
Deep learning

Outline
• Motivation

• Popular networks

• Optimization

• Backprop

• Extensions: multiscale DAGs, recurrence, LSTMs

• Why does it work so well?

(we’ll probably get through 1/2 of this today…)

within-class between-class
activation textures of objects spatial cueing
inhibition NMS mutual exclusion

global expected counts co-occurrence
Table 1. A taxonomy of interactions captured in our model.
Within a single object class, our model can favor typical spa-
tial layouts of objects (people often stand in crowds) while di-
rectly learning how to inhibit overlapping detections in such cases
(NMS). Our model also captures long-range interactions between
objects, such as the constraint that there exists at most one object
instance (counting). Analogous interactions exist between object
classes, including typical spatial relations between objects (bottles
sit on tables), mutual exclusion (dog and cat detectors should not
respond to the same image region), and co-occurrence (couches
and cars do not commonly co-occur).

other (Fig.2). In general, spatial object-object interactions
may be arbitrarily complex and depend on latent informa-
tion which is not readily available from single image. As an
extreme example, studies of proxemics [11], the body spac-
ing and pose of people as they interact, shows that physical
spacing between people depends in complicated ways on
their “social distance”. While such complex interactions are
difficult to encode, we argue there does exist useful infor-
mation that is being ignored by current ad-hoc approaches
to NMS.

NMS is generally described in terms of intra-class in-
hibition, but can be generalized to suppression of overlap-
ping detections between different classes. We refer to this
more general constraint, that two objects cannot occupy the
same 3D volume at the same time, as mutual exclusion. As
seen in a 2D image projection, the exact nature of this con-
straint depends on the object classes. Fig.2(right) shows
an example of ground-truth labelings in the PASCAL VOC
dataset in which strict mutual-exclusion would produce sub-
optimal performance.

Object detections can also serve to enhance rather than
inhibit other detections within a scene. This has been an
area of active research in object recognition over the last
few years [22, 18, 10, 12, 13, 4, 15]. For example, different
object classes may be likely to co-occur in a particular spa-
tial layout. People ride on bikes, bottles rest on tables, and
so on. In contextual cueing, a confident detection of one
object (a bike) provides evidence that increases the likeli-
hood of detecting another object (a person above the bike)
[4, 10, 15]. Contextual cueing can also occur within an ob-
ject category, e.g., a crowd of pedestrians reinforcing each
other’s detection responses. An extreme example of this
phenomena is near-regular texture in which the spatial lo-
cations of nearly identical elements provides a strong prior
on the expected locations of additional elements, lowering
their detection threshold [17].

In Table 1 we outline a simplified taxonomy of different
types of object-object interactions, both positive and nega-

Non−Maxima Suppression Mutual Exclusion

Figure 2. Our novel contributions include the ability to learn in-
hibitory intra-class constraints (NMS) and inhibitory inter-class
constraints (Mutual Exclusion) in a single unified model along
with contextual cuing and spatial co-occurrence. Naive methods
for NMS or mutual exclusion may fail for objects that tend to
overlap themselves (left) and other objects (right). In contrast,
our framework learns how best to enforce such constraints from
training data. We formulate the tasks of NMS and Mutual Exclu-
sion using the language of structured prediction. This allows us
to compute an optimal model by minimizing a convex objective
function.

tive, within and between classes. The contribution of this
paper is a single model that incorporates all interactions
from Table 1 through the framework of structured predic-
tion. Rather than returning a binary label for a each image
window, our model simultaneously predicts a set of detec-
tions for multiple objects from multiple classes over the en-
tire image. Given training images with ground-truth object
locations, we show how to formulate parameter estimation
as a convex max-margin learning problem. We employ the
cutting plane algorithm of [14] to efficiently learn globally
optimal parameters from thousands of training images.

In the sections that follow we formulate the structured
output model in detail, describe how to perform inference
and learning, and detail the optimization procedures used
to efficiently learn parameters. We show state-of-the-art re-
sults on the PASCAL 2007 VOC benchmark[7], indicating
the benefits of learning a global model that encapsulates the
layout statistics of multiple objects classes in real images.
We conclude with a discussion of related work and future
directions.

2. Model
We describe a model for capturing interactions across

a family of object detectors. To do so, we will explicitly
represent an image as a collection of overlapping windows
at various scales. The location of the ith window is given
by its center and scale, written as li = (x, y, s). The col-
lection of M windows are precisely the regions scored by
a scanning-window detector. Write xi for the features ex-
tracted from window i, for example, a histogram of gradient
features [6]. The entire image can then be represented as the
collection of feature vectors X = {xi : i = 1 . . . M}

Assume we have K object models. We write yi �
{0 . . . K} for the label of the ith window, where the 0 la-

Parts to the rescue!

−10 −5 0 5 10

−10

−5

0

5

10

x

y

−10 −5 0 5 10

−10

−5

0

5

10

x

y

−5 0 5

−5

0

5

x

y

−5 0 5

−5

0

5

x

y

−5 0 5

−6

−4

−2

0

2

4

6

x

y

Left knee wrt hip Left foot wrt knee Left hand wrt elbowNeck wrt Head Left elbow wrt shoulder

Figure 3: We take a “data-driven” approach to orientation-modeling by clustering the relative locations of parts with respect
to their parents. These clusters are used to generate mixture labels for parts during training. For example, heads tend to
be upright, and so the associated mixture models focus on upright orientations. Because hands articulate to a large degree,
mixture models for the hand are spread apart to capture a larger variety of relative orientations.

������ ������ ������ �

�
Figure 5: A visualization of our full-body model for T = 4, trained on the Parse dataset. Note that we show them as 4
separate models, but we emphasize that our representation allows for the composition of any part type with any other part
type, where the score associated with each combination decomposes into a tree (and so is efficient to search over) and is
learned from training data.

Image Parse Testset
Method Torso Head Upper legs Lower legs Upper arms Lower arms Total
R Gradient[?] 39.5 21.4 20.7 20.7 12.7 11.7 19.2
R Gradient+RGB[?] 52.1 37.5 31.0 29.0 17.5 13.6 27.2
ARS HOG [?] 81.4 75.6 63.2 55.1 47.6 31.7 55.2
JE HOG [?] 73.2 62.4 58.6 52.2 47.8 32.5 51.8
JE HOG+RGB [?] 77.6 68.8 61.5 54.9 53.2 39.3 56.4
SNH ROG [?] 54.8
SNH ROG+RGB [?] 91.2 76.6 71.5 64.9 50.0 34.2 60.9
Our Model HOG 89.8 87.8 78.5 69.0 64.4 36.1 67.4

Table 1: We compare our model to all previous published results on the Parse dataset, using the standard criteria of PCP [?].
Our total performance of 67.4% compares favorably to the best previous result of 60.9%. We also beat all previous results
on a per-part basis, except for torso and lower arm detection, for which we are second. [?] uses the same HOG feature set as
us, but embedded in a classic articulated pictorial structure. The relative improvement of our approach is 20%, indicating the
quality of our flexible part-mixture representation.

Why?

Recognition through reconstruction:

Sharing + synthesis: zero & one-shot learning for tails

latent-variable classification

 Central challenge: part discovery

Latent hierarchical models

S(x, z) =
X

i2V

wi · �(x, zi) +
X

ij2E

wij · (zi, zj)

Can we write as a set of templates? S(x, z) = w(z) · �(x)

Shape models
S(x, z) =

X

i2V

wi · �(x, zi) +
X

ij2E

wij · (zi, zj)

S(x, z) = w(z) · �(x) + b(z)

Inference: maxz S(x,z)
implement with convolutions + max pooling (c.f. distance transform)

7

+

x

xx

...

...

...

model

response of root filter

transformed responses

response of part filters

feature map feature map at twice the resolution

combined score of

root locationslow value high value

color encoding of filter

response values

Fig. 4. The matching process at one scale. Responses from the root and part filters are computed a different
resolutions in the feature pyramid. The transformed responses are combined to yield a final score for each root
location. We show the responses and transformed responses for the “head” and “right shoulder” parts. Note how the
“head” filter is more discriminative. The combined scores clearly show two good hypothesis for the object at this scale.

7

+

x

xx

...

...

...

model

response of root filter

transformed responses

response of part filters

feature map feature map at twice the resolution

combined score of

root locationslow value high value

color encoding of filter

response values

Fig. 4. The matching process at one scale. Responses from the root and part filters are computed a different
resolutions in the feature pyramid. The transformed responses are combined to yield a final score for each root
location. We show the responses and transformed responses for the “head” and “right shoulder” parts. Note how the
“head” filter is more discriminative. The combined scores clearly show two good hypothesis for the object at this scale.

4

(a) (b) (c)

Fig. 1. Detections obtained with a single component person model. The model is defined by a coarse root filter (a), several

higher resolution part filters (b) and a spatial model for the location of each part relative to the root (c). The filters specify

weights for histogram of oriented gradients features. Their visualization show the positive weights at different orientations. The

visualization of the spatial models reflects the “cost” of placing the center of a part at different locations relative to the root.

To train models using partially labeled data we use a latent variable formulation of MI-SVM

[3] that we call latent SVM (LSVM). In a latent SVM each example x is scored by a function

of the following form,

f�(x) = max
z�Z(x)

� · �(x, z). (1)

Here � is a vector of model parameters, z are latent values, and �(x, z) is a feature vector.

In the case of one of our star models � is the concatenation of the root filter, the part filters,

and deformation cost weights, z is a specification of the object configuration, and �(x, z) is a

concatenation of subwindows from a feature pyramid and part deformation features.

We note that (1) can handle very general forms of latent information. For example, z could

specify a derivation under a rich visual grammar.

Our second class of models represents each object category by a mixture of star models.

The score of one of our mixture models at a given position and scale is the maximum over

components, of the score of that component model at the given location. In this case the latent

information, z, specifies a component label and a configuration for that component. Figure 2

shows a mixture model for the bicycle category.

To obtain high performance using discriminative training it is often important to use large

training sets. In the case of object detection the training problem is highly unbalanced because

there is vastly more background than objects. This motivates a process of searching through

the background to find a relatively small number of potential false positives. A methodology of

June 1, 2009 DRAFT

4

(a) (b) (c)

Fig. 1. Detections obtained with a single component person model. The model is defined by a coarse root filter (a), several

higher resolution part filters (b) and a spatial model for the location of each part relative to the root (c). The filters specify

weights for histogram of oriented gradients features. Their visualization show the positive weights at different orientations. The

visualization of the spatial models reflects the “cost” of placing the center of a part at different locations relative to the root.

To train models using partially labeled data we use a latent variable formulation of MI-SVM

[3] that we call latent SVM (LSVM). In a latent SVM each example x is scored by a function

of the following form,

f�(x) = max
z�Z(x)

� · �(x, z). (1)

Here � is a vector of model parameters, z are latent values, and �(x, z) is a feature vector.

In the case of one of our star models � is the concatenation of the root filter, the part filters,

and deformation cost weights, z is a specification of the object configuration, and �(x, z) is a

concatenation of subwindows from a feature pyramid and part deformation features.

We note that (1) can handle very general forms of latent information. For example, z could

specify a derivation under a rich visual grammar.

Our second class of models represents each object category by a mixture of star models.

The score of one of our mixture models at a given position and scale is the maximum over

components, of the score of that component model at the given location. In this case the latent

information, z, specifies a component label and a configuration for that component. Figure 2

shows a mixture model for the bicycle category.

To obtain high performance using discriminative training it is often important to use large

training sets. In the case of object detection the training problem is highly unbalanced because

there is vastly more background than objects. This motivates a process of searching through

the background to find a relatively small number of potential false positives. A methodology of

June 1, 2009 DRAFT

4

(a) (b) (c)

Fig. 1. Detections obtained with a single component person model. The model is defined by a coarse root filter (a), several

higher resolution part filters (b) and a spatial model for the location of each part relative to the root (c). The filters specify

weights for histogram of oriented gradients features. Their visualization show the positive weights at different orientations. The

visualization of the spatial models reflects the “cost” of placing the center of a part at different locations relative to the root.

To train models using partially labeled data we use a latent variable formulation of MI-SVM

[3] that we call latent SVM (LSVM). In a latent SVM each example x is scored by a function

of the following form,

f�(x) = max
z�Z(x)

� · �(x, z). (1)

Here � is a vector of model parameters, z are latent values, and �(x, z) is a feature vector.

In the case of one of our star models � is the concatenation of the root filter, the part filters,

and deformation cost weights, z is a specification of the object configuration, and �(x, z) is a

concatenation of subwindows from a feature pyramid and part deformation features.

We note that (1) can handle very general forms of latent information. For example, z could

specify a derivation under a rich visual grammar.

Our second class of models represents each object category by a mixture of star models.

The score of one of our mixture models at a given position and scale is the maximum over

components, of the score of that component model at the given location. In this case the latent

information, z, specifies a component label and a configuration for that component. Figure 2

shows a mixture model for the bicycle category.

To obtain high performance using discriminative training it is often important to use large

training sets. In the case of object detection the training problem is highly unbalanced because

there is vastly more background than objects. This motivates a process of searching through

the background to find a relatively small number of potential false positives. A methodology of

June 1, 2009 DRAFT

4

(a) (b) (c)

Fig. 1. Detections obtained with a single component person model. The model is defined by a coarse root filter (a), several

higher resolution part filters (b) and a spatial model for the location of each part relative to the root (c). The filters specify

weights for histogram of oriented gradients features. Their visualization show the positive weights at different orientations. The

visualization of the spatial models reflects the “cost” of placing the center of a part at different locations relative to the root.

To train models using partially labeled data we use a latent variable formulation of MI-SVM

[3] that we call latent SVM (LSVM). In a latent SVM each example x is scored by a function

of the following form,

f�(x) = max
z�Z(x)

� · �(x, z). (1)

Here � is a vector of model parameters, z are latent values, and �(x, z) is a feature vector.

In the case of one of our star models � is the concatenation of the root filter, the part filters,

and deformation cost weights, z is a specification of the object configuration, and �(x, z) is a

concatenation of subwindows from a feature pyramid and part deformation features.

We note that (1) can handle very general forms of latent information. For example, z could

specify a derivation under a rich visual grammar.

Our second class of models represents each object category by a mixture of star models.

The score of one of our mixture models at a given position and scale is the maximum over

components, of the score of that component model at the given location. In this case the latent

information, z, specifies a component label and a configuration for that component. Figure 2

shows a mixture model for the bicycle category.

To obtain high performance using discriminative training it is often important to use large

training sets. In the case of object detection the training problem is highly unbalanced because

there is vastly more background than objects. This motivates a process of searching through

the background to find a relatively small number of potential false positives. A methodology of

June 1, 2009 DRAFT

4

(a) (b) (c)

Fig. 1. Detections obtained with a single component person model. The model is defined by a coarse root filter (a), several

higher resolution part filters (b) and a spatial model for the location of each part relative to the root (c). The filters specify

weights for histogram of oriented gradients features. Their visualization show the positive weights at different orientations. The

visualization of the spatial models reflects the “cost” of placing the center of a part at different locations relative to the root.

To train models using partially labeled data we use a latent variable formulation of MI-SVM

[3] that we call latent SVM (LSVM). In a latent SVM each example x is scored by a function

of the following form,

f�(x) = max
z�Z(x)

� · �(x, z). (1)

Here � is a vector of model parameters, z are latent values, and �(x, z) is a feature vector.

In the case of one of our star models � is the concatenation of the root filter, the part filters,

and deformation cost weights, z is a specification of the object configuration, and �(x, z) is a

concatenation of subwindows from a feature pyramid and part deformation features.

We note that (1) can handle very general forms of latent information. For example, z could

specify a derivation under a rich visual grammar.

Our second class of models represents each object category by a mixture of star models.

The score of one of our mixture models at a given position and scale is the maximum over

components, of the score of that component model at the given location. In this case the latent

information, z, specifies a component label and a configuration for that component. Figure 2

shows a mixture model for the bicycle category.

To obtain high performance using discriminative training it is often important to use large

training sets. In the case of object detection the training problem is highly unbalanced because

there is vastly more background than objects. This motivates a process of searching through

the background to find a relatively small number of potential false positives. A methodology of

June 1, 2009 DRAFT

4

(a) (b) (c)

Fig. 1. Detections obtained with a single component person model. The model is defined by a coarse root filter (a), several

higher resolution part filters (b) and a spatial model for the location of each part relative to the root (c). The filters specify

weights for histogram of oriented gradients features. Their visualization show the positive weights at different orientations. The

visualization of the spatial models reflects the “cost” of placing the center of a part at different locations relative to the root.

To train models using partially labeled data we use a latent variable formulation of MI-SVM

[3] that we call latent SVM (LSVM). In a latent SVM each example x is scored by a function

of the following form,

f�(x) = max
z�Z(x)

� · �(x, z). (1)

Here � is a vector of model parameters, z are latent values, and �(x, z) is a feature vector.

In the case of one of our star models � is the concatenation of the root filter, the part filters,

and deformation cost weights, z is a specification of the object configuration, and �(x, z) is a

concatenation of subwindows from a feature pyramid and part deformation features.

We note that (1) can handle very general forms of latent information. For example, z could

specify a derivation under a rich visual grammar.

Our second class of models represents each object category by a mixture of star models.

The score of one of our mixture models at a given position and scale is the maximum over

components, of the score of that component model at the given location. In this case the latent

information, z, specifies a component label and a configuration for that component. Figure 2

shows a mixture model for the bicycle category.

To obtain high performance using discriminative training it is often important to use large

training sets. In the case of object detection the training problem is highly unbalanced because

there is vastly more background than objects. This motivates a process of searching through

the background to find a relatively small number of potential false positives. A methodology of

June 1, 2009 DRAFT

7

+

x

xx

...

...

...

model

response of root filter

transformed responses

response of part filters

feature map feature map at twice the resolution

combined score of

root locationslow value high value

color encoding of filter

response values

Fig. 4. The matching process at one scale. Responses from the root and part filters are computed a different
resolutions in the feature pyramid. The transformed responses are combined to yield a final score for each root
location. We show the responses and transformed responses for the “head” and “right shoulder” parts. Note how the
“head” filter is more discriminative. The combined scores clearly show two good hypothesis for the object at this scale.

7

+

x

xx

...

...

...

model

response of root filter

transformed responses

response of part filters

feature map feature map at twice the resolution

combined score of

root locationslow value high value

color encoding of filter

response values

Fig. 4. The matching process at one scale. Responses from the root and part filters are computed a different
resolutions in the feature pyramid. The transformed responses are combined to yield a final score for each root
location. We show the responses and transformed responses for the “head” and “right shoulder” parts. Note how the
“head” filter is more discriminative. The combined scores clearly show two good hypothesis for the object at this scale.

7

+

x

xx

...

...

...

model

response of root filter

transformed responses

response of part filters

feature map feature map at twice the resolution

combined score of

root locationslow value high value

color encoding of filter

response values

Fig. 4. The matching process at one scale. Responses from the root and part filters are computed a different
resolutions in the feature pyramid. The transformed responses are combined to yield a final score for each root
location. We show the responses and transformed responses for the “head” and “right shoulder” parts. Note how the
“head” filter is more discriminative. The combined scores clearly show two good hypothesis for the object at this scale.

7

+

x

xx

...

...

...

model

response of root filter

transformed responses

response of part filters

feature map feature map at twice the resolution

combined score of

root locationslow value high value

color encoding of filter

response values

Fig. 4. The matching process at one scale. Responses from the root and part filters are computed a different
resolutions in the feature pyramid. The transformed responses are combined to yield a final score for each root
location. We show the responses and transformed responses for the “head” and “right shoulder” parts. Note how the
“head” filter is more discriminative. The combined scores clearly show two good hypothesis for the object at this scale.

…
conv

max
pool

conv

add addmax
pool

4

(a) (b) (c)

Fig. 1. Detections obtained with a single component person model. The model is defined by a coarse root filter (a), several

higher resolution part filters (b) and a spatial model for the location of each part relative to the root (c). The filters specify

weights for histogram of oriented gradients features. Their visualization show the positive weights at different orientations. The

visualization of the spatial models reflects the “cost” of placing the center of a part at different locations relative to the root.

To train models using partially labeled data we use a latent variable formulation of MI-SVM

[3] that we call latent SVM (LSVM). In a latent SVM each example x is scored by a function

of the following form,

f�(x) = max
z�Z(x)

� · �(x, z). (1)

Here � is a vector of model parameters, z are latent values, and �(x, z) is a feature vector.

In the case of one of our star models � is the concatenation of the root filter, the part filters,

and deformation cost weights, z is a specification of the object configuration, and �(x, z) is a

concatenation of subwindows from a feature pyramid and part deformation features.

We note that (1) can handle very general forms of latent information. For example, z could

specify a derivation under a rich visual grammar.

Our second class of models represents each object category by a mixture of star models.

The score of one of our mixture models at a given position and scale is the maximum over

components, of the score of that component model at the given location. In this case the latent

information, z, specifies a component label and a configuration for that component. Figure 2

shows a mixture model for the bicycle category.

To obtain high performance using discriminative training it is often important to use large

training sets. In the case of object detection the training problem is highly unbalanced because

there is vastly more background than objects. This motivates a process of searching through

the background to find a relatively small number of potential false positives. A methodology of

June 1, 2009 DRAFT

4

(a) (b) (c)

Fig. 1. Detections obtained with a single component person model. The model is defined by a coarse root filter (a), several

higher resolution part filters (b) and a spatial model for the location of each part relative to the root (c). The filters specify

weights for histogram of oriented gradients features. Their visualization show the positive weights at different orientations. The

visualization of the spatial models reflects the “cost” of placing the center of a part at different locations relative to the root.

To train models using partially labeled data we use a latent variable formulation of MI-SVM

[3] that we call latent SVM (LSVM). In a latent SVM each example x is scored by a function

of the following form,

f�(x) = max
z�Z(x)

� · �(x, z). (1)

Here � is a vector of model parameters, z are latent values, and �(x, z) is a feature vector.

In the case of one of our star models � is the concatenation of the root filter, the part filters,

and deformation cost weights, z is a specification of the object configuration, and �(x, z) is a

concatenation of subwindows from a feature pyramid and part deformation features.

We note that (1) can handle very general forms of latent information. For example, z could

specify a derivation under a rich visual grammar.

Our second class of models represents each object category by a mixture of star models.

The score of one of our mixture models at a given position and scale is the maximum over

components, of the score of that component model at the given location. In this case the latent

information, z, specifies a component label and a configuration for that component. Figure 2

shows a mixture model for the bicycle category.

To obtain high performance using discriminative training it is often important to use large

training sets. In the case of object detection the training problem is highly unbalanced because

there is vastly more background than objects. This motivates a process of searching through

the background to find a relatively small number of potential false positives. A methodology of

June 1, 2009 DRAFT

4

(a) (b) (c)

Fig. 1. Detections obtained with a single component person model. The model is defined by a coarse root filter (a), several

higher resolution part filters (b) and a spatial model for the location of each part relative to the root (c). The filters specify

weights for histogram of oriented gradients features. Their visualization show the positive weights at different orientations. The

visualization of the spatial models reflects the “cost” of placing the center of a part at different locations relative to the root.

To train models using partially labeled data we use a latent variable formulation of MI-SVM

[3] that we call latent SVM (LSVM). In a latent SVM each example x is scored by a function

of the following form,

f�(x) = max
z�Z(x)

� · �(x, z). (1)

Here � is a vector of model parameters, z are latent values, and �(x, z) is a feature vector.

In the case of one of our star models � is the concatenation of the root filter, the part filters,

and deformation cost weights, z is a specification of the object configuration, and �(x, z) is a

concatenation of subwindows from a feature pyramid and part deformation features.

We note that (1) can handle very general forms of latent information. For example, z could

specify a derivation under a rich visual grammar.

Our second class of models represents each object category by a mixture of star models.

The score of one of our mixture models at a given position and scale is the maximum over

components, of the score of that component model at the given location. In this case the latent

information, z, specifies a component label and a configuration for that component. Figure 2

shows a mixture model for the bicycle category.

To obtain high performance using discriminative training it is often important to use large

training sets. In the case of object detection the training problem is highly unbalanced because

there is vastly more background than objects. This motivates a process of searching through

the background to find a relatively small number of potential false positives. A methodology of

June 1, 2009 DRAFT

4

(a) (b) (c)

Fig. 1. Detections obtained with a single component person model. The model is defined by a coarse root filter (a), several

higher resolution part filters (b) and a spatial model for the location of each part relative to the root (c). The filters specify

weights for histogram of oriented gradients features. Their visualization show the positive weights at different orientations. The

visualization of the spatial models reflects the “cost” of placing the center of a part at different locations relative to the root.

To train models using partially labeled data we use a latent variable formulation of MI-SVM

[3] that we call latent SVM (LSVM). In a latent SVM each example x is scored by a function

of the following form,

f�(x) = max
z�Z(x)

� · �(x, z). (1)

Here � is a vector of model parameters, z are latent values, and �(x, z) is a feature vector.

In the case of one of our star models � is the concatenation of the root filter, the part filters,

and deformation cost weights, z is a specification of the object configuration, and �(x, z) is a

concatenation of subwindows from a feature pyramid and part deformation features.

We note that (1) can handle very general forms of latent information. For example, z could

specify a derivation under a rich visual grammar.

Our second class of models represents each object category by a mixture of star models.

The score of one of our mixture models at a given position and scale is the maximum over

components, of the score of that component model at the given location. In this case the latent

information, z, specifies a component label and a configuration for that component. Figure 2

shows a mixture model for the bicycle category.

To obtain high performance using discriminative training it is often important to use large

training sets. In the case of object detection the training problem is highly unbalanced because

there is vastly more background than objects. This motivates a process of searching through

the background to find a relatively small number of potential false positives. A methodology of

June 1, 2009 DRAFT

4

(a) (b) (c)

Fig. 1. Detections obtained with a single component person model. The model is defined by a coarse root filter (a), several

higher resolution part filters (b) and a spatial model for the location of each part relative to the root (c). The filters specify

weights for histogram of oriented gradients features. Their visualization show the positive weights at different orientations. The

visualization of the spatial models reflects the “cost” of placing the center of a part at different locations relative to the root.

To train models using partially labeled data we use a latent variable formulation of MI-SVM

[3] that we call latent SVM (LSVM). In a latent SVM each example x is scored by a function

of the following form,

f�(x) = max
z�Z(x)

� · �(x, z). (1)

Here � is a vector of model parameters, z are latent values, and �(x, z) is a feature vector.

In the case of one of our star models � is the concatenation of the root filter, the part filters,

and deformation cost weights, z is a specification of the object configuration, and �(x, z) is a

concatenation of subwindows from a feature pyramid and part deformation features.

We note that (1) can handle very general forms of latent information. For example, z could

specify a derivation under a rich visual grammar.

Our second class of models represents each object category by a mixture of star models.

The score of one of our mixture models at a given position and scale is the maximum over

components, of the score of that component model at the given location. In this case the latent

information, z, specifies a component label and a configuration for that component. Figure 2

shows a mixture model for the bicycle category.

To obtain high performance using discriminative training it is often important to use large

training sets. In the case of object detection the training problem is highly unbalanced because

there is vastly more background than objects. This motivates a process of searching through

the background to find a relatively small number of potential false positives. A methodology of

June 1, 2009 DRAFT

4

(a) (b) (c)

Fig. 1. Detections obtained with a single component person model. The model is defined by a coarse root filter (a), several

higher resolution part filters (b) and a spatial model for the location of each part relative to the root (c). The filters specify

weights for histogram of oriented gradients features. Their visualization show the positive weights at different orientations. The

visualization of the spatial models reflects the “cost” of placing the center of a part at different locations relative to the root.

To train models using partially labeled data we use a latent variable formulation of MI-SVM

[3] that we call latent SVM (LSVM). In a latent SVM each example x is scored by a function

of the following form,

f�(x) = max
z�Z(x)

� · �(x, z). (1)

Here � is a vector of model parameters, z are latent values, and �(x, z) is a feature vector.

In the case of one of our star models � is the concatenation of the root filter, the part filters,

and deformation cost weights, z is a specification of the object configuration, and �(x, z) is a

concatenation of subwindows from a feature pyramid and part deformation features.

We note that (1) can handle very general forms of latent information. For example, z could

specify a derivation under a rich visual grammar.

Our second class of models represents each object category by a mixture of star models.

The score of one of our mixture models at a given position and scale is the maximum over

components, of the score of that component model at the given location. In this case the latent

information, z, specifies a component label and a configuration for that component. Figure 2

shows a mixture model for the bicycle category.

To obtain high performance using discriminative training it is often important to use large

training sets. In the case of object detection the training problem is highly unbalanced because

there is vastly more background than objects. This motivates a process of searching through

the background to find a relatively small number of potential false positives. A methodology of

June 1, 2009 DRAFT

4

(a) (b) (c)

Fig. 1. Detections obtained with a single component person model. The model is defined by a coarse root filter (a), several

higher resolution part filters (b) and a spatial model for the location of each part relative to the root (c). The filters specify

weights for histogram of oriented gradients features. Their visualization show the positive weights at different orientations. The

visualization of the spatial models reflects the “cost” of placing the center of a part at different locations relative to the root.

To train models using partially labeled data we use a latent variable formulation of MI-SVM

[3] that we call latent SVM (LSVM). In a latent SVM each example x is scored by a function

of the following form,

f�(x) = max
z�Z(x)

� · �(x, z). (1)

Here � is a vector of model parameters, z are latent values, and �(x, z) is a feature vector.

In the case of one of our star models � is the concatenation of the root filter, the part filters,

and deformation cost weights, z is a specification of the object configuration, and �(x, z) is a

concatenation of subwindows from a feature pyramid and part deformation features.

We note that (1) can handle very general forms of latent information. For example, z could

specify a derivation under a rich visual grammar.

Our second class of models represents each object category by a mixture of star models.

The score of one of our mixture models at a given position and scale is the maximum over

components, of the score of that component model at the given location. In this case the latent

information, z, specifies a component label and a configuration for that component. Figure 2

shows a mixture model for the bicycle category.

To obtain high performance using discriminative training it is often important to use large

training sets. In the case of object detection the training problem is highly unbalanced because

there is vastly more background than objects. This motivates a process of searching through

the background to find a relatively small number of potential false positives. A methodology of

June 1, 2009 DRAFT

4

(a) (b) (c)

Fig. 1. Detections obtained with a single component person model. The model is defined by a coarse root filter (a), several

higher resolution part filters (b) and a spatial model for the location of each part relative to the root (c). The filters specify

weights for histogram of oriented gradients features. Their visualization show the positive weights at different orientations. The

visualization of the spatial models reflects the “cost” of placing the center of a part at different locations relative to the root.

To train models using partially labeled data we use a latent variable formulation of MI-SVM

[3] that we call latent SVM (LSVM). In a latent SVM each example x is scored by a function

of the following form,

f�(x) = max
z�Z(x)

� · �(x, z). (1)

Here � is a vector of model parameters, z are latent values, and �(x, z) is a feature vector.

In the case of one of our star models � is the concatenation of the root filter, the part filters,

and deformation cost weights, z is a specification of the object configuration, and �(x, z) is a

concatenation of subwindows from a feature pyramid and part deformation features.

We note that (1) can handle very general forms of latent information. For example, z could

specify a derivation under a rich visual grammar.

Our second class of models represents each object category by a mixture of star models.

The score of one of our mixture models at a given position and scale is the maximum over

components, of the score of that component model at the given location. In this case the latent

information, z, specifies a component label and a configuration for that component. Figure 2

shows a mixture model for the bicycle category.

To obtain high performance using discriminative training it is often important to use large

training sets. In the case of object detection the training problem is highly unbalanced because

there is vastly more background than objects. This motivates a process of searching through

the background to find a relatively small number of potential false positives. A methodology of

June 1, 2009 DRAFT

4

(a) (b) (c)

Fig. 1. Detections obtained with a single component person model. The model is defined by a coarse root filter (a), several

higher resolution part filters (b) and a spatial model for the location of each part relative to the root (c). The filters specify

weights for histogram of oriented gradients features. Their visualization show the positive weights at different orientations. The

visualization of the spatial models reflects the “cost” of placing the center of a part at different locations relative to the root.

To train models using partially labeled data we use a latent variable formulation of MI-SVM

[3] that we call latent SVM (LSVM). In a latent SVM each example x is scored by a function

of the following form,

f�(x) = max
z�Z(x)

� · �(x, z). (1)

Here � is a vector of model parameters, z are latent values, and �(x, z) is a feature vector.

In the case of one of our star models � is the concatenation of the root filter, the part filters,

and deformation cost weights, z is a specification of the object configuration, and �(x, z) is a

concatenation of subwindows from a feature pyramid and part deformation features.

We note that (1) can handle very general forms of latent information. For example, z could

specify a derivation under a rich visual grammar.

Our second class of models represents each object category by a mixture of star models.

The score of one of our mixture models at a given position and scale is the maximum over

components, of the score of that component model at the given location. In this case the latent

information, z, specifies a component label and a configuration for that component. Figure 2

shows a mixture model for the bicycle category.

To obtain high performance using discriminative training it is often important to use large

training sets. In the case of object detection the training problem is highly unbalanced because

there is vastly more background than objects. This motivates a process of searching through

the background to find a relatively small number of potential false positives. A methodology of

June 1, 2009 DRAFT

4

(a) (b) (c)

Fig. 1. Detections obtained with a single component person model. The model is defined by a coarse root filter (a), several

higher resolution part filters (b) and a spatial model for the location of each part relative to the root (c). The filters specify

weights for histogram of oriented gradients features. Their visualization show the positive weights at different orientations. The

visualization of the spatial models reflects the “cost” of placing the center of a part at different locations relative to the root.

To train models using partially labeled data we use a latent variable formulation of MI-SVM

[3] that we call latent SVM (LSVM). In a latent SVM each example x is scored by a function

of the following form,

f�(x) = max
z�Z(x)

� · �(x, z). (1)

Here � is a vector of model parameters, z are latent values, and �(x, z) is a feature vector.

In the case of one of our star models � is the concatenation of the root filter, the part filters,

and deformation cost weights, z is a specification of the object configuration, and �(x, z) is a

concatenation of subwindows from a feature pyramid and part deformation features.

We note that (1) can handle very general forms of latent information. For example, z could

specify a derivation under a rich visual grammar.

Our second class of models represents each object category by a mixture of star models.

The score of one of our mixture models at a given position and scale is the maximum over

components, of the score of that component model at the given location. In this case the latent

information, z, specifies a component label and a configuration for that component. Figure 2

shows a mixture model for the bicycle category.

To obtain high performance using discriminative training it is often important to use large

training sets. In the case of object detection the training problem is highly unbalanced because

there is vastly more background than objects. This motivates a process of searching through

the background to find a relatively small number of potential false positives. A methodology of

June 1, 2009 DRAFT

4

(a) (b) (c)

Fig. 1. Detections obtained with a single component person model. The model is defined by a coarse root filter (a), several

higher resolution part filters (b) and a spatial model for the location of each part relative to the root (c). The filters specify

weights for histogram of oriented gradients features. Their visualization show the positive weights at different orientations. The

visualization of the spatial models reflects the “cost” of placing the center of a part at different locations relative to the root.

To train models using partially labeled data we use a latent variable formulation of MI-SVM

[3] that we call latent SVM (LSVM). In a latent SVM each example x is scored by a function

of the following form,

f�(x) = max
z�Z(x)

� · �(x, z). (1)

Here � is a vector of model parameters, z are latent values, and �(x, z) is a feature vector.

In the case of one of our star models � is the concatenation of the root filter, the part filters,

and deformation cost weights, z is a specification of the object configuration, and �(x, z) is a

concatenation of subwindows from a feature pyramid and part deformation features.

We note that (1) can handle very general forms of latent information. For example, z could

specify a derivation under a rich visual grammar.

Our second class of models represents each object category by a mixture of star models.

The score of one of our mixture models at a given position and scale is the maximum over

components, of the score of that component model at the given location. In this case the latent

information, z, specifies a component label and a configuration for that component. Figure 2

shows a mixture model for the bicycle category.

To obtain high performance using discriminative training it is often important to use large

training sets. In the case of object detection the training problem is highly unbalanced because

there is vastly more background than objects. This motivates a process of searching through

the background to find a relatively small number of potential false positives. A methodology of

June 1, 2009 DRAFT

4

(a) (b) (c)

Fig. 1. Detections obtained with a single component person model. The model is defined by a coarse root filter (a), several

higher resolution part filters (b) and a spatial model for the location of each part relative to the root (c). The filters specify

weights for histogram of oriented gradients features. Their visualization show the positive weights at different orientations. The

visualization of the spatial models reflects the “cost” of placing the center of a part at different locations relative to the root.

To train models using partially labeled data we use a latent variable formulation of MI-SVM

[3] that we call latent SVM (LSVM). In a latent SVM each example x is scored by a function

of the following form,

f�(x) = max
z�Z(x)

� · �(x, z). (1)

Here � is a vector of model parameters, z are latent values, and �(x, z) is a feature vector.

In the case of one of our star models � is the concatenation of the root filter, the part filters,

and deformation cost weights, z is a specification of the object configuration, and �(x, z) is a

concatenation of subwindows from a feature pyramid and part deformation features.

We note that (1) can handle very general forms of latent information. For example, z could

specify a derivation under a rich visual grammar.

Our second class of models represents each object category by a mixture of star models.

The score of one of our mixture models at a given position and scale is the maximum over

components, of the score of that component model at the given location. In this case the latent

information, z, specifies a component label and a configuration for that component. Figure 2

shows a mixture model for the bicycle category.

To obtain high performance using discriminative training it is often important to use large

training sets. In the case of object detection the training problem is highly unbalanced because

there is vastly more background than objects. This motivates a process of searching through

the background to find a relatively small number of potential false positives. A methodology of

June 1, 2009 DRAFT

4

(a) (b) (c)

Fig. 1. Detections obtained with a single component person model. The model is defined by a coarse root filter (a), several

higher resolution part filters (b) and a spatial model for the location of each part relative to the root (c). The filters specify

weights for histogram of oriented gradients features. Their visualization show the positive weights at different orientations. The

visualization of the spatial models reflects the “cost” of placing the center of a part at different locations relative to the root.

To train models using partially labeled data we use a latent variable formulation of MI-SVM

[3] that we call latent SVM (LSVM). In a latent SVM each example x is scored by a function

of the following form,

f�(x) = max
z�Z(x)

� · �(x, z). (1)

Here � is a vector of model parameters, z are latent values, and �(x, z) is a feature vector.

In the case of one of our star models � is the concatenation of the root filter, the part filters,

and deformation cost weights, z is a specification of the object configuration, and �(x, z) is a

concatenation of subwindows from a feature pyramid and part deformation features.

We note that (1) can handle very general forms of latent information. For example, z could

specify a derivation under a rich visual grammar.

Our second class of models represents each object category by a mixture of star models.

The score of one of our mixture models at a given position and scale is the maximum over

components, of the score of that component model at the given location. In this case the latent

information, z, specifies a component label and a configuration for that component. Figure 2

shows a mixture model for the bicycle category.

To obtain high performance using discriminative training it is often important to use large

training sets. In the case of object detection the training problem is highly unbalanced because

there is vastly more background than objects. This motivates a process of searching through

the background to find a relatively small number of potential false positives. A methodology of

June 1, 2009 DRAFT

4

(a) (b) (c)

Fig. 1. Detections obtained with a single component person model. The model is defined by a coarse root filter (a), several

higher resolution part filters (b) and a spatial model for the location of each part relative to the root (c). The filters specify

weights for histogram of oriented gradients features. Their visualization show the positive weights at different orientations. The

visualization of the spatial models reflects the “cost” of placing the center of a part at different locations relative to the root.

To train models using partially labeled data we use a latent variable formulation of MI-SVM

[3] that we call latent SVM (LSVM). In a latent SVM each example x is scored by a function

of the following form,

f�(x) = max
z�Z(x)

� · �(x, z). (1)

Here � is a vector of model parameters, z are latent values, and �(x, z) is a feature vector.

In the case of one of our star models � is the concatenation of the root filter, the part filters,

and deformation cost weights, z is a specification of the object configuration, and �(x, z) is a

concatenation of subwindows from a feature pyramid and part deformation features.

We note that (1) can handle very general forms of latent information. For example, z could

specify a derivation under a rich visual grammar.

Our second class of models represents each object category by a mixture of star models.

The score of one of our mixture models at a given position and scale is the maximum over

components, of the score of that component model at the given location. In this case the latent

information, z, specifies a component label and a configuration for that component. Figure 2

shows a mixture model for the bicycle category.

To obtain high performance using discriminative training it is often important to use large

training sets. In the case of object detection the training problem is highly unbalanced because

there is vastly more background than objects. This motivates a process of searching through

the background to find a relatively small number of potential false positives. A methodology of

June 1, 2009 DRAFT

4

(a) (b) (c)

Fig. 1. Detections obtained with a single component person model. The model is defined by a coarse root filter (a), several

higher resolution part filters (b) and a spatial model for the location of each part relative to the root (c). The filters specify

weights for histogram of oriented gradients features. Their visualization show the positive weights at different orientations. The

visualization of the spatial models reflects the “cost” of placing the center of a part at different locations relative to the root.

To train models using partially labeled data we use a latent variable formulation of MI-SVM

[3] that we call latent SVM (LSVM). In a latent SVM each example x is scored by a function

of the following form,

f�(x) = max
z�Z(x)

� · �(x, z). (1)

Here � is a vector of model parameters, z are latent values, and �(x, z) is a feature vector.

In the case of one of our star models � is the concatenation of the root filter, the part filters,

and deformation cost weights, z is a specification of the object configuration, and �(x, z) is a

concatenation of subwindows from a feature pyramid and part deformation features.

We note that (1) can handle very general forms of latent information. For example, z could

specify a derivation under a rich visual grammar.

Our second class of models represents each object category by a mixture of star models.

The score of one of our mixture models at a given position and scale is the maximum over

components, of the score of that component model at the given location. In this case the latent

information, z, specifies a component label and a configuration for that component. Figure 2

shows a mixture model for the bicycle category.

To obtain high performance using discriminative training it is often important to use large

training sets. In the case of object detection the training problem is highly unbalanced because

there is vastly more background than objects. This motivates a process of searching through

the background to find a relatively small number of potential false positives. A methodology of

June 1, 2009 DRAFT

4

(a) (b) (c)

Fig. 1. Detections obtained with a single component person model. The model is defined by a coarse root filter (a), several

higher resolution part filters (b) and a spatial model for the location of each part relative to the root (c). The filters specify

weights for histogram of oriented gradients features. Their visualization show the positive weights at different orientations. The

visualization of the spatial models reflects the “cost” of placing the center of a part at different locations relative to the root.

To train models using partially labeled data we use a latent variable formulation of MI-SVM

[3] that we call latent SVM (LSVM). In a latent SVM each example x is scored by a function

of the following form,

f�(x) = max
z�Z(x)

� · �(x, z). (1)

Here � is a vector of model parameters, z are latent values, and �(x, z) is a feature vector.

In the case of one of our star models � is the concatenation of the root filter, the part filters,

and deformation cost weights, z is a specification of the object configuration, and �(x, z) is a

concatenation of subwindows from a feature pyramid and part deformation features.

We note that (1) can handle very general forms of latent information. For example, z could

specify a derivation under a rich visual grammar.

Our second class of models represents each object category by a mixture of star models.

The score of one of our mixture models at a given position and scale is the maximum over

components, of the score of that component model at the given location. In this case the latent

information, z, specifies a component label and a configuration for that component. Figure 2

shows a mixture model for the bicycle category.

To obtain high performance using discriminative training it is often important to use large

training sets. In the case of object detection the training problem is highly unbalanced because

there is vastly more background than objects. This motivates a process of searching through

the background to find a relatively small number of potential false positives. A methodology of

June 1, 2009 DRAFT

4

(a) (b) (c)

Fig. 1. Detections obtained with a single component person model. The model is defined by a coarse root filter (a), several

higher resolution part filters (b) and a spatial model for the location of each part relative to the root (c). The filters specify

weights for histogram of oriented gradients features. Their visualization show the positive weights at different orientations. The

visualization of the spatial models reflects the “cost” of placing the center of a part at different locations relative to the root.

To train models using partially labeled data we use a latent variable formulation of MI-SVM

[3] that we call latent SVM (LSVM). In a latent SVM each example x is scored by a function

of the following form,

f�(x) = max
z�Z(x)

� · �(x, z). (1)

Here � is a vector of model parameters, z are latent values, and �(x, z) is a feature vector.

In the case of one of our star models � is the concatenation of the root filter, the part filters,

and deformation cost weights, z is a specification of the object configuration, and �(x, z) is a

concatenation of subwindows from a feature pyramid and part deformation features.

We note that (1) can handle very general forms of latent information. For example, z could

specify a derivation under a rich visual grammar.

Our second class of models represents each object category by a mixture of star models.

The score of one of our mixture models at a given position and scale is the maximum over

components, of the score of that component model at the given location. In this case the latent

information, z, specifies a component label and a configuration for that component. Figure 2

shows a mixture model for the bicycle category.

To obtain high performance using discriminative training it is often important to use large

training sets. In the case of object detection the training problem is highly unbalanced because

there is vastly more background than objects. This motivates a process of searching through

the background to find a relatively small number of potential false positives. A methodology of

June 1, 2009 DRAFT

4

(a) (b) (c)

Fig. 1. Detections obtained with a single component person model. The model is defined by a coarse root filter (a), several

higher resolution part filters (b) and a spatial model for the location of each part relative to the root (c). The filters specify

weights for histogram of oriented gradients features. Their visualization show the positive weights at different orientations. The

visualization of the spatial models reflects the “cost” of placing the center of a part at different locations relative to the root.

To train models using partially labeled data we use a latent variable formulation of MI-SVM

[3] that we call latent SVM (LSVM). In a latent SVM each example x is scored by a function

of the following form,

f�(x) = max
z�Z(x)

� · �(x, z). (1)

Here � is a vector of model parameters, z are latent values, and �(x, z) is a feature vector.

In the case of one of our star models � is the concatenation of the root filter, the part filters,

and deformation cost weights, z is a specification of the object configuration, and �(x, z) is a

concatenation of subwindows from a feature pyramid and part deformation features.

We note that (1) can handle very general forms of latent information. For example, z could

specify a derivation under a rich visual grammar.

Our second class of models represents each object category by a mixture of star models.

The score of one of our mixture models at a given position and scale is the maximum over

components, of the score of that component model at the given location. In this case the latent

information, z, specifies a component label and a configuration for that component. Figure 2

shows a mixture model for the bicycle category.

To obtain high performance using discriminative training it is often important to use large

training sets. In the case of object detection the training problem is highly unbalanced because

there is vastly more background than objects. This motivates a process of searching through

the background to find a relatively small number of potential false positives. A methodology of

June 1, 2009 DRAFT

Can deep networks be viewed as
hierarchical part models?

subparts

objects

parts

Often a common motivation (for a vision audience)

We’ll look at detail in a bit…

Deep learning
Much of the field is in rapid motion

No standard textbooks (yet!)

Some of my favorite references
1. https://sites.google.com/site/deeplearningsummerschool/

3. http://www.cs.toronto.edu/~hinton/absps/NatureDeepReview.pdf

http://www.vlfeat.org/matconvnet/
My favorite (Matlab) toolbox

2. http://www.deeplearningbook.org/

http://www.cs.toronto.edu/~hinton/absps/NatureDeepReview.pdf

Motivation

7

Buzz…

Products

8

Deep Learning – from Research to Technology

Deep Learning - breakthrough in
visual and speech recognition

10

Classical Computer Vision Pipeline.

CV experts

1. Select / develop features: SURF, HoG, SIFT, RIFT, …

2. Add on top of this Machine Learning for multi-class
recognition and train classifier

Feature

Extraction:
SIFT, HoG...

Detection,
Classification
Recognition

 Classical CV feature definition is domain-
specific and time-consuming

11

Deep Learning –based Vision Pipeline.

Deep Learning:
y Build features automatically based on training data

y Combine feature extraction and classification

DL experts: define NN topology and train NN

Deep NN...
Detection,

Classification
Recognition

 Deep Learning promise:
 train good feature automatically,
same method for different domain

Deep NN...

Classification:
Decision

Trees
SVMs, …

Deep network

Hierarchies in vision

1982

Tiger

Sand
Low-level

Signal-processing
Mid-level

Grouping

furry

flat
High-level
Recognition

“Lesson” from deep learning: perhaps hiearchichies should be learned rather than hand-designed

10

Classical Computer Vision Pipeline.

CV experts

1. Select / develop features: SURF, HoG, SIFT, RIFT, …

2. Add on top of this Machine Learning for multi-class
recognition and train classifier

Feature

Extraction:
SIFT, HoG...

Detection,
Classification
Recognition

 Classical CV feature definition is domain-
specific and time-consuming

11

Deep Learning –based Vision Pipeline.

Deep Learning:
y Build features automatically based on training data

y Combine feature extraction and classification

DL experts: define NN topology and train NN

Deep NN...
Detection,

Classification
Recognition

 Deep Learning promise:
 train good feature automatically,
same method for different domain

Deep NN...

Classification:
Decision

Trees
SVMs, …

Classification:
Decision

Trees
SVMs, …

“Off-the-shelf”

Off-the-shelf baseline

11

Deep Learning –based Vision Pipeline.

Deep Learning:
y Build features automatically based on training data

y Combine feature extraction and classification

DL experts: define NN topology and train NN

Deep NN...
Detection,

Classification
Recognition

 Deep Learning promise:
 train good feature automatically,
same method for different domain

Deep NN...

End-to-end “fine-tuned”

My personal thoughts: a universal feature extractor is within reach
Implies that “version0” of any deep learning solution shouldn’t do any deep learning! (relevant for your projects)

CNN Features off-the-shelf: an Astounding Baseline for Recognition

Ali Sharif Razavian Hossein Azizpour Josephine Sullivan Stefan Carlsson
CVAP, KTH (Royal Institute of Technology)

Stockholm, Sweden
{razavian,azizpour,sullivan,stefanc}@csc.kth.se

Abstract

Recent results indicate that the generic descriptors ex-
tracted from the convolutional neural networks are very
powerful. This paper adds to the mounting evidence that
this is indeed the case. We report on a series of exper-
iments conducted for different recognition tasks using the
publicly available code and model of the OverFeat net-
work which was trained to perform object classification on
ILSVRC13. We use features extracted from the OverFeat
network as a generic image representation to tackle the di-
verse range of recognition tasks of object image classifica-
tion, scene recognition, fine grained recognition, attribute
detection and image retrieval applied to a diverse set of
datasets. We selected these tasks and datasets as they grad-
ually move further away from the original task and data the
OverFeat network was trained to solve. Astonishingly,
we report consistent superior results compared to the highly
tuned state-of-the-art systems in all the visual classification
tasks on various datasets. For instance retrieval it consis-
tently outperforms low memory footprint methods except for
sculptures dataset. The results are achieved using a linear
SVM classifier (or L2 distance in case of retrieval) applied
to a feature representation of size 4096 extracted from a
layer in the net. The representations are further modified
using simple augmentation techniques e.g. jittering. The
results strongly suggest that features obtained from deep
learning with convolutional nets should be the primary can-
didate in most visual recognition tasks.

1. Introduction
“Deep learning. How well do you think it would work
for your computer vision problem?” Most likely this ques-
tion has been posed in your group’s coffee room. And
in response someone has quoted recent success stories
[29, 15, 10] and someone else professed skepticism. You
may have left the coffee room slightly dejected thinking
“Pity I have neither the time, GPU programming skills nor
large amount of labelled data to train my own network to

Object Classification

Scene Classification

Bird Subcategorization

Flowers Recognition

Human Attribute Detection

Object Attribute Detection

Paris Buildings Retrieval

Oxford Buildings Retrieval

Sculptures Retrieval

Scene Image Retrieval

Object Instance Retrieval

40

60

80

100

71
.1

64

56
.8

80
.7

69
.9

89
.5

74
.9

67
.4

45
.4

81
.9

89
.3

73
.9

58
.4

53
.3

74
.7

70
.8

89

65
.9

48
.5

64
.6

76
.3

77
.2

69

61
.8

86
.8

73

91
.4

79
.5

68

42
.3

84
.3

91
.1

77
.7

68
.9

65

79 80
.2

Best state of the art CNN o↵-the-shelf CNN o↵-the-shelf + augmentation Specialized CNN

Figure 1: top) CNN representation replaces pipelines of s.o.a methods
and achieve better results. e.g. DPD [50].
bottom) Augmented CNN representation with linear SVM consistently
outperforms s.o.a. on multiple tasks. Specialized CNN refers to other
works which specifically designed the CNN for their task

quickly find out the answer”. But when the convolutional
neural network OverFeat [38] was recently made pub-
licly available1 it allowed for some experimentation. In
particular we wondered now, not whether one could train
a deep network specifically for a given task, but if the fea-
tures extracted by a deep network - one carefully trained
on the diverse ImageNet database to perform the specific
task of image classification - could be exploited for a wide
variety of vision tasks. We now relate our discussions and
general findings because as a computer vision researcher
you’ve probably had the same questions:
Prof: First off has anybody else investigated this issue?
Student: Well it turns out Donahue et al. [10], Zeiler
and Fergus [48] and Oquab et al. [29] have suggested that
generic features can be extracted from large CNNs and pro-
vided some initial evidence to support this claim. But they
have only considered a small number of visual recognition
tasks. It would be fun to more thoroughly investigate how

1There are other publicly available deep learning implementations such
as Alex Krizhevsky’s ConvNet and Berkeley’s Caffe. Benchmarking
these implementations is beyond the scope of this paper.

1

ar
X

iv
:1

40
3.

63
82

v3
 [

cs
.C

V
]

12
 M

ay
 2

01
4

CNN Features off-the-shelf: an Astounding Baseline for Recognition

Ali Sharif Razavian Hossein Azizpour Josephine Sullivan Stefan Carlsson
CVAP, KTH (Royal Institute of Technology)

Stockholm, Sweden
{razavian,azizpour,sullivan,stefanc}@csc.kth.se

Abstract

Recent results indicate that the generic descriptors ex-
tracted from the convolutional neural networks are very
powerful. This paper adds to the mounting evidence that
this is indeed the case. We report on a series of exper-
iments conducted for different recognition tasks using the
publicly available code and model of the OverFeat net-
work which was trained to perform object classification on
ILSVRC13. We use features extracted from the OverFeat
network as a generic image representation to tackle the di-
verse range of recognition tasks of object image classifica-
tion, scene recognition, fine grained recognition, attribute
detection and image retrieval applied to a diverse set of
datasets. We selected these tasks and datasets as they grad-
ually move further away from the original task and data the
OverFeat network was trained to solve. Astonishingly,
we report consistent superior results compared to the highly
tuned state-of-the-art systems in all the visual classification
tasks on various datasets. For instance retrieval it consis-
tently outperforms low memory footprint methods except for
sculptures dataset. The results are achieved using a linear
SVM classifier (or L2 distance in case of retrieval) applied
to a feature representation of size 4096 extracted from a
layer in the net. The representations are further modified
using simple augmentation techniques e.g. jittering. The
results strongly suggest that features obtained from deep
learning with convolutional nets should be the primary can-
didate in most visual recognition tasks.

1. Introduction
“Deep learning. How well do you think it would work
for your computer vision problem?” Most likely this ques-
tion has been posed in your group’s coffee room. And
in response someone has quoted recent success stories
[29, 15, 10] and someone else professed skepticism. You
may have left the coffee room slightly dejected thinking
“Pity I have neither the time, GPU programming skills nor
large amount of labelled data to train my own network to

Image Part
Annotations

Learn
Normalized

Pose

Extract Features
RGB, gradient,

LBP

CNN
Representation

SVMStrong
DPM

Object Classification

Scene Classification

Bird Subcategorization

Flowers Recognition

Human Attribute Detection

Object Attribute Detection

Paris Buildings Retrieval

Oxford Buildings Retrieval

Sculptures Retrieval

Scene Image Retrieval

Object Instance Retrieval

40

60

80

100

71
.1

64

56
.8

80
.7

69
.9

89
.5

74
.9

67
.4

45
.4

81
.9

89
.3

73
.9

58
.4

53
.3

74
.7

70
.8

89

65
.9

48
.5

64
.6

76
.3

77
.2

69

61
.8

86
.8

73

91
.4

79
.5

68

42
.3

84
.3

91
.1

77
.7

68
.9

65

79 80
.2

Best state of the art CNN o↵-the-shelf CNN o↵-the-shelf + augmentation Specialized CNN

Figure 1: top) CNN representation replaces pipelines of s.o.a methods
and achieve better results. e.g. DPD [50].
bottom) Augmented CNN representation with linear SVM consistently
outperforms s.o.a. on multiple tasks. Specialized CNN refers to other
works which specifically designed the CNN for their task

quickly find out the answer”. But when the convolutional
neural network OverFeat [38] was recently made pub-
licly available1 it allowed for some experimentation. In
particular we wondered now, not whether one could train
a deep network specifically for a given task, but if the fea-
tures extracted by a deep network - one carefully trained
on the diverse ImageNet database to perform the specific
task of image classification - could be exploited for a wide
variety of vision tasks. We now relate our discussions and
general findings because as a computer vision researcher
you’ve probably had the same questions:
Prof: First off has anybody else investigated this issue?
Student: Well it turns out Donahue et al. [10], Zeiler
and Fergus [48] and Oquab et al. [29] have suggested that
generic features can be extracted from large CNNs and pro-
vided some initial evidence to support this claim. But they
have only considered a small number of visual recognition
tasks. It would be fun to more thoroughly investigate how

1There are other publicly available deep learning implementations such
as Alex Krizhevsky’s ConvNet and Berkeley’s Caffe. Benchmarking
these implementations is beyond the scope of this paper.

1

ar
X

iv
:1

40
3.

63
82

v3
 [

cs
.C

V
]

12
 M

ay
 2

01
4 (CVPR workshops, 2012)

Where did this all start?
Hubel+&+Wiesel+(1962)
Insights'about'early'image'processing'in'the'brain.
!Simple'cells'detect'local'features

!Complex'cells'pool'local'features'in'a'retinotopicneighborhood

Earliest “deep” architectureThe+Neocognitron

(Fukushima'1974\1982)

Neocognitron

Original of current networks

INPUT
32x32

Convolutions SubsamplingConvolutions

C1: feature maps
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5
C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection
Full connection

Gaussian connections

OUTPUT
 10

Stack together convolution and pooling (avg + subsample) operations.
Why can’t this be whole story?

Recall: Gaussian pyramids

58

The computational advantage of pyramids

http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf

1

16

⇥
1 4 6 4 1

⇤Figure 1: Gaussian Pyramid. Depicted are four levels of the Gaussian pyamid,
levels 0 to 3 presented from left to right.

[2] P.J. Burt. Fast filter transforms for image processing. Computer Graphics

and Image Processing, 1981.

[3] P.J. Burt. Fast algorithms for estimating local image properties. Computer

Graphics and Image Processing, 1983.

[4] P.J. Burt and E.H. Adelson. The laplacian pyramid as a compact image
code. IEEE Transactions on Communication, 31(4):532–540, April 1983.

[5] L.I. Larkin and P.J. Burt. Multi-resolution texture energy measures. In
IEEE Conference on Computer Vision and Pattern Recognition, 1983.

2

Alternate perspective:
neural networks

Recall: class-conditional Gaussians

p(y = 1|x) = p(x|y = 1)p(y = 1)

p(x|y = 1)p(y = 1) + p(x|y = 0)p(y = 0)

=

exp {� 1
2 (x� µ1)

T

⌃

�1
(x� µ1)}

exp {� 1
2 (x� µ1)

T

⌃

�1
(x� µ1)}+ exp {� 1

2 (x� µ0)
T

⌃

�1
(x� µ0)}

=

1

1 + exp {�(µ1 � µ0)
T

⌃

�1
x� b}

=

1

1 + e

�fw(x)

Plug in the following and simplify:

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10

x1

x2

1X 2X mX

Y

(a)

1X 2X mX

Y

(b)

X

Y

(c)

p(y = 1) = .5

p(x|y) = 1p
(2⇡)d|⌃|

e

� 1
2 (x�µy)

T⌃�1(x�µy)

Recall: class conditional Gaussians

sigmoid(x) =
1

1 + e

�x

p(y = 1|x) = sigmoid(w · x+ b)

p(y = 1|x) > .5 when fw(x) = w · x+ b > 0, w = ⌃�1(µ1 � µ0)

w[1]

w[2]

w[3]

x[1]

x[2]

x[3]

X

b

The+perceptron

Supervised'learning'of'the'weights'! using'the'Perceptron'algorithm.

Linear'threshold'unit

The+perceptron+is+a+machine

Frank'Rosenblatt

Percepton

8

Decision Boundaries for AND and OR

We can now plot the decision boundaries of our logic gates

111

001

010

000

outI2I1

ANDAND
I1

I2
(0, 0) (0, 1)

(1, 0)
(1, 1)

I1

I2

(1, 1)

(0, 1)(0, 0)

(1, 0)

111

101

110

000

outI2I1

OROR

ANDAND
w1=1, w2=1, θ=1.5

OROR
w1=1, w2=1, θ=0.5

If input features are binary, can model logical “and”s and “or”s

What about “xors”?

Multilayer perceptons

Can model more complex “circuits”

Activation functions

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

ICCV
#1973

ICCV
#1973

ICCV 2015 Submission #1973. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

functions could be combined with discriminative learning
machinery. This is the basis for much of structured pre-
diction, including the highly successful deformable part
model (DPM) [5], which are capable of bidirectional rea-
soning [31]: a high-level “root” object template can influ-
ence the response of a lower-level “part”. These models
were state-of-the-art until recently, but appear to have sat-
urated because learning deep hierarchies of parts remains
challenging.

Overview: We present a model that combines the best of
these three representations. Our latent variable model is de-
fined over a global scoring function (like a Boltzmann ma-
chine), but with convolutionally tied weights (like a CNN).
Importantly, the global scoring function is not probabilis-
tic normalized, and instead is trained discriminative trained
with supervision (like a DPM). A crucial aspect of our con-
volutional latent-variable model (CLVM) is that it can be
implemented with modifications to existing deep learning
toolboxes, allowing it to be make use of highly optimized
routines for gradient-based learning.

Recognition with grouping: There has been a consider-
able amount of work integrating high-level recognition with
low-level grouping cues. One approach is top-down guided
segmentation: for example, one can prime a low-level pixel
segmentation engine with top-down cues from an object
detector [3, 18, 2, 29]. Other approaches use bottom-up
proposals to prime object detections [7, 8]. In either case,
recognition and grouping steps are typically treated as sep-
arate stages in a pipeline, making it difficult to perform end-
to-end multi-task training (unlike our CLVM models).

2. Latent variable model
In this section, we introduce our convolutional latent-

variable model (CLVM). We begin with a high-level
overview. Variables will be organized into layers, spatial
locations, and channels (much like the neural activations
of a CNN). A crucial aspect of CLVMs is that they can
be efficiently optimized by layer-wise coordinate descent,
through convolution, rectification, and max-pooling opera-
tions. These operations are quite similar to those in con-
temporary CNNs, but crucially differ in that they allow for
top-down feedback in CLVMs. We will explore the theoret-
ical relationship between these two models in detail.

To begin our discussion, let us recall the central neurody-
namic equation governing the activation of a single “neural
unit” z

i

[10]:

z

i

= �(b

i

+

X

j 6=i

w

ij

z

j

) (1)

where b

i

is a bias, w

ij

are weights between units i and
j that define excitatory or inhibatory interactions depend-
ing on their sign and magnitude. Importantly, � is a non-
linear activation function. Ackley et al. [1] point out that

when the activation is a sigmoid function, (1) can be seen
as stochastic updates for a global probabilistic model known
as a Boltzmann machine:

�

sig

(x) =

1

1 + e

�x

) P (z) / e

S

Boltz

(z) where

S

Boltz

(z) = z

T

Wz + b

T

z, z

i

2 {0, 1}, w
ii

= 0 (2)

where W = [w

ij

], z = [z

i

], and b = [b

i

]. Here, units z

are treated as latent variables in a globally consistent scor-
ing function that captures bidirectional interactions between
variables. While conceptually attractive, such models are
difficult to train, requiring sampling approximations such
as contrastive divergence [11].

Let us replace the sigmoid activation function with a sim-
ple rectified linear activation function (which are now stan-
dard in contemporary CNNs). We show that such updates
correspond to coordinate descent optimization of a global
scoring function that is similar to S

Boltz

(z):

z

i

= max(0, b

i

+

X

j 6=i

w

ij

z

j

)) max

z�0
S(z) where

S(z) = z

T

Wz + b

T

z, z

i

2 R

+
, w

ii

= �1

2

(3)

There are two important differences between S(z) and
S

Boltz

(z). First, latent variables z are no longer binary, but
positive real numbers. Second, a quadratic term is added
to the diagonal of W that acts as a regularizer, penaliz-
ing large activations of z. (3) is a quadratic function sub-
ject to non-negativity constraints, which is readily recog-
nized as a quadratic program (QP). When �W is positive
semi-definite (PSD), the above QP can be written as a non-
negative least squares optimization min

z�0 ||Az�y|| where
�W = A

T

A and b = A

T

y, implying a unique globally op-
timal solution exists.

Inference: Let us optimize (3) with coordinate descent.
Specifically, we optimize z

i

holding all other z’s fixed:

max

z

i

>0
f(z

i

) where f(z

i

) = �1

2

z

2
i

+ (b

i

+

X

j 6=i

w

ij

z

j

)z

i

@f

@z

i

= �z

i

+ b

i

+

X

j 6=i

w

ij

z

j

= 0

z

i

= max(0, b

i

+

X

j 6=i

w

ij

z

j

) (4)

When �W is PSD, the above coordinate descent updates
must produce the optimal solution [6].

Inference with CNNs: We will show that state-of-the-
art CNN architectures [24] actually perform coordinate-
wise updates of the form from (4). With a slight abuse of
notation, we denote the latent variable at layer i correspond-
ing to spatial position u as z

i

[u]. We define the bottom-most

2

rectified linear (RelU)

-6 -4 -2 2 4 6

0.2

0.4

0.6

0.8

1

-3 -2 -1 1 2 3

-1.5

-1

-0.5

0.5

1

1.5

(a) (b)

sigmoid

-6 -4 -2 2 4 6

0.2

0.4

0.6

0.8

1

-3 -2 -1 1 2 3

-1.5

-1

-0.5

0.5

1

1.5

(a) (b)

tanh

-6 -4 -2 2 4 6

0.2

0.4

0.6

0.8

1

-3 -2 -1 1 2 3

-1.5

-1

-0.5

0.5

1

1.5

(a) (b)

What’s the difference between a standard “neural
network” and a “convolutional neural network”?

Local+connections
1. Sparsity through local receptive feilds

Local+connections

Local+connections
Local+connections
Local+connections

2. Weight sharing across locations

Local receptive feildsLocal+connections

Last puzzle peices:
poolingPooling

Name Pooling2formula

Average'pool
1
:* ∑'&

Max'pool max{'&}

L2 pool 1
:* ∑'&

*

Lp pool 1
:* ∑ '& Ü

)
Ü

Last puzzle peices:
pooling + normalizationPooling

Name Pooling2formula

Average'pool
1
:* ∑'&

Max'pool max{'&}

L2 pool 1
:* ∑'&

*

Lp pool 1
:* ∑ '& Ü

)
Ü

Contrast+Normalization

Contrast'normalization
! Subtracting'a'low\pass'smoothed'version'of'the'layer

! Just'another'convolution'in'fact'(with'fixed'coefficients)

! Lots'of'variants'(per'feature'map,'across'feature'maps,'…)

! Divisive'normalization

Outline
• Motivation

• Popular networks

• Optimization

• Backprop

• Extensions: multiscale DAGs, recurrence, LSTMs

• Why does it work so well?

Some popular networks

ImageNet CNN

! Structure'(conv\relu\maxpool\norm)3\linear\relu\linear\relu\linear
! Very'good'implementation,'running'on'two'GPUs.
! ReLU transfer'function.'Dropout'trick.
! Also'trains'on'full'ImageNet (15M'images,'15000'classes)'

(Kirzhevsky,'Sutskever,' Hinton,'2012)

AlexNet

Aside: scanning-window CNNs

Replicated+CNNs
Wrong'way Right'way

Yan Lecun: “There is no fully-connected layer, only a 1x1xN convolutional layer!”ImageNet CNN

! Structure'(conv\relu\maxpool\norm)3\linear\relu\linear\relu\linear
! Very'good'implementation,'running'on'two'GPUs.
! ReLU transfer'function.'Dropout'trick.
! Also'trains'on'full'ImageNet (15M'images,'15000'classes)'

(Kirzhevsky,'Sutskever,' Hinton,'2012)

A better visualization of AlexNet

224x224x3

55x55x96

27x27x256
13x13x384 13x13x25613x13x384

input

conv1

conv2

conv3 conv4 conv5

1x1x4096 1x1x4096 1x1x1000

“fc6” “fc7”

Red layers are followed by max pooling

output

Visualization hids the dimensions of the filters

VGG19

All filter dimensions 3x3 except fc6 (which uses 7x7)
People still misunderstand this

(Loosely) exploit associate property of
convolutions

Why 3x3 layers?
• Stacked conv. layers have a large receptive field

• two 3x3 layers – 5x5 receptive field
• three 3x3 layers – 7x7 receptive field

• More non-linearity
• Less parameters to learn

• ~140M per net

Discussion
5

1st 3x3 conv. layer

2nd 3x3 conv. layer

5

5

Residual Net
7x7 conv, 64, /2

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

avg pool

fc 1000

image

3x3 conv, 512

3x3 conv, 64

3x3 conv, 64

pool, /2

3x3 conv, 128

3x3 conv, 128

pool, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

pool, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

pool, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

pool, /2

fc 4096

fc 4096

fc 1000

image

output

size: 112

output

size: 224

output

size: 56

output

size: 28

output

size: 14

output

size: 7

output

size: 1

VGG-19 34-layer plain

7x7 conv, 64, /2

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

avg pool

fc 1000

image

34-layer residual

Figure 3. Example network architectures for ImageNet. Left: the
VGG-19 model [41] (19.6 billion FLOPs) as a reference. Mid-
dle: a plain network with 34 parameter layers (3.6 billion FLOPs).
Right: a residual network with 34 parameter layers (3.6 billion
FLOPs). The dotted shortcuts increase dimensions. Table 1 shows
more details and other variants.

Residual Network. Based on the above plain network, we
insert shortcut connections (Fig. 3, right) which turn the
network into its counterpart residual version. The identity
shortcuts (Eqn.(1)) can be directly used when the input and
output are of the same dimensions (solid line shortcuts in
Fig. 3). When the dimensions increase (dotted line shortcuts
in Fig. 3), we consider two options: (A) The shortcut still
performs identity mapping, with extra zero entries padded
for increasing dimensions. This option introduces no extra
parameter; (B) The projection shortcut in Eqn.(2) is used to
match dimensions (done by 1⇥1 convolutions). For both
options, when the shortcuts go across feature maps of two
sizes, they are performed with a stride of 2.

3.4. Implementation

Our implementation for ImageNet follows the practice
in [21, 41]. The image is resized with its shorter side ran-
domly sampled in [256, 480] for scale augmentation [41].
A 224⇥224 crop is randomly sampled from an image or its
horizontal flip, with the per-pixel mean subtracted [21]. The
standard color augmentation in [21] is used. We adopt batch
normalization (BN) [16] right after each convolution and
before activation, following [16]. We initialize the weights
as in [13] and train all plain/residual nets from scratch. We
use SGD with a mini-batch size of 256. The learning rate
starts from 0.1 and is divided by 10 when the error plateaus,
and the models are trained for up to 60⇥ 104 iterations. We
use a weight decay of 0.0001 and a momentum of 0.9. We
do not use dropout [14], following the practice in [16].

In testing, for comparison studies we adopt the standard
10-crop testing [21]. For best results, we adopt the fully-
convolutional form as in [41, 13], and average the scores
at multiple scales (images are resized such that the shorter
side is in {224, 256, 384, 480, 640}).

4. Experiments
4.1. ImageNet Classification

We evaluate our method on the ImageNet 2012 classifi-
cation dataset [36] that consists of 1000 classes. The models
are trained on the 1.28 million training images, and evalu-
ated on the 50k validation images. We also obtain a final
result on the 100k test images, reported by the test server.
We evaluate both top-1 and top-5 error rates.

Plain Networks. We first evaluate 18-layer and 34-layer
plain nets. The 34-layer plain net is in Fig. 3 (middle). The
18-layer plain net is of a similar form. See Table 1 for de-
tailed architectures.

The results in Table 2 show that the deeper 34-layer plain
net has higher validation error than the shallower 18-layer
plain net. To reveal the reasons, in Fig. 4 (left) we com-
pare their training/validation errors during the training pro-
cedure. We have observed the degradation problem - the

4

Deep Residual Learning for Image Recognition

Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun
Microsoft Research

{kahe, v-xiangz, v-shren, jiansun}@microsoft.com

Abstract
Deeper neural networks are more difficult to train. We

present a residual learning framework to ease the training
of networks that are substantially deeper than those used
previously. We explicitly reformulate the layers as learn-
ing residual functions with reference to the layer inputs, in-
stead of learning unreferenced functions. We provide com-
prehensive empirical evidence showing that these residual
networks are easier to optimize, and can gain accuracy from
considerably increased depth. On the ImageNet dataset we
evaluate residual nets with a depth of up to 152 layers—8⇥
deeper than VGG nets [41] but still having lower complex-
ity. An ensemble of these residual nets achieves 3.57% error
on the ImageNet test set. This result won the 1st place on the
ILSVRC 2015 classification task. We also present analysis
on CIFAR-10 with 100 and 1000 layers.

The depth of representations is of central importance
for many visual recognition tasks. Solely due to our ex-
tremely deep representations, we obtain a 28% relative im-
provement on the COCO object detection dataset. Deep
residual nets are foundations of our submissions to ILSVRC
& COCO 2015 competitions1, where we also won the 1st
places on the tasks of ImageNet detection, ImageNet local-
ization, COCO detection, and COCO segmentation.

1. Introduction
Deep convolutional neural networks [22, 21] have led

to a series of breakthroughs for image classification [21,
50, 40]. Deep networks naturally integrate low/mid/high-
level features [50] and classifiers in an end-to-end multi-
layer fashion, and the “levels” of features can be enriched
by the number of stacked layers (depth). Recent evidence
[41, 44] reveals that network depth is of crucial importance,
and the leading results [41, 44, 13, 16] on the challenging
ImageNet dataset [36] all exploit “very deep” [41] models,
with a depth of sixteen [41] to thirty [16]. Many other non-
trivial visual recognition tasks [8, 12, 7, 32, 27] have also

1http://image-net.org/challenges/LSVRC/2015/ and
http://mscoco.org/dataset/#detections-challenge2015.

0 1 2 3 4 5 60

10

20

iter. (1e4)

tra
in

in
g

er
ro

r (
%

)

0 1 2 3 4 5 60

10

20

iter. (1e4)

te
st

 e
rr

or
 (%

)

56-layer

20-layer

56-layer

20-layer

Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain” networks. The deeper network
has higher training error, and thus test error. Similar phenomena
on ImageNet is presented in Fig. 4.

greatly benefited from very deep models.
Driven by the significance of depth, a question arises: Is

learning better networks as easy as stacking more layers?
An obstacle to answering this question was the notorious
problem of vanishing/exploding gradients [1, 9], which
hamper convergence from the beginning. This problem,
however, has been largely addressed by normalized initial-
ization [23, 9, 37, 13] and intermediate normalization layers
[16], which enable networks with tens of layers to start con-
verging for stochastic gradient descent (SGD) with back-
propagation [22].

When deeper networks are able to start converging, a
degradation problem has been exposed: with the network
depth increasing, accuracy gets saturated (which might be
unsurprising) and then degrades rapidly. Unexpectedly,
such degradation is not caused by overfitting, and adding
more layers to a suitably deep model leads to higher train-
ing error, as reported in [11, 42] and thoroughly verified by
our experiments. Fig. 1 shows a typical example.

The degradation (of training accuracy) indicates that not
all systems are similarly easy to optimize. Let us consider a
shallower architecture and its deeper counterpart that adds
more layers onto it. There exists a solution by construction
to the deeper model: the added layers are identity mapping,
and the other layers are copied from the learned shallower
model. The existence of this constructed solution indicates
that a deeper model should produce no higher training error
than its shallower counterpart. But experiments show that
our current solvers on hand are unable to find solutions that

1

ar
X

iv
:1

51
2.

03
38

5v
1

 [c
s.C

V
]

10
 D

ec
 2

01
5

Outline
• Motivation

• Popular networks

• Optimization

• Backprop

• Extensions: multiscale DAGs, recurrence, LSTMs

• Why does it work so well?

Supervised training8 Olga Russakovsky* et al.

PASCAL ILSVRC

b
ir
d
s

· · ·

ca
ts

· · ·

d
o
g
s

· · ·

Fig. 2 The ILSVRC dataset contains many more fine-grained classes compared to the standard PASCAL VOC benchmark;
for example, instead of the PASCAL “dog” category there are 120 di↵erent breeds of dogs in ILSVRC2012-2014 classification
and single-object localization tasks.

are 1000 object classes and approximately 1.2 million
training images, 50 thousand validation images and 100
thousand test images. Table 2 (top) documents the size
of the dataset over the years of the challenge.

3.2 Single-object localization dataset construction

The single-object localization task evaluates the ability
of an algorithm to localize one instance of an object
category. It was introduced as a taster task in ILSVRC
2011, and became an o�cial part of ILSVRC in 2012.

The key challenge was developing a scalable crowd-
sourcing method for object bounding box annotation.
Our three-step self-verifying pipeline is described in Sec-
tion 3.2.1. Having the dataset collected, we perform
detailed analysis in Section 3.2.2 to ensure that the
dataset is su�ciently varied to be suitable for evalu-
ation of object localization algorithms.

Object classes and candidate images. The object classes
for single-object localization task are the same as the
object classes for image classification task described
above in Section 3.1. The training images for localiza-
tion task are a subset of the training images used for
image classification task, and the validation and test
images are the same between both tasks.

Bounding box annotation. Recall that for the image
classification task every image was annotated with one

object class label, corresponding to one object that is
present in an image. For the single-object localization
task, every validation and test image and a subset of the
training images are annotated with axis-aligned bound-
ing boxes around every instance of this object.

Every bounding box is required to be as small as
possible while including all visible parts of the object
instance. An alternate annotation procedure could be
to annotate the full (estimated) extent of the object:
e.g., if a person’s legs are occluded and only the torso
is visible, the bounding box could be drawn to include
the likely location of the legs. However, this alterna-
tive procedure is inherently ambiguous and ill-defined,
leading to disagreement among annotators and among
researchers (what is the true “most likely” extent of
this object?). We follow the standard protocol of only
annotating visible object parts (Russell et al., 2007; Ev-
eringham et al., 2010).5

3.2.1 Bounding box object annotation system

We summarize the crowdsourced bounding box anno-
tation system described in detail in (Su et al., 2012).
The goal is to build a system that is fully automated,

5 Some datasets such as PASCAL VOC (Everingham et al.,
2010) and LabelMe (Russell et al., 2007) are able to provide
more detailed annotations: for example, marking individual
object instances as being truncated. We chose not to provide
this level of detail in favor of annotating more images and
more object instances.

{xi, yi}

min
w

||w||2 +
X

i

||fw(xi)� y||2min
w

1

2
||w||2 +

X

i

(fw(xi)� yi)
2

Imagenet large-scale visual recognition challenge

1000 classes, ~1000 examples per class

Imagenet 2014 image classification
results

Model Resolution Crops Models Top-1 error Top-5 error
GoogLeNet ensemble 224 144 7 - 6.67%
Deep Image low-res 256 - 1 - 7.96%
Deep Image high-res 512 - 1 24.88 7.42%
Deep Image ensemble variable - - - 5.98%
BN-Inception single crop 224 1 1 25.2% 7.82%
BN-Inception multicrop 224 144 1 21.99% 5.82%
BN-Inception ensemble 224 144 6 20.1% 4.9%*

Figure 4: Batch-Normalized Inception comparison with previous state of the art on the provided validation set com-
prising 50000 images. *BN-Inception ensemble has reached 4.82% top-5 error on the 100000 images of the test set of
the ImageNet as reported by the test server.

plies to sub-networks and layers, and removing it from
internal activations of the network may aid in training.
Our proposed method draws its power from normalizing
activations, and from incorporating this normalization in
the network architecture itself. This ensures that the nor-
malization is appropriately handled by any optimization
method that is being used to train the network. To en-
able stochastic optimization methods commonly used in
deep network training, we perform the normalization for
each mini-batch, and backpropagate the gradients through
the normalization parameters. Batch Normalization adds
only two extra parameters per activation, and in doing so
preserves the representation ability of the network. We
presented an algorithm for constructing, training, and per-
forming inference with batch-normalized networks. The
resulting networks can be trained with saturating nonlin-
earities, are more tolerant to increased training rates, and
often do not require Dropout for regularization.

Merely adding Batch Normalization to a state-of-the-
art image classification model yields a substantial speedup
in training. By further increasing the learning rates, re-
moving Dropout, and applying other modifications af-
forded by Batch Normalization, we reach the previous
state of the art with only a small fraction of training steps
– and then beat the state of the art in single-network image
classification. Furthermore, by combining multiple mod-
els trained with Batch Normalization, we perform better
than the best known system on ImageNet, by a significant
margin.

Interestingly, our method bears similarity to the stan-
dardization layer of (Gülçehre & Bengio, 2013), though
the two methods stem from very different goals, and per-
form different tasks. The goal of Batch Normalization
is to achieve a stable distribution of activation values
throughout training, and in our experiments we apply it
before the nonlinearity since that is where matching the
first and second moments is more likely to result in a
stable distribution. On the contrary, (Gülçehre & Bengio,
2013) apply the standardization layer to the output of the
nonlinearity, which results in sparser activations. In our
large-scale image classification experiments, we have not
observed the nonlinearity inputs to be sparse, neither with
nor without Batch Normalization. Other notable differ-

entiating characteristics of Batch Normalization include
the learned scale and shift that allow the BN transform
to represent identity (the standardization layer did not re-
quire this since it was followed by the learned linear trans-
form that, conceptually, absorbs the necessary scale and
shift), handling of convolutional layers, deterministic in-
ference that does not depend on the mini-batch, and batch-
normalizing each convolutional layer in the network.
In this work, we have not explored the full range of

possibilities that Batch Normalization potentially enables.
Our future work includes applications of our method to
Recurrent Neural Networks (Pascanu et al., 2013), where
the internal covariate shift and the vanishing or exploding
gradients may be especially severe, and which would al-
low us to more thoroughly test the hypothesis that normal-
ization improves gradient propagation (Sec. 3.3). We plan
to investigate whether Batch Normalization can help with
domain adaptation, in its traditional sense – i.e. whether
the normalization performed by the network would al-
low it to more easily generalize to new data distribu-
tions, perhaps with just a recomputation of the population
means and variances (Alg. 2). Finally, we believe that fur-
ther theoretical analysis of the algorithm would allow still
more improvements and applications.

References
Bengio, Yoshua and Glorot, Xavier. Understanding the
difficulty of training deep feedforward neural networks.
In Proceedings of AISTATS 2010, volume 9, pp. 249–
256, May 2010.

Dean, Jeffrey, Corrado, Greg S., Monga, Rajat, Chen, Kai,
Devin, Matthieu, Le, Quoc V., Mao, Mark Z., Ranzato,
Marc’Aurelio, Senior, Andrew, Tucker, Paul, Yang, Ke,
and Ng, Andrew Y. Large scale distributed deep net-
works. In NIPS, 2012.

Desjardins, Guillaume and Kavukcuoglu, Koray. Natural
neural networks. (unpublished).

Duchi, John, Hazan, Elad, and Singer, Yoram. Adaptive
subgradient methods for online learning and stochastic

8

Human top-5 error: 5.1 %

MatConvNet

Convolutional Neural Networks for MATLAB

Andrea Vedaldi Karel Lenc

Abstract

MatConvNet is an implementation of Convolutional Neural Networks (CNNs)

for MATLAB. The toolbox is designed with an emphasis on simplicity and flexibility.

It exposes the building blocks of CNNs as easy-to-use MATLAB functions, providing

routines for computing linear convolutions with filter banks, feature pooling, and many

more. In this manner, MatConvNet allows fast prototyping of new CNN architec-

tures; at the same time, it supports e�cient computation on CPU and GPU allowing

to train complex models on large datasets such as ImageNet ILSVRC. This document

provides an overview of CNNs and how they are implemented in MatConvNet and

gives the technical details of each computational block in the toolbox.

1

to run most of current state-of-the-art models for image classification. You are invited
to look at the implementation of this function, as it is a great starting point to under-
stand how to implement more complex CNNs.

• Example applications. MatConvNet provides several example of learning CNNs with
stochastic gradient descent and CPU or GPU, on MNIST, CIFAR10, and ImageNet
data.

• Pre-trained models. MatConvNet provides several state-of-the-art pre-trained CNN
models that can be used o↵-the-shelf, either to classify images or to produce image
encodings in the spirit of Ca↵e or DeCAF.

1.2 The structure and evaluation of CNNs

CNNs are obtained by connecting one or more computational blocks. Each block y = f(x,w)
takes an image x and a set of parameters w as input and produces a new image y as output.
An image is a real 4D array; the first two dimensions index spatial coordinates (image rows
and columns respectively), the third dimension feature channels (there can be any number),
and the last dimension image instances. A computational block f is therefore represented as
follows:

x f y

w

Formally, x is a 4D tensor stacking N 3D images

x 2 RH⇥W⇥D⇥N

where H and W are the height and width of the images, D its depth, and N the number of
images. In what follows, all operations are applied identically to each image in the stack x;
hence for simplicity we will drop the last dimension in the discussion (equivalent to assuming
N = 1), but the ability to operate on image batches is very important for e�ciency.

In general, a CNN can be obtained by connecting blocks in a directed acyclic graph (DAG).
In the simplest case, this graph reduces to a sequence of computational blocks (f

1

, f
2

, . . . , fL).
Let x

1

,x
2

, . . . ,xL be the output of each layer in the network, and let x
0

denote the network
input. Each output xl depends on the previous output xl�1

through a function fl with
parameter wl as xl = fl(xl�1

;wl); schematically:

x
0

f
1

f
2

... fL xL

w
1

w
2

wL

x
2

x
3

xL�1

4

Great source of “off-the-shelf” state-of-the-art features for Matlab

http://www.vlfeat.org/matconvnet/#pretrained

User manual is cleanest “hands-on” explanation of backprop I’ve seen

Gradient descent
min
w

1

2
||w||2 +

X

i

(fw(xi)� yi)
2

w := w � step ⇤
�
w +

X

i

(fw(xi)� yi)
@fw(xi)

@w

�

Stochastic gradient descent
min
w

�

2
||w||2 +

X

i

(fw(xi)� yi)
2

w := w � step ⇤
�
�w + (fw(xi)� yi)

@fw(xi)

@w

�

Crucial parameters for tuning: learning rate (step) and weight decay (lambda)

Optimization
Appears to be a significant hurdle for training

Deep Residual Learning for Image Recognition

Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun
Microsoft Research

{kahe, v-xiangz, v-shren, jiansun}@microsoft.com

Abstract
Deeper neural networks are more difficult to train. We

present a residual learning framework to ease the training
of networks that are substantially deeper than those used
previously. We explicitly reformulate the layers as learn-
ing residual functions with reference to the layer inputs, in-
stead of learning unreferenced functions. We provide com-
prehensive empirical evidence showing that these residual
networks are easier to optimize, and can gain accuracy from
considerably increased depth. On the ImageNet dataset we
evaluate residual nets with a depth of up to 152 layers—8⇥
deeper than VGG nets [41] but still having lower complex-
ity. An ensemble of these residual nets achieves 3.57% error
on the ImageNet test set. This result won the 1st place on the
ILSVRC 2015 classification task. We also present analysis
on CIFAR-10 with 100 and 1000 layers.

The depth of representations is of central importance
for many visual recognition tasks. Solely due to our ex-
tremely deep representations, we obtain a 28% relative im-
provement on the COCO object detection dataset. Deep
residual nets are foundations of our submissions to ILSVRC
& COCO 2015 competitions1, where we also won the 1st
places on the tasks of ImageNet detection, ImageNet local-
ization, COCO detection, and COCO segmentation.

1. Introduction
Deep convolutional neural networks [22, 21] have led

to a series of breakthroughs for image classification [21,
50, 40]. Deep networks naturally integrate low/mid/high-
level features [50] and classifiers in an end-to-end multi-
layer fashion, and the “levels” of features can be enriched
by the number of stacked layers (depth). Recent evidence
[41, 44] reveals that network depth is of crucial importance,
and the leading results [41, 44, 13, 16] on the challenging
ImageNet dataset [36] all exploit “very deep” [41] models,
with a depth of sixteen [41] to thirty [16]. Many other non-
trivial visual recognition tasks [8, 12, 7, 32, 27] have also

1http://image-net.org/challenges/LSVRC/2015/ and
http://mscoco.org/dataset/#detections-challenge2015.

0 1 2 3 4 5 60

10

20

iter. (1e4)

tra
in

in
g

er
ro

r (
%

)

0 1 2 3 4 5 60

10

20

iter. (1e4)

te
st

 e
rr

or
 (%

)

56-layer

20-layer

56-layer

20-layer

Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain” networks. The deeper network
has higher training error, and thus test error. Similar phenomena
on ImageNet is presented in Fig. 4.

greatly benefited from very deep models.
Driven by the significance of depth, a question arises: Is

learning better networks as easy as stacking more layers?
An obstacle to answering this question was the notorious
problem of vanishing/exploding gradients [1, 9], which
hamper convergence from the beginning. This problem,
however, has been largely addressed by normalized initial-
ization [23, 9, 37, 13] and intermediate normalization layers
[16], which enable networks with tens of layers to start con-
verging for stochastic gradient descent (SGD) with back-
propagation [22].

When deeper networks are able to start converging, a
degradation problem has been exposed: with the network
depth increasing, accuracy gets saturated (which might be
unsurprising) and then degrades rapidly. Unexpectedly,
such degradation is not caused by overfitting, and adding
more layers to a suitably deep model leads to higher train-
ing error, as reported in [11, 42] and thoroughly verified by
our experiments. Fig. 1 shows a typical example.

The degradation (of training accuracy) indicates that not
all systems are similarly easy to optimize. Let us consider a
shallower architecture and its deeper counterpart that adds
more layers onto it. There exists a solution by construction
to the deeper model: the added layers are identity mapping,
and the other layers are copied from the learned shallower
model. The existence of this constructed solution indicates
that a deeper model should produce no higher training error
than its shallower counterpart. But experiments show that
our current solvers on hand are unable to find solutions that

1

ar
X

iv
:1

51
2.

03
38

5v
1

 [c
s.C

V
]

10
 D

ec
 2

01
5

Deep Residual Learning for Image Recognition

Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun
Microsoft Research

{kahe, v-xiangz, v-shren, jiansun}@microsoft.com

Abstract
Deeper neural networks are more difficult to train. We

present a residual learning framework to ease the training
of networks that are substantially deeper than those used
previously. We explicitly reformulate the layers as learn-
ing residual functions with reference to the layer inputs, in-
stead of learning unreferenced functions. We provide com-
prehensive empirical evidence showing that these residual
networks are easier to optimize, and can gain accuracy from
considerably increased depth. On the ImageNet dataset we
evaluate residual nets with a depth of up to 152 layers—8⇥
deeper than VGG nets [41] but still having lower complex-
ity. An ensemble of these residual nets achieves 3.57% error
on the ImageNet test set. This result won the 1st place on the
ILSVRC 2015 classification task. We also present analysis
on CIFAR-10 with 100 and 1000 layers.

The depth of representations is of central importance
for many visual recognition tasks. Solely due to our ex-
tremely deep representations, we obtain a 28% relative im-
provement on the COCO object detection dataset. Deep
residual nets are foundations of our submissions to ILSVRC
& COCO 2015 competitions1, where we also won the 1st
places on the tasks of ImageNet detection, ImageNet local-
ization, COCO detection, and COCO segmentation.

1. Introduction
Deep convolutional neural networks [22, 21] have led

to a series of breakthroughs for image classification [21,
50, 40]. Deep networks naturally integrate low/mid/high-
level features [50] and classifiers in an end-to-end multi-
layer fashion, and the “levels” of features can be enriched
by the number of stacked layers (depth). Recent evidence
[41, 44] reveals that network depth is of crucial importance,
and the leading results [41, 44, 13, 16] on the challenging
ImageNet dataset [36] all exploit “very deep” [41] models,
with a depth of sixteen [41] to thirty [16]. Many other non-
trivial visual recognition tasks [8, 12, 7, 32, 27] have also

1http://image-net.org/challenges/LSVRC/2015/ and
http://mscoco.org/dataset/#detections-challenge2015.

0 1 2 3 4 5 60

10

20

iter. (1e4)

tra
in

in
g

er
ro

r (
%

)

0 1 2 3 4 5 60

10

20

iter. (1e4)

te
st

 e
rr

or
 (%

)

56-layer

20-layer

56-layer

20-layer

Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain” networks. The deeper network
has higher training error, and thus test error. Similar phenomena
on ImageNet is presented in Fig. 4.

greatly benefited from very deep models.
Driven by the significance of depth, a question arises: Is

learning better networks as easy as stacking more layers?
An obstacle to answering this question was the notorious
problem of vanishing/exploding gradients [1, 9], which
hamper convergence from the beginning. This problem,
however, has been largely addressed by normalized initial-
ization [23, 9, 37, 13] and intermediate normalization layers
[16], which enable networks with tens of layers to start con-
verging for stochastic gradient descent (SGD) with back-
propagation [22].

When deeper networks are able to start converging, a
degradation problem has been exposed: with the network
depth increasing, accuracy gets saturated (which might be
unsurprising) and then degrades rapidly. Unexpectedly,
such degradation is not caused by overfitting, and adding
more layers to a suitably deep model leads to higher train-
ing error, as reported in [11, 42] and thoroughly verified by
our experiments. Fig. 1 shows a typical example.

The degradation (of training accuracy) indicates that not
all systems are similarly easy to optimize. Let us consider a
shallower architecture and its deeper counterpart that adds
more layers onto it. There exists a solution by construction
to the deeper model: the added layers are identity mapping,
and the other layers are copied from the learned shallower
model. The existence of this constructed solution indicates
that a deeper model should produce no higher training error
than its shallower counterpart. But experiments show that
our current solvers on hand are unable to find solutions that

1

ar
X

iv
:1

51
2.

03
38

5v
1

 [c
s.C

V
]

10
 D

ec
 2

01
5

7x7 conv, 64, /2

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

avg pool

fc 1000

image

3x3 conv, 512

3x3 conv, 64

3x3 conv, 64

pool, /2

3x3 conv, 128

3x3 conv, 128

pool, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

pool, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

pool, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

pool, /2

fc 4096

fc 4096

fc 1000

image

output

size: 112

output

size: 224

output

size: 56

output

size: 28

output

size: 14

output

size: 7

output

size: 1

VGG-19 34-layer plain

7x7 conv, 64, /2

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

avg pool

fc 1000

image

34-layer residual

Figure 3. Example network architectures for ImageNet. Left: the
VGG-19 model [41] (19.6 billion FLOPs) as a reference. Mid-
dle: a plain network with 34 parameter layers (3.6 billion FLOPs).
Right: a residual network with 34 parameter layers (3.6 billion
FLOPs). The dotted shortcuts increase dimensions. Table 1 shows
more details and other variants.

Residual Network. Based on the above plain network, we
insert shortcut connections (Fig. 3, right) which turn the
network into its counterpart residual version. The identity
shortcuts (Eqn.(1)) can be directly used when the input and
output are of the same dimensions (solid line shortcuts in
Fig. 3). When the dimensions increase (dotted line shortcuts
in Fig. 3), we consider two options: (A) The shortcut still
performs identity mapping, with extra zero entries padded
for increasing dimensions. This option introduces no extra
parameter; (B) The projection shortcut in Eqn.(2) is used to
match dimensions (done by 1⇥1 convolutions). For both
options, when the shortcuts go across feature maps of two
sizes, they are performed with a stride of 2.

3.4. Implementation

Our implementation for ImageNet follows the practice
in [21, 41]. The image is resized with its shorter side ran-
domly sampled in [256, 480] for scale augmentation [41].
A 224⇥224 crop is randomly sampled from an image or its
horizontal flip, with the per-pixel mean subtracted [21]. The
standard color augmentation in [21] is used. We adopt batch
normalization (BN) [16] right after each convolution and
before activation, following [16]. We initialize the weights
as in [13] and train all plain/residual nets from scratch. We
use SGD with a mini-batch size of 256. The learning rate
starts from 0.1 and is divided by 10 when the error plateaus,
and the models are trained for up to 60⇥ 104 iterations. We
use a weight decay of 0.0001 and a momentum of 0.9. We
do not use dropout [14], following the practice in [16].

In testing, for comparison studies we adopt the standard
10-crop testing [21]. For best results, we adopt the fully-
convolutional form as in [41, 13], and average the scores
at multiple scales (images are resized such that the shorter
side is in {224, 256, 384, 480, 640}).

4. Experiments
4.1. ImageNet Classification

We evaluate our method on the ImageNet 2012 classifi-
cation dataset [36] that consists of 1000 classes. The models
are trained on the 1.28 million training images, and evalu-
ated on the 50k validation images. We also obtain a final
result on the 100k test images, reported by the test server.
We evaluate both top-1 and top-5 error rates.

Plain Networks. We first evaluate 18-layer and 34-layer
plain nets. The 34-layer plain net is in Fig. 3 (middle). The
18-layer plain net is of a similar form. See Table 1 for de-
tailed architectures.

The results in Table 2 show that the deeper 34-layer plain
net has higher validation error than the shallower 18-layer
plain net. To reveal the reasons, in Fig. 4 (left) we com-
pare their training/validation errors during the training pro-
cedure. We have observed the degradation problem - the

4

Intuition: bias deep models to behave like shallow models during learning

layer name output size 18-layer 34-layer 50-layer 101-layer 152-layer
conv1 112⇥112 7⇥7, 64, stride 2

conv2 x 56⇥56

3⇥3 max pool, stride 2

3⇥3, 64
3⇥3, 64

�
⇥2

3⇥3, 64
3⇥3, 64

�
⇥3

2

4
1⇥1, 64
3⇥3, 64

1⇥1, 256

3

5⇥3

2

4
1⇥1, 64
3⇥3, 64

1⇥1, 256

3

5⇥3

2

4
1⇥1, 64
3⇥3, 64

1⇥1, 256

3

5⇥3

conv3 x 28⇥28

3⇥3, 128
3⇥3, 128

�
⇥2

3⇥3, 128
3⇥3, 128

�
⇥4

2

4
1⇥1, 128
3⇥3, 128
1⇥1, 512

3

5⇥4

2

4
1⇥1, 128
3⇥3, 128
1⇥1, 512

3

5⇥4

2

4
1⇥1, 128
3⇥3, 128
1⇥1, 512

3

5⇥8

conv4 x 14⇥14

3⇥3, 256
3⇥3, 256

�
⇥2

3⇥3, 256
3⇥3, 256

�
⇥6

2

4
1⇥1, 256
3⇥3, 256
1⇥1, 1024

3

5⇥6

2

4
1⇥1, 256
3⇥3, 256
1⇥1, 1024

3

5⇥23

2

4
1⇥1, 256
3⇥3, 256

1⇥1, 1024

3

5⇥36

conv5 x 7⇥7

3⇥3, 512
3⇥3, 512

�
⇥2

3⇥3, 512
3⇥3, 512

�
⇥3

2

4
1⇥1, 512
3⇥3, 512
1⇥1, 2048

3

5⇥3

2

4
1⇥1, 512
3⇥3, 512

1⇥1, 2048

3

5⇥3

2

4
1⇥1, 512
3⇥3, 512
1⇥1, 2048

3

5⇥3

1⇥1 average pool, 1000-d fc, softmax
FLOPs 1.8⇥109 3.6⇥109 3.8⇥109 7.6⇥109 11.3⇥109

Table 1. Architectures for ImageNet. Building blocks are shown in brackets (see also Fig. 5), with the numbers of blocks stacked. Down-
sampling is performed by conv3 1, conv4 1, and conv5 1 with a stride of 2.

0 10 20 30 40 5020

30

40

50

60

iter. (1e4)

er
ro

r (
%

)

plain-18
plain-34

0 10 20 30 40 5020

30

40

50

60

iter. (1e4)

er
ro

r (
%

)

ResNet-18
ResNet-34

18-layer

34-layer

18-layer

34-layer

Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain
networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to
their plain counterparts.

plain ResNet
18 layers 27.94 27.88
34 layers 28.54 25.03

Table 2. Top-1 error (%, 10-crop testing) on ImageNet validation.
Here the ResNets have no extra parameter compared to their plain
counterparts. Fig. 4 shows the training procedures.

34-layer plain net has higher training error throughout the
whole training procedure, even though the solution space
of the 18-layer plain network is a subspace of that of the
34-layer one.

We argue that this optimization difficulty is unlikely to
be caused by vanishing gradients. These plain networks are
trained with BN [16], which ensures forward propagated
signals to have non-zero variances. We also verify that the
backward propagated gradients exhibit healthy norms with
BN. So neither forward nor backward signals vanish. In
fact, the 34-layer plain net is still able to achieve compet-
itive accuracy (Table 3), suggesting that the solver works
to some extent. We conjecture that the deep plain nets may
have exponentially low convergence rates, which impact the

reducing of the training error3. The reason for such opti-
mization difficulties will be studied in the future.

Residual Networks. Next we evaluate 18-layer and 34-
layer residual nets (ResNets). The baseline architectures
are the same as the above plain nets, expect that a shortcut
connection is added to each pair of 3⇥3 filters as in Fig. 3
(right). In the first comparison (Table 2 and Fig. 4 right),
we use identity mapping for all shortcuts and zero-padding
for increasing dimensions (option A). So they have no extra
parameter compared to the plain counterparts.

We have three major observations from Table 2 and
Fig. 4. First, the situation is reversed with residual learn-
ing – the 34-layer ResNet is better than the 18-layer ResNet
(by 2.8%). More importantly, the 34-layer ResNet exhibits
considerably lower training error and is generalizable to the
validation data. This indicates that the degradation problem
is well addressed in this setting and we manage to obtain
accuracy gains from increased depth.

Second, compared to its plain counterpart, the 34-layer
3We have experimented with more training iterations (3⇥) and still ob-

served the degradation problem, suggesting that this problem cannot be
feasibly addressed by simply using more iterations.

5

7x7 conv, 64, /2

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

avg pool

fc 1000

image

3x3 conv, 512

3x3 conv, 64

3x3 conv, 64

pool, /2

3x3 conv, 128

3x3 conv, 128

pool, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

pool, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

pool, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

pool, /2

fc 4096

fc 4096

fc 1000

image

output

size: 112

output

size: 224

output

size: 56

output

size: 28

output

size: 14

output

size: 7

output

size: 1

VGG-19 34-layer plain

7x7 conv, 64, /2

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

avg pool

fc 1000

image

34-layer residual

Figure 3. Example network architectures for ImageNet. Left: the
VGG-19 model [41] (19.6 billion FLOPs) as a reference. Mid-
dle: a plain network with 34 parameter layers (3.6 billion FLOPs).
Right: a residual network with 34 parameter layers (3.6 billion
FLOPs). The dotted shortcuts increase dimensions. Table 1 shows
more details and other variants.

Residual Network. Based on the above plain network, we
insert shortcut connections (Fig. 3, right) which turn the
network into its counterpart residual version. The identity
shortcuts (Eqn.(1)) can be directly used when the input and
output are of the same dimensions (solid line shortcuts in
Fig. 3). When the dimensions increase (dotted line shortcuts
in Fig. 3), we consider two options: (A) The shortcut still
performs identity mapping, with extra zero entries padded
for increasing dimensions. This option introduces no extra
parameter; (B) The projection shortcut in Eqn.(2) is used to
match dimensions (done by 1⇥1 convolutions). For both
options, when the shortcuts go across feature maps of two
sizes, they are performed with a stride of 2.

3.4. Implementation

Our implementation for ImageNet follows the practice
in [21, 41]. The image is resized with its shorter side ran-
domly sampled in [256, 480] for scale augmentation [41].
A 224⇥224 crop is randomly sampled from an image or its
horizontal flip, with the per-pixel mean subtracted [21]. The
standard color augmentation in [21] is used. We adopt batch
normalization (BN) [16] right after each convolution and
before activation, following [16]. We initialize the weights
as in [13] and train all plain/residual nets from scratch. We
use SGD with a mini-batch size of 256. The learning rate
starts from 0.1 and is divided by 10 when the error plateaus,
and the models are trained for up to 60⇥ 104 iterations. We
use a weight decay of 0.0001 and a momentum of 0.9. We
do not use dropout [14], following the practice in [16].

In testing, for comparison studies we adopt the standard
10-crop testing [21]. For best results, we adopt the fully-
convolutional form as in [41, 13], and average the scores
at multiple scales (images are resized such that the shorter
side is in {224, 256, 384, 480, 640}).

4. Experiments
4.1. ImageNet Classification

We evaluate our method on the ImageNet 2012 classifi-
cation dataset [36] that consists of 1000 classes. The models
are trained on the 1.28 million training images, and evalu-
ated on the 50k validation images. We also obtain a final
result on the 100k test images, reported by the test server.
We evaluate both top-1 and top-5 error rates.

Plain Networks. We first evaluate 18-layer and 34-layer
plain nets. The 34-layer plain net is in Fig. 3 (middle). The
18-layer plain net is of a similar form. See Table 1 for de-
tailed architectures.

The results in Table 2 show that the deeper 34-layer plain
net has higher validation error than the shallower 18-layer
plain net. To reveal the reasons, in Fig. 4 (left) we com-
pare their training/validation errors during the training pro-
cedure. We have observed the degradation problem - the

4

min
w

E(w)

1. First order method (gradient descent)

2. Second order method (Newton’s method)
https://en.wikipedia.org/wiki/Newton%27s_method_in_optimization

w := w � ↵g, g = rwE

w := w �H�1g

ω -½Λ Θ′

-½ΘΛ

U

Network

input

output

ω Network
ω

input

output

Θ-½ΛU

Newton Algorithm hereis like Gradient Descent
 there

[Nice discussion of optimization issues in above paper]

Intuition: build second-order behaviour into SGD by normalizing variables (zero-mean, identity covariance)
[cf. Batch Normalization, Ioffe et al]

https://en.wikipedia.org/wiki/Newton's_method_in_optimization

(Mini) batch learning
min
w

1

2
||w||2 +

X

i

(fw(xi)� yi)
2

Learn from batches of training data (rather than a single example or full dataset)

w := w � step ⇤
⇣
w +

X

i2MiniB

(fw(xi)� yi)
@fw(xi)

@w

⌘

Crucial observation: updates are more statistically reliable when data {xi} in batch are uncorrelated

In practice, randomly permute training examples

Challenging to do when learning from patches in images or frames from videos

Batch normalization

max(0,x)conv(x,w)

(x-a)/b

a = mean(batch)
b = var(batch)

Intuition: build second-order behaviour into SGD by normalizing variables
(zero-mean, identity covariance) before nonlinearity

[Ioffe et al]

Many (if not most) contemporary networks make use of this

Drop-out regularization
Srivastava, Hinton, Krizhevsky, Sutskever and Salakhutdinov

(a) Standard Neural Net (b) After applying dropout.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

its posterior probability given the training data. This can sometimes be approximated quite
well for simple or small models (Xiong et al., 2011; Salakhutdinov and Mnih, 2008), but we
would like to approach the performance of the Bayesian gold standard using considerably
less computation. We propose to do this by approximating an equally weighted geometric
mean of the predictions of an exponential number of learned models that share parameters.

Model combination nearly always improves the performance of machine learning meth-
ods. With large neural networks, however, the obvious idea of averaging the outputs of
many separately trained nets is prohibitively expensive. Combining several models is most
helpful when the individual models are di↵erent from each other and in order to make
neural net models di↵erent, they should either have di↵erent architectures or be trained
on di↵erent data. Training many di↵erent architectures is hard because finding optimal
hyperparameters for each architecture is a daunting task and training each large network
requires a lot of computation. Moreover, large networks normally require large amounts of
training data and there may not be enough data available to train di↵erent networks on
di↵erent subsets of the data. Even if one was able to train many di↵erent large networks,
using them all at test time is infeasible in applications where it is important to respond
quickly.

Dropout is a technique that addresses both these issues. It prevents overfitting and
provides a way of approximately combining exponentially many di↵erent neural network
architectures e�ciently. The term “dropout” refers to dropping out units (hidden and
visible) in a neural network. By dropping a unit out, we mean temporarily removing it from
the network, along with all its incoming and outgoing connections, as shown in Figure 1.
The choice of which units to drop is random. In the simplest case, each unit is retained with
a fixed probability p independent of other units, where p can be chosen using a validation
set or can simply be set at 0.5, which seems to be close to optimal for a wide range of
networks and tasks. For the input units, however, the optimal probability of retention is
usually closer to 1 than to 0.5.

1930

Intuition: we should really train a family of models with different architectures and average their predictions
(c.f. model averaging from machine learning)

Practical implementation: learn a single “superset” architecture that randomly removes nodes
(by randomly zero’ing out activations) during gradient updates

Bottom line: optimization matters!
Seems to be the limiting factor in performance right now

… so let’s dig into the gritty details

min
w

1

2
||w||2 +

X

i

(fw(xi)� yi)
2

w := w � step ⇤
�
w +

X

i

(fw(xi)� yi)
@fw(xi)

@w

�

Outline
• Motivation

• Popular networks

• Optimization

• Backprop

• Extensions: multiscale DAGs, recurrence, LSTMs

• Why does it work so well?

