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Course website

http://16720.courses.cs.cmu.edu/
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Template matching with filters
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Can we use filtering to build detectors?



Attempt 1: correlate with eye patch

k k

Gli,jl= Y > HluvF[i+u,j+uv]

u=—kv=—=%k%

Filtered Image



Attempt 1: correlate with eye patch

Gli,jl= Y > HluvF[i+u,j+uv]

u=—kv=—=%k%
— HTF,; = ||H||||F;;|| cos0, H,F;; € REK+T’

Useful to think about correlation and convolution

Input Filtered Image



Let’s transform filter such that response on a flat region 1s 0



Attempt 1.5: correlate with zero-mean eye patch

k k

Z Z H)F[i +u,j + v]

u=—k v=—%k

Inpt Filtered Image (scaled) Thresholded Image



Attempt 2: SSD
SSDli,j] = ||H — Fi;]|°
= (H — Fy;)" (H — Fyy)

Can this be implemented with filtering?

-SSD(patch,image) Thresholded 1image



What will SSD find here?

-SSD(patch,image)

(where eyes have been darkened by .5 scale factor)

SSD will fire on shirt

10



Normalized cross correlation

HTFE..
2 where H, Fjj are mean-centered

NCCli, j| =

HHHHFin

11



Modern filter banks

Convolutional Neural Nets (CNNs) Lecun et al 98

Learn filters from training data to look for low, mid, and high-level features
Inpurt layer (S1) 4 feature maps

(C1) 4 feature maps (52) 6 feature maps (C2) 6 feature maps

convolution layer




Convolutional neural nets

Inpuc layer (51) 4 feature maps

1 (C1) 4 feature maps (52) 6 feature maps (C2) 6 feature maps

l convolution layer l sub-sampling layer l convolution layer l sub-sampling layer | fully connected MLFP |

G = max(0, F')
Elementwise rectification or “RELU?” - rectified linear unit

Is this operation linear shift-invariant?

Theoretical analysis that suggests “homogenous” transformations are easy to learn (local minima = global minima)

https://arxiv.org/abs/1506.07540 13



https://arxiv.org/abs/1506.07540

SSD vs CC vs NCC

1j

Treat patches (H,F;j) as vectors in RN

H SSD;; = ||H — F|?
CCi; = H' Fy
H’L] NCCZ] — COS(@ij)




A ook back

SSl)z‘7 = HH — Fin2 = HTH — QHTFij -+ FZ?F,LJ
CC;; = H'Fy
HTFij

VHTH, [FLF,

1. When would peaks of SSD align with peaks of CC ?

NCCZJ =

2. When would NCC outperform SSD?

3. How can we compute SSD, NCC with pointwise operations and filtering?
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What causes ed




surface normal discontinuity

depth discontinuity

surface color discontinuity

illumination discontinuity



Characterizing edges

* An edge is a place of rapid change in the
iImage intensity function

intensity function
image (along horizontal scanline) first derivative

\

edges correspond to
extrema of derivative



Continuous derivatives




Derivative filters




Other approximations
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Prewitt: M., =|[-1]0f1 s M, = gl o] 0
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Sobel: M, = [-2]0]2 y M, = ol o] 0
L (O] 1 -1 [-2]-1

0]1 : ()

Roberts: M, = I'l = s M, = .

Why might these work better?
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A Computational Approach to Edge Detection

JOHN CANNY. MEMBER, IEEE

John Canny (S’81-M’82) was born in Adelaide,
Australia, in 1958. He received the B.Sc. degree
in computer science and the B.E. degree from
Adelaide University in 1980 and 1981, respec-
tively, and the S.M. degree from the Massachu-
setts Institute of Technology, Cambridge, in 1983.

He is with the Artificial Intelligence Labora-
tory, M.I.T. His research interests include low-
level vision, model-based vision, motion planning
for robots, and computer algebra.

Mr. Canny is a student member of the Asso-
ciation for Computing Machinery.

Criteria: we want to detect and localize edges

Approach: start with model (ideal step edge + Gaussian noise) and come up with optimal solution



Revisiting gradients

(let’s plot a single row of 1mage as a function)
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Solution: smooth first

Sigma = 50
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Derivative of Gaussian filter
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Effect of 0 on Gaussian smoothing

Recall: parameter o is the “scale” / "width” / "spread” of the
Gaussian kernel, and controls the amount of smoothing.




Effect of o on derivatives

The apparent structures differ depending on Gaussian’s scale parameter.

Larger values: larger scale edges detected
Smaller values: finer features detected



Fundamental tradeoff between smoothing and good localization!

Image with Edge Edge Location

Derivives detect Smoothed derivative removes
edge and noise noise, but blurs edge

Image + Noise



The Canny edge detector

original image (Lena)

Source: S. Seitz



The Canny edge detector

norm of the gradient



The Canny edge detector

thresholding



The Canny edge detector

How to turn these
thick regions of
the gradient into
curves?

f(t)
w
™ {

Vv i(t)

—=—g=—==3==Threshold

thresholding



Non-maximum suppression

® ® ® o ®
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Check if pixel is local maximum along gradient direction,
select single max across width of the edge
* requires checking interpolated pixels pand r



Bilinear interpolation

http://en.wikipedia.org/wiki/Bilinear interpolation
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The Canny edge detector

this edge
didn’t survive

thinning
(non-maximum suppression)



Hysteresis thresholding

* Check that maximum value of gradient value is
sufficiently large

—drop-outs? use hysteresis

* use a high threshold to start edge curves and a
low threshold to continue them.

Source: S. Seitz



Hysteresis thresholding
SECLLPY

high threshold low threshold hysteresis threshold
(strong edges) (weak edges)

Source: L. Fei-Fei



F*H

Alternate approach

Sigma = 50
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Find peaks of above profile be setting its gradient equal to 0.
What does the resulting edge filter look like?



Boring math

F*H*H where H=[1 -1]
Convolution with filter G =[1 -1]*[1 -1]

GOl=0x—1+1x1+—-1x0=1
Gll=-1-1= -2
G2l=1%04+—-1x—-140x1=1

G=[1-21]



Look for zero-crossings of second derivative

Consider smoothing (Gaussian) + second derivative [1 -2 1]
Sigma = 50

Signal

1 1
0 200 400 600 800 1000 1200 1400 1600

1800 2000

Convolution
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0 200

Zero-crossings of second graph



GGeneralization to 2D

X D
V2 is the Laplacian operator: V2 f — ocf 4 9°)
P P I =21 52

Divergence (“source-ness’ or “sink”-ness) of a gradient of a function (used in fluid mechanics)
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Laplacian of Gaussian (LOG)

1 x2 + y2 _32+

LoG(z,y) = 3 1 552 | € 207

Let ho(u,v) be a 2D Gaussian Laplacian of Gaussian
&

Marr & Hildreth
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Other local features




Other filters: Gaussian derivatives

Go(z)
G1(z)
Ga(z)
G3(z)

]
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2D (Gaussian derivates

Hii(z,y) =Gi(x)G,;(y)
Hi,j,a,b(xv y) — Hij (.CE/, y/)
Hyijab(x,y)=Hij(z",y")

' B a O] [z
y'| |0 b| |y
2’| |a 0] [cos® —sinf] [z
Y - 0 b| |sinf cost | |y




Filter banks

ENNIAE=SNZ=
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The LeungMalik filter bank has a mix of edge, bar and spot filters at multiple scales and orientations. It has a total of 48 filters - 2
Gaussian derivative filters at 6 orientations and 3 scales, 8 Laplacian of Gaussian filters and 4 Gaussian filters.

Gli, j] = Y Y Hlu,v|F[i 4+ u,j + v]

u=—kv=—Fk

= HTF,; = ||H||||F;;||cos8, H,F,; € R*K+D’




Blological motivation

Some visual areas...

retina

From M. Lewicky



J. Physiol. (1959) 148, 574-591

RECEPTIVE FIELDS OF SINGLE NEURONES IN
THE CAT’'S STRIATE CORTEX

By D. H. HUBEL* anp T. N. WIESEL*

From the Wilmer Institute, The Johns Hopkins Hospital and
University, Baltimore, Maryland, U.S.A.

Receptive field
of a cell in the cat’s cortex

Responses to an oriented bar



Other filters: gabors

h(z) = e 2.2 w(x)

w(x) = cos(27 fx)




Gabor filters

1 ! f f/ // ’

It turns out, we can write cosine + sine modulated gabor filters as real and
imaginary parts of a single complex filter (Fourier theory)

http://en.wikipedia.org/wiki/Gabor filter



Gabor energy
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Given an 1image of a grating with a particular stripe width (frequency),
even and odd filters will be sensitive to precise alignment (phase)

Energy = (I * Geyen)® + (I % Gogq)?

(Magnitude of complex filter)



Struclure
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Pyrmids

=
" I

* Big filters (e.g., Gaussians) tend to be smooth, so the output is redundant

* Exploit property that Gaussian*Gaussian = Bigger Gaussian

O' —|—O'b

Proof: https://en.wikipedia.org/wiki/ Sum_of_normallv_dlstrlbuted_random_variables



https://en.wikipedia.org/wiki/Sum_of_normally_distributed_random_variables

Burt & Adelson, 83

GAUSSIAN PYRAMID

R,

g, = IMAGE

g. = REDUCE [g, ]

Fig . A one-dimensional graphic representation of the process which
generates a Gaussian pyramid Each row of dots represents nodes
within a level of the pyramid. The value of each node in the zero
level is just the gray level of a corresponding image pixel. The value
of each node in a high level is the weighted average of node values
in the next lower level. Note that node spacing doubles from level
to level, while the same weighting pattern or “generating kernel” is
used to generate all levels.

H[i]:1—16[1 4 6 4 1



GAUSSIAN PYRAMID

: K
¥ w
0 1 2 3 4 5

Fig. 4. First six levels of the Gaussian pyramid for the "Lady"” image The onginal image, level 0, meusures 257 by 257 pixels and each
higher level array is roughly half the dimensdons of its predecessor. Thus, level 5 measures just 9 by 9 pixels.
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| aplacian pyramid

Store difference between upsampled Gaussian pyramid level and Gaussian pyramid level

Upsampling: insert zeros between pixels and apply Gaussian filter

EXPAND(F)[i] =4 )  HI[ulF[(i+ u)/2]

u=—2



| aplacian pyramio




| aplacian pyramid

- . -
)




| aplacian pvramid

R ¥
lﬂ

Can we directly produce the difference image with a linear filter?



Difference of (Gaussian
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Multiresolution processing

Multi-resolution blending

1 —
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Left pyramid blend Right pyramid
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Horror Photo

© david dmartin (Boston College)



Outline

Logistics
Edges
Filter banks

Efficiency (pyramids, separability, steerability)



Separability

Image of size N2
Filter of size M2

Complexity of filtering?

O(NA2MA2)
Hlu,v] = Hy|u|H,v]
Gli,jl = > Hu, v]F[i +u,j + ]



Steerability

e Steerability - the ability to synthesize a filter of any orientation
from a linear combination of filters at fixed orientaton

‘B-0-
o

W. Freeman, T. Adelson, “The Design
and Use of Sterrable Filters”, IEEE
Trans. Patt, Anal. and Machine Intell.,
vol 13, #9, pp 891-900, Sept 1991




Derivatives of a Gaussian:

S = hy<x,y)=‘9h(x’y )oY o
dy 27O

oh(x,y)  —x .
ox 270

hx(xay) =

An arbitrary orientation can be computed as a linear combination of those two
basis functions:

h,(x,y) =cos(a)h, (x,y)+sin(a)h (x,y)

The representation is “shiftable” on orientation: We can interpolate any other
orientation from a finite set of basis functions.

Freeman & Adelson 92

Question: how can we compute the optimal orientation at each point efficiently?

ho(z,y) = [cos(a) sin(a)]T [Z;Ei: zgl



Special case: second-
derivatives of Gaussians

Steerable basis

Seperable and steerable

¢ & ¢
("211 (_I'-:)_, (12

Gza = 0.9213(22% = 1)~ ) [ | (6) cos*(@)
Gz = 1.843zye~ 1) k(@) —2cos(f)sin(d)
Ga. = 0.9213(22 = e~ +°) | k(@) = sin?(8)

Table 3: X-Y separable basis set and interpolation functions for second derivative of Gaussian. To
create a second derivative of a Gaussian rotated along to an angle 8, use: G5 = (ka(@) Gap + ks(0) G,

+ kA(9) GG2.). The minus sign in k(@) selects the direction of pasitive € 1o be counter-clockwise.



When is this possible”

When filters are smooth 1n “orientation space”
We’ll need some additional math to derive this... ignore for now



| east-squares method of
steerabillity

Shy & Perona, CVPR94

(A,

Stack bank of filters into a matrix
Apply SVD to generate low-rank approximation

¢

—




| east-squares method of
steerabillity

Shy & Perona, CVPR94

(A,

Rank 1 approximation

Hlu,v, k] = Hg|u,v|c|k]
Gli,j, k :S:S: u, v, k| F|i +u,j + v




Box filtering with integral images

http://en.wikipedia.org/wiki/Summed area table
I(x,y) = Z (2, y)

fP -
P
¥ =Yy

Iz,y) =iz, y)+ [z - 1y)+ (z,y—1)—I{z— 1,y —1)

Sum=D-B-C+A

Reduces O(N*M?) to O(N?)



A ook back
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Next class: bag-of-words, linear algebra, frequencies



