter "

• " = 0 yields simple background subtraction, " = 1 yields frame differencing

M(t)abs

B(0) = I(0);

…

loop time t

   I(t) = next frame;

   diff = abs[B(t-1) – I(t)];

   M(t) = threshold(diff,!);

   …

   B(t) = " I(t)+(1–")B(t-1);

end

I(t)

B(t-1)

!

T

" I(t) + (1–")B(t-1)

B(t)

delay

"

Online statistical learning (of say, mean)

B(1) = I(1)

B(2) = .5I(2) + .5I(1)

B(3) = .5I(3) + .25I(2) + .5I(1)

... exponential decay



Adaptive background subtraction 



Nifty visualizations: persistant frame differencing

Mark each pixel with the last “time” is was declared foreground

FRAME-0 FRAME-35 FRAME-70

MHI-0 MHI-35 MHI-70

Figure 1. Top row: Keyframes of an arm
stretching exercise movement. Bottom row:
MHIs corresponding to keyframes in the top
row.

method focuses on accumulating and recognizing holistic
“patterns of motion” rather than trajectories of structural
features. Similar use of templates for characterizing motion
include work by [22, 19, 12], but are constrained to very
particular domains (e.g., periodicity, facial motion). Our
general template method is targeted at representing arbi-
trary human (and other) movements. The strength of the
approach is the use of a compact, yet descriptive, real-time
representation capturing a sequence of motions in a single
static image (similar to [18]). The MHI is constructed by
successively layering selected image regions over time us-
ing a simple update rule:

if
else if (1)

where each pixel (x,y) in the MHI is marked with a current
timestamp if the function signals object presence (or
motion) in the current video image ; the remaining
timestamps in the MHI are removed if they are older than
the decay value . This update function is called for
every new video frame analyzed in the sequence.
The function that selects a pixel location in the input

image for inclusion into the MHI can be arbitrarily spec-
ified. Since the template representation captures both the
position and temporal history of a moving object, many pos-
sibilities for selecting regions of interest are applicable. De-
tectors may include background subtraction, image differ-
encing, optical flow, edges, stereo-depth silhouettes, flesh-

Figure 2. Effect of altering the decay parame-
ter (in seconds) in Eqn. 1.

colored regions, etc. With an object selection process for
(e.g., background subtraction), the representation can ac-

commodate slowly moving regions ( 1 pixel/frame) that
would otherwise be missed by image differencing or stan-
dard optical flow. For the results presented here, we used a
threshold-difference background subtraction method.
To illustrate the construction of an MHI, keyframes from

a sequence of a person performing an “arm stretch” move-
ment and the corresponding (cumulative) MHIs are pre-
sented in Fig. 1 ( sec.). For display purposes the
timestamp pixel values in the templates are linearly mapped
to graylevel values 0–255. Here the brightness of a pixel
corresponds to its recency in time (i.e., brighter pixels are
the most current timestamps). Depending on the value cho-
sen for the decay parameter , an MHI can encode a wide
history of movement (See Fig. 2).
Our initial approach to recognition with MHIs [9] was

to extract several higher-order scale and translation invari-
ant moment features [16] (also from a binarized version)
and statistically match them to stored model examples using
the Mahalanobis distance [25]. Though successful in con-
strained situations with single and multiple cameras, a limi-
tation with that recognition method was the holistic genera-
tion (and matching) of the moment features computed from
the entire template. Any occlusions of the body or errors
from the implementation of resulted in serious recog-
nition failures. Also the recognition method was limited
to only label-based (token) recognition, where it could not
yield any information other than specific identity matches
(e.g., it could not report that “upward” motion was occur-
ring at a particular image location). This led us to consider
a more localized approach to motion analysis of the MHI.

3. Motion Gradients

From Eqn. 1, the MHI layers the regions over time in
such a way that the visual appearance of the layered regions
gives the impression of motion directly from the intensity

Use some previous method to identify foreground/background pixels



Efficient implementationCSE486, Penn State

Robert Collins

Persistent Frame Differencing

• Motion images are combined with a linear decay term

• also known as motion history images (Davis and Bobick)

H(t)

B(0) = I(0);

H(0) = 0;

loop time t

   I(t) = next frame;

   diff = abs[B(t-1) – I(t)];

   M(t) = threshold(diff,!);

   tmp = max[H(t-1)-#,0)];

   H(t) = max[255*M(t),tmp)];

   …

   B(t) = I(t);

end

M(t)

abs

delay

I(t)

B(t-1)

!

T

max

maxX

255

0 #

H(t-1)



Motion History Images



Outline

• Bightness constancy 

• Aperture problem 

• Small-motion assumption 

• Motion segmentation

(sparse flow, spatial regularization)

(coarse-to-fine, discrete optimization)

(dominant motion estimation,  
background subtraction,  

layered models)



Layered model



Mathematical formalism
Layer 0 (BG)

Layer 1

Alpha composite

Ii(x, y) = ↵i(x, y)Li(x, y) + (1� ↵i(x, y))Ii�1(x, y)



 

 

   

   

   



Inferring layers, motion, and appearance with EM



Takeaways

• Bightness constancy 

• Aperture problem 

• Small-motion assumption 

• Motion segmentation

(sparse flow, spatial regularization)

(coarse-to-fine, discrete optimization)

(dominant motion estimation,  
background subtraction,  

layered models)


