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Template matching with filters
Template matching 

Goal: find       in image 
 
Main challenge: What is a 

good similarity or 
distance measure 
between two patches? 
• Correlation 
• Zero-mean correlation 
• Sum Square Difference 
• Normalized Cross Correlation 
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Can we use filtering to build detectors?

H[i,j]

F[i,j]



Matching with filters 
Goal: find       in image 
Method 0: filter the image with eye patch 

 

Input Filtered Image 
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What went wrong? 

f = image 
g = filter 
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Attempt 1: correlate with eye patch
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G[i, j] =
kX

u=�k

kX

v=�k

H[u, v]F [i+ u, j + v]

= HTFij = ||H||||Fij || cos ✓, H, Fij 2 R(2K+1)2
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Let’s transform filter such that response on a flat region is 0 
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Matching with filters 

Goal: find       in image 
Method 1: filter the image with zero-mean eye 

 

Input Filtered Image (scaled) Thresholded Image 
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True detections 

False 
detections 

mean of f 

Attempt 1.5: correlate with zero-mean eye patch

G[i, j] =
kX

u=�k

kX

v=�k

(H[u, v]� H̄)F [i+ u, j + v]

=
kX

u=�k

kX

v=�k

H[u, v]F [i+ u, j + v]� H̄
kX

u=�k

kX

v=�k

F [i+ u, j + v]
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Attempt 2: SSDMatching with filters 

Goal: find       in image 
Method 2: SSD 

 

Input 1- sqrt(SSD) Thresholded Image 

2

,
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True detections 

Can this be implemented with filtering?

SSD[i, j] = ||H � Fij ||2

= (H � Fij)
T (H � Fij)

-SSD(patch,image) Thresholded image
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Matching with filters 
Goal: find       in image 
Method 2: SSD 

 

Input 1- sqrt(SSD) 

2
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What’s the potential 
downside of SSD? 

Side by Derek Hoiem 

Template matching 
Goal: find       in image 
 
Main challenge: What is a 

good similarity or 
distance measure 
between two patches? 
• Correlation 
• Zero-mean correlation 
• Sum Square Difference 
• Normalized Cross Correlation 

 

Side by Derek Hoiem 

What will SSD find here?

(where eyes have been darkened by .5 scale factor)

SSD will fire on shirt

-SSD(patch,image)
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Normalized cross correlation

Matching with filters 

Goal: find       in image 
Method 3: Normalized cross-correlation 
 

 

Input Normalized X-Correlation Thresholded Image 

True detections Template matching 
Goal: find       in image 
 
Main challenge: What is a 

good similarity or 
distance measure 
between two patches? 
• Correlation 
• Zero-mean correlation 
• Sum Square Difference 
• Normalized Cross Correlation 

 

Side by Derek Hoiem 

where H, Fij are mean-centered

H

Fij

✓ij

NCC[i, j] =
HTFij

||H||||Fij ||

=

HTFij
p
HTH

q
FT
ijFij

= cos ✓
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image that returns the median value. Another example of a nonlinear filter
is “Non-Local Means,” which we describe next.

In Non-Local Means, for every pixel p we look for patches elsewhere in
the image that look similar to the patch surrounding p. We then average
this set of patches to determine the filtered value of p.

One nice feature of NL-Means is that it is “edge preserving,” while other
methods of smoothing/de-noising can result in blurry edges.

8.5. Looking ahead: modern applications of filter banks

The above approaches to filtering were largely hand designed. This is partly
due to limitations in computing power and lack of access to large datasets in
the 80s and 90s. In modern approaches to image recognition the convolution
kernels/filtering operations are often learned from huge amounts of training
data.

In 1998 Yann LeCun created a Convolutional Network (named “LeNet”)
that could recognize hand-written digits using a sequence of filtering op-
erations, subsampling and assorted nonlinearities the parameters of which
were learned via stochastic gradient descent on a large,labeled training set.
Rather than hand selecting the filters to use, part of LeNet’s training was to
pick for itself the most e↵ective set of filters. Modern ConvNets use basically
the same structure as LeNet but because of richer training sets and greater
computing power we can recognize far more complex objects than handwrit-
ten digits (see, for example, GoogLeNet in 2014 and other submissions to
ImageNet Large-Scale Visual Recognition Challenge).

Modern filter banks
Learn filters from training data to look for low, mid, and high-level features

Convolutional Neural Nets (CNNs) Lecun et al 98
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the same structure as LeNet but because of richer training sets and greater
computing power we can recognize far more complex objects than handwrit-
ten digits (see, for example, GoogLeNet in 2014 and other submissions to
ImageNet Large-Scale Visual Recognition Challenge).

Convolutional neural nets

Elementwise rectification or “RELU” - rectified linear unit

G = max(0, F )

Is this operation linear shift-invariant?

Theoretical analysis that suggests “homogenous” transformations are easy to learn (local minima = global minima)
https://arxiv.org/abs/1506.07540

https://arxiv.org/abs/1506.07540


SSD vs CC vs NCC
Matching with filters 

Goal: find       in image 
Method 0: filter the image with eye patch 

 

Input Filtered Image 
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H

Fij

Treat patches (H,Fij) as vectors in RN

Matching with filters 
Goal: find       in image 
Method 0: filter the image with eye patch 

 

Input Filtered Image 
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What went wrong? 

f = image 
g = filter 

Side by Derek Hoiem 

SSDij = ||H � Fij ||2

CCij = HTFij

NCCij = cos(✓ij)

H

Fij

✓ij



A look back
SSDij = ||H � Fij ||2 = HTH � 2HTFij + FT

ijFij

CCij = HTFij

NCCij =
HTFij

p
HTH

q
FT
ijFij

1. When would peaks of SSD align with peaks of CC ?

2. When would NCC outperform SSD?

3. How can we compute SSD, NCC with pointwise operations and filtering?
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What causes edges?
What is an edge? 



Origin of Edges

Edges are caused by a variety of factors

depth discontinuity

surface color discontinuity

illumination discontinuity

surface normal discontinuity

Source: Steve Seitz



Characterizing edges
• An edge is a place of rapid change in the 

image intensity function

image
intensity function

(along horizontal scanline) first derivative

edges correspond to
extrema of derivative



Continuous derivatives

LECTURE 7. EDGE DETECTION 3

We will explain with a simplified version of the Canny edge detector
(John Canny, 1986).

7.2.1. Noise smoothing

A real world image is not smooth. The figure below shows the profile of
a horizontal scanline. Its derivative would contain spikes due to the noise.
We can reduce the noise by convolving with a Gaussian filter.

Definition 7.1. A 2D Gaussian filter of size 2k+1 is H 2 R2k+1⇥2k+1 where

H
ij

=
1

2⇡�2
e�

(i�k�1)2+(j�k�1)2

2�2

for i, j 2 1, 2, . . . , 2k + 1.

7.2.2. Computing the gradient

Now we want to calculate the gradient

rf =


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gradient magnitude
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Derivative filters

⇥
�1 1

⇤
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�



Other approximationsFinite difference filters
Other approximations of derivative filters exist:

Source: K. Grauman

Why might these work better?



Recall: Gaussian smoother

1
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Criteria: we want to detect and localize edges

Approach: start with model (ideal step edge + Gaussian noise) and come up with optimal solution



Revisiting gradients
(let’s plot a single row of image as a function)

F[i]

@F

@i
⇡ F ⌦ [�1, 1]

= F ⇤ [1,�1]



Solution:  smooth first

F

H

F*H

@

@i
(F ⇤H)



Derivative of Gaussian filter

⇤[�1, 1] =



Effect of σ on Gaussian smoothing
Recall: parameter σ is the “scale” / “width” / “spread” of the 
Gaussian kernel, and controls the amount of smoothing.

…



Effect of σ on derivatives 

The apparent structures differ depending on Gaussian’s scale parameter. 

  Larger values: larger scale edges detected 
Smaller values: finer features detected



Fundamental tradeoff between smoothing and good localization!

Image with Edge Edge Location

Image + Noise Derivatives detect 
edge and noise

Smoothed derivative removes 
noise, but blurs edge



The Canny edge detector

original image (Lena)

Source: S. Seitz



The Canny edge detector

norm of the gradient



The Canny edge detector

thresholding



The Canny edge detector

thresholding

How to turn these 
thick regions of 
the gradient into 
curves?



Non-maximum suppression

Check if pixel is local maximum along gradient direction, 
select single max across width of the edge 
• requires checking interpolated pixels p and r



Bilinear interpolation

36

http://en.wikipedia.org/wiki/Bilinear_interpolation



The Canny edge detector

thinning 
(non-maximum suppression)

Problem: 
pixels along 
this edge 
didn’t survive 
the 
thresholding



Hysteresis thresholding
• Check that maximum value of gradient value is 

sufficiently large 
–drop-outs?  use hysteresis 

• use a high threshold to start edge curves and a 
low threshold to continue them.

Source: S. Seitz



Hysteresis thresholding

original image

high threshold 
(strong edges)

low threshold 
(weak edges)

hysteresis threshold

Source: L. Fei-Fei



Alternate approach

F

H

F*H

@

@i
(F ⇤H)

Find peaks of above profile be setting its gradient equal to 0.  
What does the resulting edge filter look like?
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F*H*H where H = [1 -1] 
Convolution with filter G = [1 -1]*[1 -1] 

Boring math

G = [1 -2 1]

G[0] = 0 ⇤ �1 + 1 ⇤ 1 +�1 ⇤ 0 = 1

G[1] = �1� 1 = �2

G[2] = 1 ⇤ 0 +�1 ⇤ �1 + 0 ⇤ 1 = 1



Consider smoothing (Gaussian) + second derivative [1 -2 1]

Zero-crossings of second graph

Look for zero-crossings of second derivative
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Example: Second Derivatives

Ixx Iyy

benefit: you get clear localization of

the edge, as opposed to the “smear”

of high gradient magnitude values

across an edge

CSE486
Robert Collins

Compare: 1st vs 2nd Derivatives

Ixx Iyy

Ix Iy

CSE486
Robert Collins

Finding Zero-Crossings

An alternative approx to finding edges as peaks in

first deriv is to find zero-crossings in second deriv.

In 1D, convolve with [1 -2  1] and look for pixels 

where response is (nearly) zero?

Problem: when first deriv is zero, so is second.  I.e.

the filter [1  -2   1] also produces zero when convolved

with regions of constant intensity.

So, in 1D, convolve with [1 -2  1] and look for pixels

where response is nearly zero AND magnitude of

first derivative is “large enough”.

CSE486
Robert Collins

Edge Detection Summary

I(x)I(x) I(x,y)I(x,y)

dd22I(x)I(x)
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Finite Difference Laplacian

Laplacian filter ∇∇22I(x,y)I(x,y)

CSE486
Robert Collins

Example: Laplacian

I(x,y) Ixx + Iyy

Generalization to 2D
 ∇2 is the Laplacian operator:

Divergence (“source-ness” or “sink”-ness) of a gradient of a function (used in fluid mechanics)
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Laplacian of Gaussian (LOG)

Laplacian of GaussianLet hσ(u,v) be a 2D Gaussian

Marr & Hildreth
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Two circumstances make edge detection di�cult. Firstly, real world
images are much noisier than the cartoon image depicted above. Secondly,
image representation is a raster array. We will need methods that are robust
(in the same way that RANSAC is robust).

Image credit: Bansal.

7.1.1. 1D boundary profiles

One dimensional slices across di↵erent boundary events are shown below.
Although they are depicted as continuous functions we will always be using
finite di↵erence approaches in practice.

By convention, across the edge will be called the edge normal and points
from dark to light (i.e., from low brightness values to higher values). The
perpendicular direction along the edge is called the edge direction. There is
no convention for pointing the edge direction.

Image credit: Trucco and Verri; Jain, Kasturi and Schunck.

7.2. Edge Detection

An edge detector consists of three basic steps:

(a) Noise reduction via smoothing.
(b) Edge enhancement via di↵erentiation.
(c) Edge localization via thresholding.



Other filters: Gaussian derivatives

LECTURE 8. IMAGE FILTERING 3

Figure 2. Jones and Malik filterbank.

when the filterbank is orthogonal, the synthesis basis is the same as the
analysis basis.

The SVD provides us a mechanism to orthogonalize a given filterbank,
which will allow us to create reconstructions of image patches to see what
is captured by the filterbank. As described in Figure 4, treat your original
filter bank as a series of column vectors (i.e., reshape the square filters into
columns) and concatenate them into a matrix F>. Then, calculate the SVD,
extract V >, and reshape the column vectors in V > back into square filters.
These square filters are an orthonormal basis set for your original filters.

An alternative to the Gaussian-derived filter banks approach is to use
Gabor Wavelets, also developed in the 1990s (largely by Daugman). Gabor
wavelets were derived from the neural responses known as “receptive fields”
that were observed in mammalian visual systems. Gabor functions model
the receptive fields using Gaussians multiplied by sinusoids as illustrated in
Figure 5.

Rather than using the above SVD-based approach, Daugman used the
3-layer neural network architecture shown in Figure 6. The first weight layer
contains the fixed coe�cients of the Gabor filters and the third weight layer
contains the coe�cients that capture the projections of the filters onto one
another (since Gabor functions aren’t mutually orthogonal). We can solve
for the weights in the middle layer using gradient descent on a cost function

G1(x) =
1

�

p
2⇡

�z

�

e

� z2

2



2D Gaussian derivates
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Filter banks

The LeungMalik filter bank has a mix of edge, bar and spot filters at multiple scales and orientations. It has a total of 48 filters - 2 
Gaussian derivative filters at 6 orientations and 3 scales, 8 Laplacian of Gaussian filters and 4 Gaussian filters. 

G[i, j] =
kX

u=�k

kX

v=�k

H[u, v]F [i+ u, j + v]

= HTFij = ||H||||Fij || cos ✓, H, Fij 2 R(2K+1)2



Biological motivation
Some!visual!areas…!

From M. Lewicky 



Receptive field 
of a cell in the cat’s cortex Responses to an oriented bar 



Other filters: gabors
h(x) = e

� x

2

2�2
w(x)

w(x) = cos(2⇡fx)

w(x) = sin(2⇡fx)

f = frequency (# cycles in a “second”)

(a) (b)

Figure 2: Example of spatial frequencies in images:
(a) Vertical stripes - the frequencies would have hor-
izontal orientation, and (b) Curved stripes

plane. Visualizing a 4D space on a screen is difficult. The
focus of our paper is to provide a good interactive interface
for this. To give a better description of the problem, we first
introduce Gabor Filters in more depth. Then we will discuss
our interface and its relation to current work in Information
Visualization.

1.1 Introduction to Gabor Filters
A Gabor filter is obtained by modulating a sinusoid with a
Gaussian. For the case of one dimensional (1D) signals, a
1D sinusoid is modulated with a Gaussian. This filter will
therefore respond to some frequency, but only in a localized
part of the signal. This is illustrated in Figure 3. For 2D
signals such as images, consider the sinusoid shown in Fig-
ure 4(a). By combining this with a Gaussian (Figure 4(b)),
we obtain a Gabor filter - Figure 4(c). Let g(x, y, θ, φ) be
the function defining a Gabor filter centered at the origin
with θ as the spatial frequency and φ as the orientation. We
can view Gabor filters as:

g(x, y, θ, φ) = exp(−
x2 + y2

σ2
) exp(2πθi(x cos φ + y sin φ)))

(1)

It has been shown that σ, the standard deviation of the
Gaussian kernel depends upon the spatial frequency to mea-
sured, i.e. θ. In our case, σ = 0.65θ. Figure 5 shows 3D
plots of some Gabor filters and the intensity plots of their
amplitudes in the image plane. See [3] for an interactive tool
to explore 2D Gabor filters.

The response of a Gabor filter to an image is obtained by
a 2D convolution operation. Let I(x, y) denote the image
and G(x, y, θ, φ) denote the response of a Gabor filter with
frequency θ and orientation φ to an image at point (x, y) on
the image plane. G(.) is obtained as

G(x, y, θ, φ) = I(p, q)g(x − p, y − q, θ, φ) dp dq (2)

Consider the image of a zebra shown in Figure 6(a). If we ap-
ply a Gabor filter oriented horizontally on this image then it
will give high responses wherever there are horizontal stripes
present on the zebra. Figure 6(b) shows the amplitude of
the response of such a horizontally oriented Gabor filter for
the image.

1.2 Previous Work
The GRID principles [4] provide a general strategy for deal-
ing with multi-dimensional data. We have used these prin-
ciples here to guide our interface design. These principles
would dictate that we begin to visualize our 4-dimensional
space by looking at the 2-dimensional projections, and this
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Figure 3: Gabor filter composition for 1D signals:
(a) sinusoid, (b) a Gaussian kernel, (c) the corre-
sponding Gabor filter.

has proven useful to us. The next dictate is to rank which
projections are worth considering. Here, we do not need to
do this dynamically, since we are always projecting the same
4 dimensions. We can therefore predict in advance which 2-
dimensional projections are informative. As we will discuss
in detail later, these projections are the (x, y) plane, and the
(θ, φ) plane. We found that if the user is given these projec-
tions, the other possible projections add little. Gross et.al.
present an approach for generating static visualization of
Gabor filter responses using projections [5]. However, sim-
ply showing these 2-dimensional projections statically does
not give a satisfactory impression of the 4-dimensional data,
since many 4-dimensional spaces correspond to the same
projections. We therefore included two techniques in our
visualization to give a richer impression of the data. First,
we designed a simple interface which allows the user to in-
teract with the projections: the user can restrict what parts
of the projected dimensions are visible. Second, we include
additional visualizations to give information about where in
the projected dimensions the data came from.

2. OUR APPROACH
2.1 One Dimensional Visualization
We have devised a simple way to view the responses of Ga-
bor filters in one dimension. These filter responses can be
nicely summarized in a static one-dimensional graph. This
is interesting in its own right, and also provides an introduc-
tion to our approach for two dimensional filters.

Take the response of a one-dimensional Gabor filter bank
to to be G(x, θ), where x is ’position’ and θ is frequency.
By creating an array indexed by x and θ and encoding the
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Figure 2: Example of spatial frequencies in images:
(a) Vertical stripes - the frequencies would have hor-
izontal orientation, and (b) Curved stripes

plane. Visualizing a 4D space on a screen is difficult. The
focus of our paper is to provide a good interactive interface
for this. To give a better description of the problem, we first
introduce Gabor Filters in more depth. Then we will discuss
our interface and its relation to current work in Information
Visualization.

1.1 Introduction to Gabor Filters
A Gabor filter is obtained by modulating a sinusoid with a
Gaussian. For the case of one dimensional (1D) signals, a
1D sinusoid is modulated with a Gaussian. This filter will
therefore respond to some frequency, but only in a localized
part of the signal. This is illustrated in Figure 3. For 2D
signals such as images, consider the sinusoid shown in Fig-
ure 4(a). By combining this with a Gaussian (Figure 4(b)),
we obtain a Gabor filter - Figure 4(c). Let g(x, y, θ, φ) be
the function defining a Gabor filter centered at the origin
with θ as the spatial frequency and φ as the orientation. We
can view Gabor filters as:

g(x, y, θ, φ) = exp(−
x2 + y2

σ2
) exp(2πθi(x cos φ + y sin φ)))

(1)

It has been shown that σ, the standard deviation of the
Gaussian kernel depends upon the spatial frequency to mea-
sured, i.e. θ. In our case, σ = 0.65θ. Figure 5 shows 3D
plots of some Gabor filters and the intensity plots of their
amplitudes in the image plane. See [3] for an interactive tool
to explore 2D Gabor filters.

The response of a Gabor filter to an image is obtained by
a 2D convolution operation. Let I(x, y) denote the image
and G(x, y, θ, φ) denote the response of a Gabor filter with
frequency θ and orientation φ to an image at point (x, y) on
the image plane. G(.) is obtained as

G(x, y, θ, φ) = I(p, q)g(x − p, y − q, θ, φ) dp dq (2)

Consider the image of a zebra shown in Figure 6(a). If we ap-
ply a Gabor filter oriented horizontally on this image then it
will give high responses wherever there are horizontal stripes
present on the zebra. Figure 6(b) shows the amplitude of
the response of such a horizontally oriented Gabor filter for
the image.

1.2 Previous Work
The GRID principles [4] provide a general strategy for deal-
ing with multi-dimensional data. We have used these prin-
ciples here to guide our interface design. These principles
would dictate that we begin to visualize our 4-dimensional
space by looking at the 2-dimensional projections, and this
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Figure 3: Gabor filter composition for 1D signals:
(a) sinusoid, (b) a Gaussian kernel, (c) the corre-
sponding Gabor filter.

has proven useful to us. The next dictate is to rank which
projections are worth considering. Here, we do not need to
do this dynamically, since we are always projecting the same
4 dimensions. We can therefore predict in advance which 2-
dimensional projections are informative. As we will discuss
in detail later, these projections are the (x, y) plane, and the
(θ, φ) plane. We found that if the user is given these projec-
tions, the other possible projections add little. Gross et.al.
present an approach for generating static visualization of
Gabor filter responses using projections [5]. However, sim-
ply showing these 2-dimensional projections statically does
not give a satisfactory impression of the 4-dimensional data,
since many 4-dimensional spaces correspond to the same
projections. We therefore included two techniques in our
visualization to give a richer impression of the data. First,
we designed a simple interface which allows the user to in-
teract with the projections: the user can restrict what parts
of the projected dimensions are visible. Second, we include
additional visualizations to give information about where in
the projected dimensions the data came from.
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bor filters in one dimension. These filter responses can be
nicely summarized in a static one-dimensional graph. This
is interesting in its own right, and also provides an introduc-
tion to our approach for two dimensional filters.
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By creating an array indexed by x and θ and encoding the
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plane. Visualizing a 4D space on a screen is difficult. The
focus of our paper is to provide a good interactive interface
for this. To give a better description of the problem, we first
introduce Gabor Filters in more depth. Then we will discuss
our interface and its relation to current work in Information
Visualization.

1.1 Introduction to Gabor Filters
A Gabor filter is obtained by modulating a sinusoid with a
Gaussian. For the case of one dimensional (1D) signals, a
1D sinusoid is modulated with a Gaussian. This filter will
therefore respond to some frequency, but only in a localized
part of the signal. This is illustrated in Figure 3. For 2D
signals such as images, consider the sinusoid shown in Fig-
ure 4(a). By combining this with a Gaussian (Figure 4(b)),
we obtain a Gabor filter - Figure 4(c). Let g(x, y, θ, φ) be
the function defining a Gabor filter centered at the origin
with θ as the spatial frequency and φ as the orientation. We
can view Gabor filters as:

g(x, y, θ, φ) = exp(−
x2 + y2

σ2
) exp(2πθi(x cos φ + y sin φ)))

(1)

It has been shown that σ, the standard deviation of the
Gaussian kernel depends upon the spatial frequency to mea-
sured, i.e. θ. In our case, σ = 0.65θ. Figure 5 shows 3D
plots of some Gabor filters and the intensity plots of their
amplitudes in the image plane. See [3] for an interactive tool
to explore 2D Gabor filters.

The response of a Gabor filter to an image is obtained by
a 2D convolution operation. Let I(x, y) denote the image
and G(x, y, θ, φ) denote the response of a Gabor filter with
frequency θ and orientation φ to an image at point (x, y) on
the image plane. G(.) is obtained as

G(x, y, θ, φ) = I(p, q)g(x − p, y − q, θ, φ) dp dq (2)

Consider the image of a zebra shown in Figure 6(a). If we ap-
ply a Gabor filter oriented horizontally on this image then it
will give high responses wherever there are horizontal stripes
present on the zebra. Figure 6(b) shows the amplitude of
the response of such a horizontally oriented Gabor filter for
the image.

1.2 Previous Work
The GRID principles [4] provide a general strategy for deal-
ing with multi-dimensional data. We have used these prin-
ciples here to guide our interface design. These principles
would dictate that we begin to visualize our 4-dimensional
space by looking at the 2-dimensional projections, and this
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Figure 3: Gabor filter composition for 1D signals:
(a) sinusoid, (b) a Gaussian kernel, (c) the corre-
sponding Gabor filter.

has proven useful to us. The next dictate is to rank which
projections are worth considering. Here, we do not need to
do this dynamically, since we are always projecting the same
4 dimensions. We can therefore predict in advance which 2-
dimensional projections are informative. As we will discuss
in detail later, these projections are the (x, y) plane, and the
(θ, φ) plane. We found that if the user is given these projec-
tions, the other possible projections add little. Gross et.al.
present an approach for generating static visualization of
Gabor filter responses using projections [5]. However, sim-
ply showing these 2-dimensional projections statically does
not give a satisfactory impression of the 4-dimensional data,
since many 4-dimensional spaces correspond to the same
projections. We therefore included two techniques in our
visualization to give a richer impression of the data. First,
we designed a simple interface which allows the user to in-
teract with the projections: the user can restrict what parts
of the projected dimensions are visible. Second, we include
additional visualizations to give information about where in
the projected dimensions the data came from.

2. OUR APPROACH
2.1 One Dimensional Visualization
We have devised a simple way to view the responses of Ga-
bor filters in one dimension. These filter responses can be
nicely summarized in a static one-dimensional graph. This
is interesting in its own right, and also provides an introduc-
tion to our approach for two dimensional filters.

Take the response of a one-dimensional Gabor filter bank
to to be G(x, θ), where x is ’position’ and θ is frequency.
By creating an array indexed by x and θ and encoding the
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Gabor filters

Gabor wavelet:

€ 

ψ(x,y) = e
−
x 2 +y 2

2σ 2 e j2πu0x

Tuning filter orientation:

€ 

x'= cos(α)x + sin(α)y
y'= −sin(α)x + cos(α)y

Space

Fourier domain

Real

Imag
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Imag

Gabor wavelet:
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ψ(x,y) = e
−
x 2 +y 2

2σ 2 e j2πu0x

Tuning filter orientation:
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x'= cos(α)x + sin(α)y
y'= −sin(α)x + cos(α)y

Space

Fourier domain

Real

Imag

Real

Imag

It turns out, we can write cosine + sine modulated gabor filters as real and 
imaginary parts of a single complex filter (Fourier theory)

http://en.wikipedia.org/wiki/Gabor_filter



Gabor energy

Given an image of a grating with a particular stripe width (frequency), 
even and odd filters will be sensitive to precise alignment (phase)

Energy = (I ⇤G
even

)2 + (I ⇤G
odd

)2

(Magnitude of complex filter)





Outline

• Logistics 

• Edges 

• Filter banks 

• Efficiency (pyramids, separability, steerability)



Pyramids

• Big filters (e.g., Gaussians) tend to be smooth, so the output is redundant 

• Exploit property that Gaussian*Gaussian = Bigger Gaussian

Gaussian filters 

= 30 pixels = 1 pixel = 5 pixels = 10 pixels 

Gaussian and convolution 
• Removes “high-frequency” components from 

the image (low-pass filter) 
• Convolution with self is another Gaussian 

 
 
 
 

– Convolving twice with Gaussian kernel of width     
= convolving once with kernel of width   

Source: K. Grauman 

* = 

�2
a⇤b = �2

a + �2
b

Figure 1: Gaussian Pyramid. Depicted are four levels of the Gaussian pyamid,
levels 0 to 3 presented from left to right.

[2] P.J. Burt. Fast filter transforms for image processing. Computer Graphics

and Image Processing, 1981.

[3] P.J. Burt. Fast algorithms for estimating local image properties. Computer

Graphics and Image Processing, 1983.

[4] P.J. Burt and E.H. Adelson. The laplacian pyramid as a compact image
code. IEEE Transactions on Communication, 31(4):532–540, April 1983.

[5] L.I. Larkin and P.J. Burt. Multi-resolution texture energy measures. In
IEEE Conference on Computer Vision and Pattern Recognition, 1983.

2

Proof: https://en.wikipedia.org/wiki/Sum_of_normally_distributed_random_variables

https://en.wikipedia.org/wiki/Sum_of_normally_distributed_random_variables
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The computational advantage of pyramids

http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf

Burt & Adelson, 83

H[i] =
1

16

⇥
1 4 6 4 1

⇤



59
http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdfREDUCE(F )[i] =

2X

u=�2

H[u]F [2i+ u]

H[i] =
1

16

⇥
1 4 6 4 1
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Laplacian pyramid algorithm

69

Laplacian pyramid
Store difference between upsampled Gaussian pyramid level and Gaussian pyramid level

Upsampling: insert zeros between pixels and apply Gaussian filter

EXPAND(F )[i] = 4
2X

u=�2

H[u]F [(i+ u)/2]



Laplacian pyramid
Laplacian pyramid algorithm

69

Laplacian pyramid algorithm

69

Laplacian pyramid algorithm

69



Laplacian pyramidShowing, at full resolution, the information captured at each level 
of a Gaussian (top) and Laplacian (bottom) pyramid.

http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf

71



Laplacian pyramid
Laplacian pyramid algorithm

69

Can we directly produce the difference image with a linear filter?



Difference of Gaussian (DoG) filter

DoG

-LoG



Multiresolution processing
Multi-resolution blending

0

1

0

1

0

1

Left pyramid Right pyramidblend



laplacian 
level 

4

laplacian 
level 

2

laplacian 
level 

0

left pyramid right pyramid blended pyramid

Sum blended band-pass images



Pyramid Blending



Horror Photo

© david dmartin (Boston College)



Outline

• Logistics 

• Edges 

• Filter banks 

• Efficiency (pyramids, separability, steerability)



Separability
Image of size N^2 
Filter of size M^2

Complexity of filtering?

H[u, v] = H
x

[u]H
y

[v]

G[i, j] =
X

u

X

v

H[u, v]F [i+ u, j + v]

=
X

u

H
x

[u]A[i+ u, v] where A[i+ u, v] =
X

v

H
y

[v]F [i+ u, j + v]

Derivation works for both convolution and correlation

O(N^2M^2)

O(N^2M)



Steerability
• Steerability - the ability to synthesize a filter of any orientation 

from a linear combination of filters at fixed orientaton

24

Simple$example
 “Steerability”-- the ability to synthesize a filter of any orientation from a linear 
combination of filters at fixed orientations.

Filter Set:
0o 90o Synthesized 30o

Response:
Raw Image

Taken from:
W. Freeman, T. Adelson, “The Design 
and Use of Sterrable Filters”, IEEE 
Trans. Patt, Anal. and Machine Intell., 
vol 13, #9, pp 891-900, Sept 1991
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Steerable$filters

€ 

hx (x,y) =
∂h(x,y)
∂x

=
−x
2πσ 4 e

−
x 2 +y 2

2σ 2

€ 

hy (x,y) =
∂h(x,y)
∂y

=
−y
2πσ 4 e

−
x 2 +y 2

2σ 2

Derivatives of a Gaussian:

cos(α) +sin(α) =

Freeman & Adelson 92

An arbitrary orientation can be computed as a linear combination of those two
basis functions:

€ 

hα (x,y) = cos(α)hx (x,y) + sin(α)hy (x,y)

The representation is “shiftable” on orientation: We can interpolate any other
orientation from a finite set of basis functions.

Question: how can we compute the optimal orientation at each point efficiently?
h

↵

(x, y) =

⇥
cos(↵) sin(↵)

⇤
T


h

x

(x, y)

h

y

(x, y)

�



Special case: second-
derivatives of GaussiansTwo$equivalent$basis

These two basis can use to steer 2nd order Gaussian derivatives

29

Steerability
Important example is 2nd derivative of Gaussian                                       (~Laplacian):

Taken from: W. Freeman, T. Adelson, “The Design and Use of Steerable Filters”, IEEE Trans. Patt, Anal. and Machine Intell., vol 13, #9, pp 891-900, Sept 1991

Steerable basis

Seperable and steerable

29

Steerability
Important example is 2nd derivative of Gaussian                                       (~Laplacian):

Taken from: W. Freeman, T. Adelson, “The Design and Use of Steerable Filters”, IEEE Trans. Patt, Anal. and Machine Intell., vol 13, #9, pp 891-900, Sept 1991



When is this possible?

When filters are smooth in “orientation space” 
We’ll need some additional math to derive this… ignore for now



Least-squares method of 
steerability
Shy & Perona, CVPR94

Figure 1: The 3D pseudo-SVD reconstructed filter approx-

imations at 20%, 10%, 5%, 0% error. These corre-

spond to 7 10 13 and the original filter. The top row

shows the filter at 0 ; the bottom row, at 60 .

# of Components (Rank)

E
rr

or
 (%

)

Filter Array Reconstruction Error vs. Rank

5 10 15 20 25 30
10

-1

10
0

10
1

10
2

Figure 2: Filter array reconstruction error (in %) for

vs. the rank of the approximation, , for the first 30 com-

ponents of the 3D pseudo-SVD

Orientation (degrees)

E
rr

or
 (%

)

Filter Error vs. Orientation

0 50 100 150 200 250 300 350
1

2

3

4

5

6

7

8

Figure 3: The % error in the reconstructed filter approx-

imation
13
(a 5% approximation) as a function of the

angle of reconstruction.

Property Scheme Perona–92 3D pseudo-SVD

# x kernels 34 13

# y kernels 34 13

# functions 11 13

# 1D convolutions 68 26

# stored images 11 13

off-line kernel

decomposition time
1 min 1 hour

Convolution time 34 sec. 13 sec.

mean error vs. 4.9 .5 4.8 1.6

Table 1: A comparison of the properties of two decomposi-

tionmethods. Computation times are referred to a steerable

17x17 kernel, and a 512x512 image on a SUN-SPARC 10.

2.2 Comparison of X-Y-separable, steerable de-
compositions

In table 1, we summarize the properties of two decom-

position methods: the original scheme due to Perona, and

the 3D pseudo-SVD. The decompositions were performed

on an orientation selective gaussian kernel: a real, 17 17

pixel sampling of a kernel that has been used for brightness

boundary detection and texture analysis: the second deriva-

tive of a gaussian along the y axis, and a normal gaussian

along the x axis. The standard deviation in the x direction

was 3 times that of the y direction, which was 1.7 pixels.

The set of all angles was discretized in 72 samples. The

comparison here is made between kernel approximations

of 5% accuracy.

The mean error vs. orientation listed in table 1 refers to

the mean and distribution of the reconstruction error of the

kernel at different orientations, for 5% approximations. Al-

though the 3D pseudo-SVD has a relatively large variation

in error vs. orientation, the error is bound below 8%.

3 The 4D pseudo-SVD for steerability and

scalability

In section 2.1.1, an iterative least squares algorithmwas

used to produce the pseudo-SVD of a filter kernel: es-

sentially, a steerable sum of x-y separable kernels. The

algorithm, as well as the pseudo-SVD, is by no means lim-

ited to 3D problems ( 2 variables and 1 parameter ( )

3 dimensions ). The algorithm generalizes easily to an

N dimensional array, which in most cases corresponds to

2 variables and N–2 parameters. Thus, the pseudo-

SVD will provide not only “steerable” decompositions in

which the basis filters are separable, but also generally

“deformable” decompositions, e.g. “scalable”, “stretch-

able”, “shearable”, etc., provided that theN–2deformations

involved are continuous and can be parameterized.

Stack bank of filters into a matrix 
Apply SVD to generate low-rank approximation

⇡



Least-squares method of 
steerability
Shy & Perona, CVPR94

H[u, v, k] = Hs[u, v]c[k]

G[i, j, k] =
X

u

X

v

H[u, v, k]F [i+ u, j + v]

= c[k]A[i, j] where A[i, j] =
X

u

X

v

Hs[u, v]F [i+ u, j + v]

Reduces O(N2M2K) to O(N2M2 + KN2)

Rank 1 approximation
Figure 1: The 3D pseudo-SVD reconstructed filter approx-

imations at 20%, 10%, 5%, 0% error. These corre-

spond to 7 10 13 and the original filter. The top row

shows the filter at 0 ; the bottom row, at 60 .
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# x kernels 34 13

# y kernels 34 13

# functions 11 13

# 1D convolutions 68 26

# stored images 11 13

off-line kernel

decomposition time
1 min 1 hour

Convolution time 34 sec. 13 sec.

mean error vs. 4.9 .5 4.8 1.6

Table 1: A comparison of the properties of two decomposi-

tionmethods. Computation times are referred to a steerable

17x17 kernel, and a 512x512 image on a SUN-SPARC 10.

2.2 Comparison of X-Y-separable, steerable de-
compositions

In table 1, we summarize the properties of two decom-

position methods: the original scheme due to Perona, and

the 3D pseudo-SVD. The decompositions were performed

on an orientation selective gaussian kernel: a real, 17 17

pixel sampling of a kernel that has been used for brightness

boundary detection and texture analysis: the second deriva-

tive of a gaussian along the y axis, and a normal gaussian

along the x axis. The standard deviation in the x direction

was 3 times that of the y direction, which was 1.7 pixels.

The set of all angles was discretized in 72 samples. The

comparison here is made between kernel approximations

of 5% accuracy.

The mean error vs. orientation listed in table 1 refers to

the mean and distribution of the reconstruction error of the

kernel at different orientations, for 5% approximations. Al-

though the 3D pseudo-SVD has a relatively large variation

in error vs. orientation, the error is bound below 8%.

3 The 4D pseudo-SVD for steerability and

scalability

In section 2.1.1, an iterative least squares algorithmwas

used to produce the pseudo-SVD of a filter kernel: es-

sentially, a steerable sum of x-y separable kernels. The

algorithm, as well as the pseudo-SVD, is by no means lim-

ited to 3D problems ( 2 variables and 1 parameter ( )

3 dimensions ). The algorithm generalizes easily to an

N dimensional array, which in most cases corresponds to

2 variables and N–2 parameters. Thus, the pseudo-

SVD will provide not only “steerable” decompositions in

which the basis filters are separable, but also generally

“deformable” decompositions, e.g. “scalable”, “stretch-

able”, “shearable”, etc., provided that theN–2deformations

involved are continuous and can be parameterized.



Box filtering with integral images
http://en.wikipedia.org/wiki/Summed_area_table

Reduces O(N2M2) to O(N2)



A look back

• Edges (Canny, hysteresis, LoG) 

• Filter banks (Gabors) 

• Efficiency (pyramids, separability, steerability) 

• Next class: bag-of-words, linear algebra, frequencies


