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Recall: chaining modules
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In learning, we are computing in determining the gradient of the loss z with respect to each
parameter:
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By applying the chain rule, we find that this can be rewritten as
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where the derivatives are computed at the working point determined by the input x
0

and
the current value of the parameters. It is convenient to rewrite this expression in term of
variables only, leaving the functional dependencies implicit:
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The vec symbol is the vectorization operator, which simply reshape its tensor argument to
a column vector. This notation for the derivatives is taken from [6] and is used throughout
this document.

Note that this expression involves computing and multiplying the Jacobians of all build-
ing block from level L back to level l. Unfortunately intermediate Jacobians such as
d vecxl/d(vecxl�1

)> are extremely large HlWlDl⇥Hl�1

Wl�1

Dl�1

matrices (often worth GBs
of data), which makes the naive application of the chain rule unfeasible.

The trick is to notice that only the intermediate but unneded Jacobians are so large; in
fact, since the loss z is a scalar value, the target derivatives dz/dwl have the same dimensions
as wl. The key idea of backpropagation is a way to organize the computation in order to
avoid the explicit computation of the intermediate large matrices.

This is best seen by focusing on an intermediate layer f with parameter w, as follows:
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Here the function h lumps together all layers of the network from f to the scalar output z
(loss). The derivatives of h � f with respect to the data and parameters can be rewritten as:
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Extensions: DAG graphs

2.3. CNN DERIVATIVES: BACKPROPAGATION 13

Note that, just like the parameter derivative dz/dwl, the data derivatives dz/d(vecx)> and
dz/d(vecy)> have the same size as the data x and y respectively, and hence can be explicitly
computed. If (2.1) can be somehow computed, this provides a way to compute all the
parameter derivates. In particular, the data derivative dz/d(vecy)> can be passed backward
to compute the derivatives for the layers prior to f .

The key in implementing backpropagation then is to implement for each building block
two computational paths:

• Forward mode. This mode takes the input data x and parameter w and computes
the output variable y.

• Backward mode. This mode takes the input data x, the parameterw, and the output
derivative dz/dy and computes the parameter derivative dz/dw as well as the input
derivative dz/dx. Crucially, in this step the required intermediate Jacobian is never
explicitly computed.

This is best illustrated with an example. Consider a layer f such as the convolution operator
implemented by vl_nnconv. In the so called “forward” mode, one calls the function as y  -
= vl_nnconv(x,w,[]) to convolve input x and obtain output y. In the “backward mode”, one
calls [dzdx, dzdw] = vl_nnconv(x,w,[],dzdy). As explained above, dzdx, dzdw, and dzdy have
the same dimension of x, w, and y. In this manner, the computation of larger Jacobians is
encapsulated in the function call and never carried explicitly. Another way of looking at this
is that, instead of computing a derivative such as dy/dw, one always computes a projection
of the type hdz/dy, dy/dwi.

2.3.1 Backpropagation in DAGs

Backpropagation can be applied to network with a DAG topology as well. Given a DAG,
one can always sort the variables in such a way that they can be computed in sequence, by
evaluating the corresponding function:
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Here we made two inconsequential assumptions. The first one is that each block fl produces
exactly one variable xl as output; if a block produces two or more, we can reduce back to
this situation by replicating a block as needed. The second assumption is that each block
in the sequence take as (direct) input all previous variables; this is a “worst case” scenario
as in practice the dependency is usually limited to a few. Note also that parameters can be
seen as special cases of variables.

To work out the network output derivatives with respect to any intermediate variable,
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Why is this reasonable?
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Backprop on DAGs
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Backprop on DAGs

x

f(.)

h(.)

g(.,.)
f

h
g

@g(f(x), h(x))

@x

=
@g

@f

@f

@x

+
@g

@h

@h

@x

Simply compute backprop signals along each path, adding up signals when paths merge

“Multivariable chain rule”



Multiscale classification
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Abstract

We explore multi-scale convolutional neural nets (CNNs)

for image classification. Contemporary approaches extract

features from a single output layer. By extracting features

from multiple layers, one can simultaneously reason about

high, mid, and low-level features during classification. The

resulting multi-scale architecture can itself be seen as a

feed-forward model that is structured as a directed acyclic

graph (DAG-CNNs). We use DAG-CNNs to learn a set of

multiscale features that can be effectively shared between

coarse and fine-grained classification tasks. While fine-

tuning such models helps performance, we show that even

“off-the-self” multiscale features perform quite well. We

present extensive analysis and demonstrate state-of-the-art

classification performance on three standard scene bench-

marks (SUN397, MIT67, and Scene15). In terms of the

heavily benchmarked MIT67 and Scene15 datasets, our re-

sults reduce the lowest previously-reported error by 23.9%
and 9.5%, respectively.

1. Introduction
Deep convolutional neural nets (CNNs), pioneered by

Lecun and collaborators [18], now produce state-of-the-art
performance on many visual recognition tasks [16, 29, 32].
An attractive property is that appear to serve as univer-
sal feature extractors, either as “off-the-shelf” features or
through a small amount of “fine tuning”. CNNs trained on
particular tasks such as large-scale image classification [5]
transfer extraordinarily well to other tasks such as object
detection [11], scene recognition [39], image retrieval [12],
etc [26].

Hierarchical chain models: CNNs are hierarchical
feed-forward architectures that compute progressively in-
variant representations of the input image. However, the ap-
propriate level of invariance might be task-dependent. Dis-
tinguishing people and dogs requires a representation that
is robust to large spatial deformations, since people and
dogs can articulate. However, fine-grained categorization
of car models (or bird species) requires fine-scale features

Figure 1. Recognition typically require features at multiple scales.
Distinguishing a person versus dog requires highly invariant fea-
tures robust to the deformation of each category. On the other
hand, fine-grained recognition likely requires detailed shape cues
to distinguish models of cars (top). We use these observations to
revisit deep convolutional neural net (CNN) architectures. Typical
approaches train a classifier using features from a single output
layer (left). We extract multi-scale features from multiple layers
to simultaneously distinguish coarse and fine classes. Such fea-
tures come “for free” since they are already computed during the
feed-forward pass (middle). Interestingly, the entire multi-scale
predictor is still a feed-forward architecture that is no longer chain-
structured, but a directed-acyclic graph (DAG) (right). We show
that DAG-CNNs can be discriminatively trained in an end-to-end
fashion, yielding state-of-the-art recognition results across various
recognition benchmarks.

that capture subtle shape cues. We argue that a universal
architecture capable of both tasks must employ some form
of multi-scale features for output prediction.

Multi-scale representations: Multi-scale representa-
tions are a classic concept in computer vision, dating back
to image pyramids [4], scale-space theory [20], and mul-
tiresolution models [21]. Though somewhat fundamental
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Multiscale classification
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Figure 10. Deep19-DAG results on MIT67. The category label is shown on the left and the label for false-positives (in red) are also
provided. We use the multi-scale analysis of Fig. 4 to compare categories that perform better with mid-level features (top 2 rows) versus
high-level features (bottom 2 rows). Mid-level features appear to emphasize small-size objects for pantry scenes and circular objects
for wine celler, while high-level features appear to focus on global spatial statistics.

making use of the modified backprop equation from Sec. 3.
Comparison: Fig. 11 compares off-the-shelf and fine-

tune variants of chain and DAG models. We see two dom-
inant trends. First, as perhaps expected, fine-tuned (FT)
models consistently outperform their off-the-shelf (OTS)
countparts. Even more striking is the large improvement
from chain to DAG models, indicating the power of multi-
scale feature encodings.

DAG-OTS: Perhaps most impressive is the strong per-
formance of DAG-OTS. From a theoretical perspective, this
validates our underyling hypothesis that multi-scale fea-
tures allow for better transfer between recognition tasks –
in this case, ImageNet and scene classification. An interest-
ing question is whether multi-scale features, when trained
with gradient-based DAG-learning on ImageNet, will al-
low for even more transfer. We are currently exploring this.
However even with current CNN architectures, our results
suggest that any system making use of off-the-shelf CNN

features should explore multi-scale variants as a “cheap”

baseline. Compared to their single-scale counterpart, mul-
tiscale features require no additional time to compute, are
only a factor of 2 larger to store, and consistently provide a
noticeable improvement.

Conclusion: We have introduced multi-scale CNNs for
image classification. Such models encode scale-specific
features that can be effectively shared across both coarse
and fine-grained classification tasks. Importantly, such

(a) SUN397 (b) MIT67 (c) Scene15

Figure 11. Off-the-shelf vs. Fine-tuning models on both Chain
and DAG model for Caffe backbone. Please see the text for a
discussion.

models can be viewed as DAG-structured feedforward pre-
dictors, allowing for end-to-end training. While fine-tuning
helps performance, we empirically demonstrate that even
“off-the-self” multiscale features perform quite well. We
present extensive analysis and demonstrate state-of-the-art
classification performance on three standard scene bench-
marks, sometimes improving upon prior art by a significant
margin.
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“DAG” = multiscale 
FT = fine-tuning (use pre-trained model as starting point for gradient descent)



Pixel prediction
pixel class-labels 

landmark heatmaps 
normals/depth

(a)

(b) zi[u] = max(0, bi + boti[u])

(c) zi[u] = max(0, bi + topi[u])

(d) zi[u] = max(0, bi + topi[u] + boti[u])

(e) Ideal Predictions

Figure 11: Hair, skin, and background pixel predictions ob-
tained with the same softmax classifier applied to a bottom-
up (b), top-down (c), and final combined (d) feature, con-
trasted with the ground truth (e). The overall segmenta-
tion mask for each feature is shown on the right. The top-
down signal correctly estimates coarse spatial labels, but
the bottom-up signals better respect image boundaries (but
make gross errors, missing the entire face). The final pre-
dictions obtained by integrating both signals is the “best of
both worlds.”

a bounding box around the visible region; (2) up to 23 hu-
man keypoints per person; and a (3) figure/ground segmen-
tation mask. We randomly chose 70% for training, 10% for
validation and 20% for testing. We evaluate localization ac-
curacy of only visible keypoints, normaling pixel error by
the maximum side length of the instance’s visible bounding
box. We compare our model against state-of-the-art pose
estimation systems [34] and [28], tuned to return their best
detection given the visible bounding box. The performance
of segmentation is shown in Table 2 and the performance
of keypoint localization is shown in Figure 12. We show
some sample results of the test set of Pascal Person in Fig-
ure 13. We refer the reader to the caption for a detailed anal-

Method Accuracy (P)
Oracle 99.53%
CLVM1 83.40%
CLVM2 86.47%
M-CLVM1 82.91%
M-CLVM2 86.37%

Table 2: Pixel-wise segmentation performance on Pascal
Person. Adding multi-task learning marginally hurts per-
formance, but our bidirectional multi-task model does sig-
nificantly better than a feed-forward multi-task model.
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Figure 12: The left plot shows the cumulative error dis-
tribution for keypoints localization on Pascal Person. The
right bar plot shows the percentage of test images that have
average localization error below 10%. We evaluate local-
ization accuracy of only visible keypoints, normaling pixel
error by the maximum side length of the instance’s visible
bounding box. FMP and FMP-Occ are different versions of
[34], where FPM-Occ has been re-trained on our training
set. MODEC and MODEC-Full are two versions of mod-
els released by [28], where MODEC-Full is slower but bet-
ter. Interestingly, multi-task learning significantly hurts our
feed-forward models (CLVM1 vs. M-CLVM1), but does not
hurt performance of our birdirectional models (CLVM2 vs.
M-CLVM2).

ysis. Our CLVM models outperform prior art for keypoint
localization by a large margin. Moreover, our bidirectional
models strongly outperform their single-pass feedforward
counterparts, particularly when evaluated on multitask pre-
diction.

Convergence: As a diagnostic experiment, we verify
that layer-wise coordinate updates do increase a global scor-
ing function (Fig. 14). As we iterate beyond 2 passes (which
is what the model was trained for), the score appears to grow
unbounded, implying that the learned (�W ) is not PSD. We
posit that more aggressive learning – either more passes, or
explicit constraints that enforce PSDness – would ensure
convergence.

Weight-sharing: One could relax the recurrent CNN
that implements our two-pass CLVM2 model (Fig. 3) by not
tying together weights across different layers. Table 3 re-
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ysis. Our CLVM models outperform prior art for keypoint
localization by a large margin. Moreover, our bidirectional
models strongly outperform their single-pass feedforward
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ing function (Fig. 14). As we iterate beyond 2 passes (which
is what the model was trained for), the score appears to grow
unbounded, implying that the learned (�W ) is not PSD. We
posit that more aggressive learning – either more passes, or
explicit constraints that enforce PSDness – would ensure
convergence.
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that implements our two-pass CLVM2 model (Fig. 3) by not
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Intuition: each pixel prediction makes use of a scanning-window (or receptive feild)
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localization by a large margin. Moreover, our bidirectional
models strongly outperform their single-pass feedforward
counterparts, particularly when evaluated on multitask pre-
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ing function (Fig. 14). As we iterate beyond 2 passes (which
is what the model was trained for), the score appears to grow
unbounded, implying that the learned (�W ) is not PSD. We
posit that more aggressive learning – either more passes, or
explicit constraints that enforce PSDness – would ensure
convergence.

Weight-sharing: One could relax the recurrent CNN
that implements our two-pass CLVM2 model (Fig. 3) by not
tying together weights across different layers. Table 3 re-
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Multiscale pixel classification

Convolutional 
Network

Hypercolumn

Figure 1. The hypercolumn representation. The bottom image is
the input, and above it are the feature maps of different layers in
the CNN. The hypercolumn at a pixel is the vector of activations
of all units that lie above that pixel.

on two kinds of problems that require precise localization.
The first problem is simultaneous detection and segmenta-
tion (SDS) [22], where the aim is to both detect and seg-
ment every instance of an object category in the image. The
second problem deals with detecting an object and local-
izing its parts. We consider two variants of this: one, lo-
cating the keypoints [43], and two, segmenting out each
part [41, 40, 3, 31].

We present a general framework for tackling these and
other fine-grained localization tasks by framing them as
pixel classification and using hypercolumns as pixel de-
scriptors. We formulate our entire system as a neural net-
work, allowing end-to-end training for particular tasks sim-
ply by changing the target labels. Our empirical results are:

1. On SDS, the previous state-of-the-art was 49.7 mean
APr [22]. Substituting hypercolumns into the pipeline
of [22] improves this to 52.8. We also propose a more
efficient pipeline that allows us to use a larger network,
pushing up the performance to 60.0.

2. On keypoint prediction, we show that a simple key-
point prediction scheme using hypercolumns achieves
a 3.3 point gain in the APK metric [43] over prior ap-
proaches working with only the top layer features [20].
While there isn’t much prior work on labeling parts of
objects, we show that the hypercolumn framework is
significantly better (by 6.6 points on average) than a
strong baseline based on the top layer features.

2. Related work
Combining features across multiple levels: Burt and
Adelson introduced Laplacian pyramids [8], a representa-
tion that is widely used in computer vision. Koenderink
and van Doorn [27] used “jets”, which are sets of partial
derivatives of intensity up to a particular order, to estimate

edge orientation, curvature, etc. Malik and Perona [32] used
the output of a bank of filters as a representation for texture
discrimination. This representation also proved useful for
optical flow [39] and stereo [26]. While the filter banks in
these works cover multiple scales, they are still restricted
to simple linear filters, whereas many of the features in the
hypercolumn representation are highly non-linear functions
of the image.

There has also been work in convolutional networks that
combines multiple levels of abstraction and scale. Farabet
et al. [15] combine CNN outputs from multiple scales of
an image to do semantic segmentation. Tompson et al. [37]
use a similar idea for detecting parts and estimating pose.
However, the features being combined still come from the
same level of the CNN and hence have similar invariance.
Sermanet et al. [34] combine subsampled intermediate lay-
ers with the top layer for pedestrian detection. In contrast,
since we aim for precise localization, we maintain the high
resolution of the lower layers and upsample the higher lay-
ers instead. In contemporary work, Long et al. [30] also use
multiple layers for their fully convolutional semantic seg-
mentation system.

Detection and segmentation: The task of simultaneous
detection and segmentation task, introduced in [22], re-
quires one to detect and segment every instance of a cat-
egory in the image. SDS differs from classical bounding
box detection in its requirement of a segmentation and from
classical semantic segmentation in its requirement of sep-
arate instances. There has been other prior work on seg-
menting out instances of a category, mostly starting from
bounding box detections. Borenstein and Ullman [4] first
suggested the idea of using class-specific knowledge for
segmentation. Yang et al. [42] use figure ground masks as-
sociated with DPM detectors [16] to segment out detected
objects and reason about depth orderings. Parkhi et al. [33]
use color models extracted from the detected cat and dog
heads to segment them out. Dai and Hoiem [12] general-
ize this reasoning to all categories. Fidler et al. [17] and
Dong et al. [13] combine object detections from DPM [16]
with semantic segmentation outputs from O2P [9] to im-
prove both systems. Current leading methods use CNNs
to score bottom-up object proposals, both for object detec-
tion [18] and for SDS [22, 11].

Pose estimation and part labeling: Current best perform-
ers for pose estimation are based on CNNs. Toshev and
Szegedy [38] use a CNN to regress to keypoint locations.
Tompson et al. [37] show large improvements over state-
of-the-art by predicting a heatmap for each keypoint, where
the value of the heatmap at a location is the probability of
the keypoint at that location. These algorithms show re-
sults in the setting where the rough location of the person
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⇤
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Naive approach: resize feature maps and explicitly construct 
multiscale descriptor (hypercolumn) for each pixel
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mid
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Convolutional 
Network

Hypercolumn

Figure 1. The hypercolumn representation. The bottom image is
the input, and above it are the feature maps of different layers in
the CNN. The hypercolumn at a pixel is the vector of activations
of all units that lie above that pixel.

on two kinds of problems that require precise localization.
The first problem is simultaneous detection and segmenta-
tion (SDS) [22], where the aim is to both detect and seg-
ment every instance of an object category in the image. The
second problem deals with detecting an object and local-
izing its parts. We consider two variants of this: one, lo-
cating the keypoints [43], and two, segmenting out each
part [41, 40, 3, 31].

We present a general framework for tackling these and
other fine-grained localization tasks by framing them as
pixel classification and using hypercolumns as pixel de-
scriptors. We formulate our entire system as a neural net-
work, allowing end-to-end training for particular tasks sim-
ply by changing the target labels. Our empirical results are:

1. On SDS, the previous state-of-the-art was 49.7 mean
APr [22]. Substituting hypercolumns into the pipeline
of [22] improves this to 52.8. We also propose a more
efficient pipeline that allows us to use a larger network,
pushing up the performance to 60.0.

2. On keypoint prediction, we show that a simple key-
point prediction scheme using hypercolumns achieves
a 3.3 point gain in the APK metric [43] over prior ap-
proaches working with only the top layer features [20].
While there isn’t much prior work on labeling parts of
objects, we show that the hypercolumn framework is
significantly better (by 6.6 points on average) than a
strong baseline based on the top layer features.

2. Related work
Combining features across multiple levels: Burt and
Adelson introduced Laplacian pyramids [8], a representa-
tion that is widely used in computer vision. Koenderink
and van Doorn [27] used “jets”, which are sets of partial
derivatives of intensity up to a particular order, to estimate

edge orientation, curvature, etc. Malik and Perona [32] used
the output of a bank of filters as a representation for texture
discrimination. This representation also proved useful for
optical flow [39] and stereo [26]. While the filter banks in
these works cover multiple scales, they are still restricted
to simple linear filters, whereas many of the features in the
hypercolumn representation are highly non-linear functions
of the image.

There has also been work in convolutional networks that
combines multiple levels of abstraction and scale. Farabet
et al. [15] combine CNN outputs from multiple scales of
an image to do semantic segmentation. Tompson et al. [37]
use a similar idea for detecting parts and estimating pose.
However, the features being combined still come from the
same level of the CNN and hence have similar invariance.
Sermanet et al. [34] combine subsampled intermediate lay-
ers with the top layer for pedestrian detection. In contrast,
since we aim for precise localization, we maintain the high
resolution of the lower layers and upsample the higher lay-
ers instead. In contemporary work, Long et al. [30] also use
multiple layers for their fully convolutional semantic seg-
mentation system.

Detection and segmentation: The task of simultaneous
detection and segmentation task, introduced in [22], re-
quires one to detect and segment every instance of a cat-
egory in the image. SDS differs from classical bounding
box detection in its requirement of a segmentation and from
classical semantic segmentation in its requirement of sep-
arate instances. There has been other prior work on seg-
menting out instances of a category, mostly starting from
bounding box detections. Borenstein and Ullman [4] first
suggested the idea of using class-specific knowledge for
segmentation. Yang et al. [42] use figure ground masks as-
sociated with DPM detectors [16] to segment out detected
objects and reason about depth orderings. Parkhi et al. [33]
use color models extracted from the detected cat and dog
heads to segment them out. Dai and Hoiem [12] general-
ize this reasoning to all categories. Fidler et al. [17] and
Dong et al. [13] combine object detections from DPM [16]
with semantic segmentation outputs from O2P [9] to im-
prove both systems. Current leading methods use CNNs
to score bottom-up object proposals, both for object detec-
tion [18] and for SDS [22, 11].

Pose estimation and part labeling: Current best perform-
ers for pose estimation are based on CNNs. Toshev and
Szegedy [38] use a CNN to regress to keypoint locations.
Tompson et al. [37] show large improvements over state-
of-the-art by predicting a heatmap for each keypoint, where
the value of the heatmap at a location is the probability of
the keypoint at that location. These algorithms show re-
sults in the setting where the rough location of the person
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Figure 2. Representing our hypercolumn classifiers as a neural net-
work. Layers of the original classification CNN are shown in red,
and layers that we add are in blue.

terpolation during training, instead of training separate grid
classifiers independent of each other.

Training classifiers for segmentation and part localiza-
tion: For each category we take bottom-up MCG candi-
dates [1] that overlap a ground truth instance by 70% or
more. For each such candidate, we find the ground truth
instance it overlaps most with, and crop that ground truth
instance to the expanded bounding box of the candidate.
Depending on the task we are interested in (SDS, keypoint
prediction or part labeling), we then use the labeling of the
cropped ground truth instance to label locations in the ex-
panded bounding box as positive or negative. For SDS, lo-
cations inside the instance are considered positive, while lo-
cations outside are considered negative. For part labeling,
locations inside a part are positive and all other locations
are negative. For keypoint prediction, the true keypoint lo-
cation is positive and locations outside a certain radius (we
use 10% of the bounding box diagonal) of the true location
are labeled negative.

4. Experiments on SDS
Our first testbed is the SDS task. Our baseline for this

task is the algorithm presented in [22]. This pipeline scores
bottom-up region proposals from [1] using CNN features
computed on both the cropped bounding box of the region
and the cropped region foreground. The regions are sub-
jected to non-max suppression. Finally, the surviving can-
didates are refined using figure-ground predictions based on
the top layer features.

As our first system for SDS, we use the same pipeline
as above, but replace the refinement step with one based
on hypercolumns. (We also add a bounding box regression
step [18] so as to start from the best available bounding
box). We present results with this pipeline in section 4.1,

where we show that hypercolumn-based refinement is sig-
nificantly better than the refinement in [22], and is espe-
cially accurate when it comes to capturing fine details of
the segmentation. We also evaluate several ablations of our
system to unpack this performance gain. For ease of refer-
ence, we call this System 1.

One issue with this system is its computational cost. Ex-
tracting features from region foregrounds is expensive and
doubles the time taken. Further, while CNN-based bound-
ing box detection [18] can be speeded up dramatically us-
ing approaches such as [23], no such speedups exist for re-
gion classification. To address these drawbacks, we pro-
pose as our second system the pipeline shown in Figure 3.
This pipeline starts with bounding box detections after non-
maximum suppression. We expand this set of detections
by adding nearby high-scoring boxes that were removed by
non-maximum suppression but may be better localized (ex-
plained in detail below). This expanded set is only twice
as large as the original set, and about two orders of magni-
tude smaller than the full set of bottom-up proposals. For
each candidate in this set, we predict a segmentation, and
score this candidate using CNN features computed on the
segmentation. Because region-based features are computed
only on a small set, the pipeline is much more efficient. We
call this system System 2.

This pipeline relies crucially on our ability to predict a
good segmentation from just bounding boxes. We use hy-
percolumns to make this prediction. In section 4.2, we show
that these predictions are accurate, and significantly better
than predictions based on the top layer of the CNN.

Finally, the efficiency of this pipeline also allows us to
experiment with larger but more expressive architectures.
While [22] used the architecture proposed by Krizhevsky et
al. [28] (referred to as “T-Net” henceforth, following [19])
for both the box features and the region features, we show in
section 4.2 that the architecture proposed by Simonyan and
Zisserman [36] (referred to as “O-Net” henceforth [19]) is
significantly better.

4.1. System 1: Refinement using hypercolumns

In our first set of experiments, we compare a
hypercolumn-based refinement to that proposed in [22]. We
use the ranked hypotheses produced by [22] and refine each
hypothesis using hypercolumns. For the CNN, we use the
same network that was used for the region classification (de-
scribed as C in [22]). This network consists of two path-
ways, each based on T-Net. It takes in both the cropped
bounding box as well as the cropped foreground. For the hy-
percolumn representation we use the top-level fc7 features,
the conv4 features from both pathways using a 1⇥ 1 neigh-
borhood, and the pool2 features from the box pathway with
a 3⇥ 3 neighborhood. We choose these layers because they
are spread out evenly in the network and capture a diverse

Alternate approach: resize predictions

xf
xm xc

wf wm wc



Related topic:  
dilated convolutions

Published as a conference paper at ICLR 2016

(a) (b) (c)

Figure 1: Systematic dilation supports exponential expansion of the receptive field without loss of
resolution or coverage. (a) F1 is produced from F0 by a 1-dilated convolution; each element in F1

has a receptive field of 3⇥3. (b) F2 is produced from F1 by a 2-dilated convolution; each element
in F2 has a receptive field of 7⇥7. (c) F3 is produced from F2 by a 4-dilated convolution; each
element in F3 has a receptive field of 15⇥15. The number of parameters associated with each layer
is identical. The receptive field grows exponentially while the number of parameters grows linearly.

easy to see that the size of the receptive field of each element in Fi+1 is (2

i+2 � 1)⇥(2

i+2 � 1).
The receptive field is a square of exponentially increasing size. This is illustrated in Figure 1.

3 MULTI-SCALE CONTEXT AGGREGATION

The context module is designed to increase the performance of dense prediction architectures by
aggregating multi-scale contextual information. The module takes C feature maps as input and
produces C feature maps as output. The input and output have the same form, thus the module can
be plugged into existing dense prediction architectures.

We begin by describing a basic form of the context module. In this basic form, each layer has C
channels. The representation in each layer is the same and could be used to directly obtain a dense
per-class prediction, although the feature maps are not normalized and no loss is defined inside the
module. Intuitively, the module can increase the accuracy of the feature maps by passing them
through multiple layers that expose contextual information.

The basic context module has 7 layers that apply 3⇥3 convolutions with different dilation factors.
The dilations are 1, 1, 2, 4, 8, 16, and 1. Each convolution operates on all layers: strictly speaking,
these are 3⇥3⇥C convolutions with dilation in the first two dimensions. Each of these convolutions
is followed by a pointwise truncation max(·, 0). A final layer performs 1⇥1⇥C convolutions and
produces the output of the module. The architecture is summarized in Table 1. Note that the front-
end module that provides the input to the context network in our experiments produces feature maps
at 64⇥64 resolution. We therefore stop the exponential expansion of the receptive field after layer 6.

Our initial attempts to train the context module failed to yield an improvement in prediction accuracy.
Experiments revealed that standard initialization procedures do not readily support the training of the
module. Convolutional networks are commonly initialized using samples from random distributions
(Glorot & Bengio, 2010; Krizhevsky et al., 2012; Simonyan & Zisserman, 2015). However, we
found that random initialization schemes were not effective for the context module. We found an
alternative initialization with clear semantics to be much more effective:

kb(t, a) = 1[t=0]1[a=b], (4)

where a is the index of the input feature map and b is the index of the output map. This is a form
of identity initialization, which has recently been advocated for recurrent networks (Le et al., 2015).
This initialization sets all filters such that each layer simply passes the input directly to the next. A
natural concern is that this initialization could put the network in a mode where backpropagation
cannot significantly improve the default behavior of simply passing information through. However,
experiments indicate that this is not the case. Backpropagation reliably harvests the contextual
information provided by the network to increase the accuracy of the processed maps.
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MULTI-SCALE CONTEXT AGGREGATION BY
DILATED CONVOLUTIONS

Fisher Yu

Princeton University

Vladlen Koltun

Intel Labs

ABSTRACT

State-of-the-art models for semantic segmentation are based on adaptations of
convolutional networks that had originally been designed for image classifica-
tion. However, dense prediction problems such as semantic segmentation are
structurally different from image classification. In this work, we develop a new
convolutional network module that is specifically designed for dense prediction.
The presented module uses dilated convolutions to systematically aggregate multi-
scale contextual information without losing resolution. The architecture is based
on the fact that dilated convolutions support exponential expansion of the receptive
field without loss of resolution or coverage. We show that the presented context
module increases the accuracy of state-of-the-art semantic segmentation systems.
In addition, we examine the adaptation of image classification networks to dense
prediction and show that simplifying the adapted network can increase accuracy.

1 INTRODUCTION

Many natural problems in computer vision are instances of dense prediction. The goal is to com-
pute a discrete or continuous label for each pixel in the image. A prominent example is semantic
segmentation, which calls for classifying each pixel into one of a given set of categories (He et al.,
2004; Shotton et al., 2009; Kohli et al., 2009; Krähenbühl & Koltun, 2011). Semantic segmenta-
tion is challenging because it requires combining pixel-level accuracy with multi-scale contextual
reasoning (He et al., 2004; Galleguillos & Belongie, 2010).

Significant accuracy gains in semantic segmentation have recently been obtained through the use of
convolutional networks (LeCun et al., 1989) trained by backpropagation (Rumelhart et al., 1986).
Specifically, Long et al. (2015) showed that convolutional network architectures that had originally
been developed for image classification can be successfully repurposed for dense prediction. These
reporposed networks substantially outperform the prior state of the art on challenging semantic seg-
mentation benchmarks. This prompts new questions motivated by the structural differences between
image classification and dense prediction. Which aspects of the repurposed networks are truly nec-
essary and which reduce accuracy when operated densely? Can dedicated modules designed specif-
ically for dense prediction improve accuracy further?

Modern image classification networks integrate multi-scale contextual information via succes-
sive pooling and subsampling layers that reduce resolution until a global prediction is obtained
(Krizhevsky et al., 2012; Simonyan & Zisserman, 2015). In contrast, dense prediction calls for multi-
scale contextual reasoning in combination with full-resolution output. Recent work has studied two
approaches to dealing with the conflicting demands of multi-scale reasoning and full-resolution
dense prediction. One approach involves repeated up-convolutions that aim to recover lost resolu-
tion while carrying over the global perspective from downsampled layers (Noh et al., 2015; Fischer
et al., 2015). This leaves open the question of whether severe intermediate downsampling was truly
necessary. Another approach involves providing multiple rescaled versions of the image as input to
the network and combining the predictions obtained for these multiple inputs (Farabet et al., 2013;
Lin et al., 2015; Chen et al., 2015b). Again, it is not clear whether separate analysis of rescaled input
images is truly necessary.
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Object detection as heatmap prediction

Train sepearate heatmaps for large and small face detection



Hu et al, CVPR 17

10 ms on GPU

Can apply directly to object detection



Dominant approach for object 
detection: region-based CNNs



Slow%R'CNN

Girshick et$al.$CVPR14.

Input$image

ConvNet
ConvNet

ConvNet

SVMs

SVMs
SVMs

Warped$image$regions

Forward$each$region$
through$ ConvNet

Classify$regions$with$SVMs

Regions$of$Interest$(RoI)$
from$a$proposal$method
(~2k)

Post$hoc$component

Region CNNs (RCNNS)

“Faster RCNN”: train a CNN to produce object proposals (similar to face detector)



Aside: 
attentional cascades for recognition

 

Conceptually, we can think of as a (sort-of) linear classifier defined on box-filter features (Haar wavelets)

ViolaJones (OpenCV detection)

https://en.wikipedia.org/wiki/Viola%E2%80%93Jones_object_detection_framework

https://en.wikipedia.org/wiki/Viola%E2%80%93Jones_object_detection_framework


Attentional cascades
Final classifier is a linear combination of thresholded features

Learn a sequential cascade of classifiers

These 2 features can filter out 60% of BG windows (without missing essentially any faces)

This kind of sparse reasoning is currently missing in deep networks  
(but an active area of research known as attentional deep networks)



Proposal-based CNNsSlow%R'CNN

Girshick et$al.$CVPR14.

Input$image

ConvNet
ConvNet

ConvNet
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SVMs

Warped$image$regions

Forward$each$region$
through$ ConvNet

Classify$regions$with$SVMs

Regions$of$Interest$(RoI)$
from$a$proposal$method
(~2k)

Post$hoc$component

Can we learn a proposal network that produces accurate object detectors? 
Requires us to backprop through a warp  

(e.g., compute gradient of loss wrt warp parameters)



Solution: 
Spatial transformer networks(a) (c)
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Figure 1: The result of using a spatial transformer as the
first layer of a fully-connected network trained for distorted
MNIST digit classification. (a) The input to the spatial trans-
former network is an image of an MNIST digit that is dis-
torted with random translation, scale, rotation, and clutter. (b)
The localisation network of the spatial transformer predicts a
transformation to apply to the input image. (c) The output
of the spatial transformer, after applying the transformation.
(d) The classification prediction produced by the subsequent
fully-connected network on the output of the spatial trans-
former. The spatial transformer network (a CNN including a
spatial transformer module) is trained end-to-end with only
class labels – no knowledge of the groundtruth transforma-
tions is given to the system.

Spatial transformers can be incorporated into CNNs to benefit multifarious tasks, for example:
(i) image classification: suppose a CNN is trained to perform multi-way classification of images
according to whether they contain a particular digit – where the position and size of the digit may
vary significantly with each sample (and are uncorrelated with the class); a spatial transformer that
crops out and scale-normalizes the appropriate region can simplify the subsequent classification
task, and lead to superior classification performance, see Fig. 1; (ii) co-localisation: given a set of
images containing different instances of the same (but unknown) class, a spatial transformer can be
used to localise them in each image; (iii) spatial attention: a spatial transformer can be used for
tasks requiring an attention mechanism, such as in [14, 39], but is more flexible and can be trained
purely with backpropagation without reinforcement learning. A key benefit of using attention is that
transformed (and so attended), lower resolution inputs can be used in favour of higher resolution
raw inputs, resulting in increased computational efficiency.

The rest of the paper is organised as follows: Sect. 2 discusses some work related to our own, we
introduce the formulation and implementation of the spatial transformer in Sect. 3, and finally give
the results of experiments in Sect. 4. Additional experiments and implementation details are given
in Appendix A.

2 Related Work
In this section we discuss the prior work related to the paper, covering the central ideas of modelling
transformations with neural networks [15, 16, 36], learning and analysing transformation-invariant
representations [4, 6, 10, 20, 22, 33], as well as attention and detection mechanisms for feature
selection [1, 7, 11, 14, 27, 29].

Early work by Hinton [15] looked at assigning canonical frames of reference to object parts, a theme
which recurred in [16] where 2D affine transformations were modeled to create a generative model
composed of transformed parts. The targets of the generative training scheme are the transformed
input images, with the transformations between input images and targets given as an additional
input to the network. The result is a generative model which can learn to generate transformed
images of objects by composing parts. The notion of a composition of transformed parts is taken
further by Tieleman [36], where learnt parts are explicitly affine-transformed, with the transform
predicted by the network. Such generative capsule models are able to learn discriminative features
for classification from transformation supervision.

The invariance and equivariance of CNN representations to input image transformations are studied
in [22] by estimating the linear relationships between representations of the original and transformed
images. Cohen & Welling [6] analyse this behaviour in relation to symmetry groups, which is also
exploited in the architecture proposed by Gens & Domingos [10], resulting in feature maps that are
more invariant to symmetry groups. Other attempts to design transformation invariant representa-
tions are scattering networks [4], and CNNs that construct filter banks of transformed filters [20, 33].
Stollenga et al. [34] use a policy based on a network’s activations to gate the responses of the net-
work’s filters for a subsequent forward pass of the same image and so can allow attention to specific
features. In this work, we aim to achieve invariant representations by manipulating the data rather
than the feature extractors, something that was done for clustering in [9].

Neural networks with selective attention manipulate the data by taking crops, and so are able to learn
translation invariance. Work such as [1, 29] are trained with reinforcement learning to avoid the
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Figure 2: The architecture of a spatial transformer module. The input feature map U is passed to a localisation
network which regresses the transformation parameters ✓. The regular spatial grid G over V is transformed to
the sampling grid T✓(G), which is applied to U as described in Sect. 3.3, producing the warped output feature
map V . The combination of the localisation network and sampling mechanism defines a spatial transformer.

need for a differentiable attention mechanism, while [14] use a differentiable attention mechansim
by utilising Gaussian kernels in a generative model. The work by Girshick et al. [11] uses a region
proposal algorithm as a form of attention, and [7] show that it is possible to regress salient regions
with a CNN. The framework we present in this paper can be seen as a generalisation of differentiable
attention to any spatial transformation.

3 Spatial Transformers
In this section we describe the formulation of a spatial transformer. This is a differentiable module
which applies a spatial transformation to a feature map during a single forward pass, where the
transformation is conditioned on the particular input, producing a single output feature map. For
multi-channel inputs, the same warping is applied to each channel. For simplicity, in this section we
consider single transforms and single outputs per transformer, however we can generalise to multiple
transformations, as shown in experiments.

The spatial transformer mechanism is split into three parts, shown in Fig. 2. In order of computation,
first a localisation network (Sect. 3.1) takes the input feature map, and through a number of hidden
layers outputs the parameters of the spatial transformation that should be applied to the feature map
– this gives a transformation conditional on the input. Then, the predicted transformation parameters
are used to create a sampling grid, which is a set of points where the input map should be sampled to
produce the transformed output. This is done by the grid generator, described in Sect. 3.2. Finally,
the feature map and the sampling grid are taken as inputs to the sampler, producing the output map
sampled from the input at the grid points (Sect. 3.3).

The combination of these three components forms a spatial transformer and will now be described
in more detail in the following sections.

3.1 Localisation Network

The localisation network takes the input feature map U 2 RH⇥W⇥C with width W , height H and
C channels and outputs ✓, the parameters of the transformation T✓ to be applied to the feature map:
✓ = floc(U). The size of ✓ can vary depending on the transformation type that is parameterised,
e.g. for an affine transformation ✓ is 6-dimensional as in (10).

The localisation network function floc() can take any form, such as a fully-connected network or
a convolutional network, but should include a final regression layer to produce the transformation
parameters ✓.

3.2 Parameterised Sampling Grid

To perform a warping of the input feature map, each output pixel is computed by applying a sampling
kernel centered at a particular location in the input feature map (this is described fully in the next
section). By pixel we refer to an element of a generic feature map, not necessarily an image. In
general, the output pixels are defined to lie on a regular grid G = {Gi} of pixels Gi = (xt

i, y
t
i),

forming an output feature map V 2 RH0⇥W 0⇥C , where H 0 and W 0 are the height and width of the
grid, and C is the number of channels, which is the same in the input and output.
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Extensions: recurrent CNNs
Activation depends on below layer and previous value of activation

self-driving cars60,61. Companies such as Mobileye and NVIDIA are 
using such ConvNet-based methods in their upcoming vision sys-
tems for cars. Other applications gaining importance involve natural 
language understanding14 and speech recognition7. 

Despite these successes, ConvNets were largely forsaken by the 
mainstream computer-vision and machine-learning communities 
until the ImageNet competition in 2012. When deep convolutional 
networks were applied to a data set of about a million images from 
the web that contained 1,000 different classes, they achieved spec-
tacular results, almost halving the error rates of the best compet-
ing approaches1. This success came from the efficient use of GPUs, 
ReLUs, a new regularization technique called dropout62, and tech-
niques to generate more training examples by deforming the existing 
ones. This success has brought about a revolution in computer vision; 
ConvNets are now the dominant approach for almost all recognition 
and detection tasks4,58,59,63–65 and approach human performance on 
some tasks. A recent stunning demonstration combines ConvNets 
and recurrent net modules for the generation of image captions 
(Fig. 3). 

Recent ConvNet architectures have 10 to 20 layers of ReLUs, hun-
dreds of millions of weights, and billions of connections between 
units. Whereas training such large networks could have taken weeks 
only two years ago, progress in hardware, software and algorithm 
parallelization have reduced training times to a few hours. 

The performance of ConvNet-based vision systems has caused 
most major technology companies, including Google, Facebook, 

Microsoft, IBM, Yahoo!, Twitter and Adobe, as well as a quickly 
growing number of start-ups to initiate research and development 
projects and to deploy ConvNet-based image understanding products 
and services. 

ConvNets are easily amenable to efficient hardware implemen-
tations in chips or field-programmable gate arrays66,67. A number 
of companies such as NVIDIA, Mobileye, Intel, Qualcomm and 
Samsung are developing ConvNet chips to enable real-time vision 
applications in smartphones, cameras, robots and self-driving cars. 

Distributed representations and language processing 
Deep-learning theory shows that deep nets have two different expo-
nential advantages over classic learning algorithms that do not use 
distributed representations21. Both of these advantages arise from the 
power of composition and depend on the underlying data-generating 
distribution having an appropriate componential structure40. First, 
learning distributed representations enable generalization to new 
combinations of the values of learned features beyond those seen 
during training (for example, 2n combinations are possible with n 
binary features)68,69. Second, composing layers of representation in 
a deep net brings the potential for another exponential advantage70 
(exponential in the depth). 

The hidden layers of a multilayer neural network learn to repre-
sent the network’s inputs in a way that makes it easy to predict the 
target outputs. This is nicely demonstrated by training a multilayer 
neural network to predict the next word in a sequence from a local 

Figure 3 | From image to text. Captions generated by a recurrent neural 
network (RNN) taking, as extra input, the representation extracted by a deep 
convolution neural network (CNN) from a test image, with the RNN trained to 
‘translate’ high-level representations of images into captions (top). Reproduced 

with permission from ref. 102. When the RNN is given the ability to focus its 
attention on a different location in the input image (middle and bottom; the 
lighter patches were given more attention) as it generates each word (bold), we 
found86 that it exploits this to achieve better ‘translation’ of images into captions.
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vegetables at the 
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A woman is throwing a frisbee in a park.
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trees in the background.

A dog is standing on a hardwood floor. A stop sign is on a road with a
mountain in the background
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Extensions: recurrent CNNs

Can unroll into a “standard” CNN with tied weights

U

W

U U U U

W W W

Does this complicate learning?



Recurrent nets

x
w w

z y
(input) (output)f g

dy/dw = ?

y = g(w,z)z = f(w,z)

z = wx
y = wz
y = w2x

eg:



Recurrent nets
x

w w
z y

(input) (output)f g

dy/dw = dg/dw + dg/dz dz/dw
dz/dw = df/dw 
dy/dw = dg/dw + dg/dz df/dw

y = g(w,z)z = f(w,z)



Recurrent nets

1. Naively apply backprop assuming weights aren’t tied together

2. Post-hoc, simply add together gradients that are tied together!

dy/dw = dg/dw + dg/dz df/dw

dy/dw  = dg/dw
dy/dv  = dg/dz df/dw

x
w w

z y
f g

x
v w

z y
f g



Applications: image captioning

self-driving cars60,61. Companies such as Mobileye and NVIDIA are 
using such ConvNet-based methods in their upcoming vision sys-
tems for cars. Other applications gaining importance involve natural 
language understanding14 and speech recognition7. 

Despite these successes, ConvNets were largely forsaken by the 
mainstream computer-vision and machine-learning communities 
until the ImageNet competition in 2012. When deep convolutional 
networks were applied to a data set of about a million images from 
the web that contained 1,000 different classes, they achieved spec-
tacular results, almost halving the error rates of the best compet-
ing approaches1. This success came from the efficient use of GPUs, 
ReLUs, a new regularization technique called dropout62, and tech-
niques to generate more training examples by deforming the existing 
ones. This success has brought about a revolution in computer vision; 
ConvNets are now the dominant approach for almost all recognition 
and detection tasks4,58,59,63–65 and approach human performance on 
some tasks. A recent stunning demonstration combines ConvNets 
and recurrent net modules for the generation of image captions 
(Fig. 3). 

Recent ConvNet architectures have 10 to 20 layers of ReLUs, hun-
dreds of millions of weights, and billions of connections between 
units. Whereas training such large networks could have taken weeks 
only two years ago, progress in hardware, software and algorithm 
parallelization have reduced training times to a few hours. 

The performance of ConvNet-based vision systems has caused 
most major technology companies, including Google, Facebook, 

Microsoft, IBM, Yahoo!, Twitter and Adobe, as well as a quickly 
growing number of start-ups to initiate research and development 
projects and to deploy ConvNet-based image understanding products 
and services. 

ConvNets are easily amenable to efficient hardware implemen-
tations in chips or field-programmable gate arrays66,67. A number 
of companies such as NVIDIA, Mobileye, Intel, Qualcomm and 
Samsung are developing ConvNet chips to enable real-time vision 
applications in smartphones, cameras, robots and self-driving cars. 

Distributed representations and language processing 
Deep-learning theory shows that deep nets have two different expo-
nential advantages over classic learning algorithms that do not use 
distributed representations21. Both of these advantages arise from the 
power of composition and depend on the underlying data-generating 
distribution having an appropriate componential structure40. First, 
learning distributed representations enable generalization to new 
combinations of the values of learned features beyond those seen 
during training (for example, 2n combinations are possible with n 
binary features)68,69. Second, composing layers of representation in 
a deep net brings the potential for another exponential advantage70 
(exponential in the depth). 

The hidden layers of a multilayer neural network learn to repre-
sent the network’s inputs in a way that makes it easy to predict the 
target outputs. This is nicely demonstrated by training a multilayer 
neural network to predict the next word in a sequence from a local 

Figure 3 | From image to text. Captions generated by a recurrent neural 
network (RNN) taking, as extra input, the representation extracted by a deep 
convolution neural network (CNN) from a test image, with the RNN trained to 
‘translate’ high-level representations of images into captions (top). Reproduced 

with permission from ref. 102. When the RNN is given the ability to focus its 
attention on a different location in the input image (middle and bottom; the 
lighter patches were given more attention) as it generates each word (bold), we 
found86 that it exploits this to achieve better ‘translation’ of images into captions.
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Applications: video analysis
Strangely, state-of-the-art deep features for video analysis not 

that much better than previous hand-designed counterparts

Still an open research question!



Final difficulties in training
Vanishing or exploding gradients imply lower layers can be hard to learn 
(would presumably be less of an issue with second-order optimization)

Given an input x
0

, evaluating the network is a simple matter of evaluating all the intermediate
stages in order to compute an overall function xL = f(x

0

;w
1

, . . . ,wL).

1.3 CNN derivatives

In training a CNN, we are often interested in taking the derivative of a loss ` : f(x,w) 7! R
with respect to the parameters. This e↵ectively amounts to extending the network with a
scalar block at the end:

x
0

f
1

f
2

... fL `

w
1

w
2

wL

z 2 R
x
2

x
3

xL�1

xL

The derivative of ` � f with respect to the parameters can be computed but starting from
the end of the chain (or DAG) and working backwards using the chain rule, a process also
known as back-propagation. For example the derivative w.r.t. wl is:

dz

d(vecwl)>
=

dz

d(vecxL)>
d vecxL

d(vecxL�1

)>
. . .

d vecxl+1

d(vecxl)>
d vecxl

d(vecwl)>
. (2)

Note that the derivatives are implicitly evaluated at the working point determined by the
input x

0

during the evaluation of the network in the forward pass. The vec symbol is the
vectorization operator, which simply reshape its tensor argument to a column vector. This
notation for the derivatives is taken from [5] and is used throughout this document.

Computing (2) requires computing the derivative of each block xl = fl(xl�1

,wl) with
respect to its parameters wl and input xl�1

. Let us know focus on computing the derivatives
for one computational block. We can look at the network as follows:

` � fL(·,wL) � fL�1

(·,wL�1

) · · · � fl+1

(·,wl+1

)| {z }
z(·)

�fl(xl,wl) � . . .

where � denotes the composition of function. For simplicity, lump together the factors from
fl + 1 to the loss ` into a single scalar function z(·) and drop the subscript l from the first
block. Hence, the problem is to compute the derivative of (z � f)(x,w) 2 R with respect to
the data x and the parameters w. Graphically:

x f z(·) z

w

y
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x
0

f
1

f
2

... fL `
y

w
1

w
2

wL

z 2 R
x
1

x
2

xL�1

xL

In learning, we are computing in determining the gradient of the loss z with respect to each
parameter:

dz

dwl

=
d

dwl

[`
y

� fL(·;wL) � ... � f2(·;w2

) � f
1

(x
0

;w
1

)]

By applying the chain rule, we find that this can be rewritten as

dz

dwl

=
d`

y

(xL)

d(vecxL)>
d vec fL(xL�1

;wL)

d(vecxL�1

)>
. . .

d vec fl+1

(xl;wl+1

)

d(vecxl)>
d vec fl(xl�1

;wl)

dw>
l

where the derivatives are computed at the working point determined by the input x
0

and
the current value of the parameters. It is convenient to rewrite this expression in term of
variables only, leaving the functional dependencies implicit:

dz

dwl

=
dz

d(vecxL)>
d vecxL

d(vecxL�1

)>
. . .

d vecxl+1

d(vecxl)>
d vecxl

dw>
l

The vec symbol is the vectorization operator, which simply reshape its tensor argument to
a column vector. This notation for the derivatives is taken from [6] and is used throughout
this document.

Note that this expression involves computing and multiplying the Jacobians of all build-
ing block from level L back to level l. Unfortunately intermediate Jacobians such as
d vecxl/d(vecxl�1

)> are extremely large HlWlDl⇥Hl�1

Wl�1

Dl�1

matrices (often worth GBs
of data), which makes the naive application of the chain rule unfeasible.

The trick is to notice that only the intermediate but unneded Jacobians are so large; in
fact, since the loss z is a scalar value, the target derivatives dz/dwl have the same dimensions
as wl. The key idea of backpropagation is a way to organize the computation in order to
avoid the explicit computation of the intermediate large matrices.

This is best seen by focusing on an intermediate layer f with parameter w, as follows:

x f h z 2 R

w

y

Here the function h lumps together all layers of the network from f to the scalar output z
(loss). The derivatives of h � f with respect to the data and parameters can be rewritten as:

dz

d(vecx)>
=

dz

d(vecy)>
d vecy

d(vecx)>
,

dz

d(vecw)>
=

dz

d(vecy)>
d vecy

d(vecw)>
. (2.1)

My intuition: multiscale skip connections and weight-tying (recurrence) alleviate this



Long-range dependancies

Consider sequences where the next word (or video frame) is effected by an observation long ago

(e.g., a person walked into a building 10 minutes ago)



Approach
w w

v v v

x1 x2 x3

z1 z2 z3

Add functionality to switch between z2 = wz1 +vx2 

z2 = z1

(normal update)

(remember)

z2 = vx2 (forget past)

To do so, multiply in sigmoidal activations that act as gates (returning 0 or 1)

�



A closer look

Recurent models typically make use of tanh nonlinearities  
(unbounded nonlinear functions tend to allow activations to grow over time)



LSTMs
Long short-term memory

Still kind of mysterious to me…
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Why does it work so well?

Visualizations 
Distributed representations 

Compositional representations



Visualizations

First-layer 11x11 filters



Visualizaing other layers
1.0 1.0 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

1.0 0.9 0.9 0.8 0.8 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.6 0.6

1.0 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.6 0.6

1.0 0.9 0.8 0.8 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

1.0 1.0 0.9 0.9 0.9 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

1.0 0.9 0.8 0.8 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

Figure 3: Top regions for six pool5 units. Receptive fields and activation values are drawn in white. Some units are aligned to concepts,
such as people (row 1) or text (4). Other units capture texture and material properties, such as dot arrays (2) and specular reflections (6).

VOC 2007 test aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
R-CNN pool5 51.8 60.2 36.4 27.8 23.2 52.8 60.6 49.2 18.3 47.8 44.3 40.8 56.6 58.7 42.4 23.4 46.1 36.7 51.3 55.7 44.2
R-CNN fc6 59.3 61.8 43.1 34.0 25.1 53.1 60.6 52.8 21.7 47.8 42.7 47.8 52.5 58.5 44.6 25.6 48.3 34.0 53.1 58.0 46.2
R-CNN fc7 57.6 57.9 38.5 31.8 23.7 51.2 58.9 51.4 20.0 50.5 40.9 46.0 51.6 55.9 43.3 23.3 48.1 35.3 51.0 57.4 44.7
R-CNN FT pool5 58.2 63.3 37.9 27.6 26.1 54.1 66.9 51.4 26.7 55.5 43.4 43.1 57.7 59.0 45.8 28.1 50.8 40.6 53.1 56.4 47.3
R-CNN FT fc6 63.5 66.0 47.9 37.7 29.9 62.5 70.2 60.2 32.0 57.9 47.0 53.5 60.1 64.2 52.2 31.3 55.0 50.0 57.7 63.0 53.1
R-CNN FT fc7 64.2 69.7 50.0 41.9 32.0 62.6 71.0 60.7 32.7 58.5 46.5 56.1 60.6 66.8 54.2 31.5 52.8 48.9 57.9 64.7 54.2
R-CNN FT fc7 BB 68.1 72.8 56.8 43.0 36.8 66.3 74.2 67.6 34.4 63.5 54.5 61.2 69.1 68.6 58.7 33.4 62.9 51.1 62.5 64.8 58.5

DPM v5 [18] 33.2 60.3 10.2 16.1 27.3 54.3 58.2 23.0 20.0 24.1 26.7 12.7 58.1 48.2 43.2 12.0 21.1 36.1 46.0 43.5 33.7
DPM ST [26] 23.8 58.2 10.5 8.5 27.1 50.4 52.0 7.3 19.2 22.8 18.1 8.0 55.9 44.8 32.4 13.3 15.9 22.8 46.2 44.9 29.1
DPM HSC [28] 32.2 58.3 11.5 16.3 30.6 49.9 54.8 23.5 21.5 27.7 34.0 13.7 58.1 51.6 39.9 12.4 23.5 34.4 47.4 45.2 34.3

Table 2: Detection average precision (%) on VOC 2007 test. Rows 1-3 show R-CNN performance without fine-tuning. Rows 4-6 show
results for the CNN pre-trained on ILSVRC 2012 and then fine-tuned (FT) on VOC 2007 trainval. Row 7 includes a simple bounding box
regression (BB) stage that reduces localization errors (Section 3.4). Rows 8-10 present DPM methods as a strong baseline. The first uses
only HOG, while the next two use different feature learning approaches to augment or replace HOG.

tion of shape, texture, color, and material properties. The
subsequent fully connected layer fc6 has the ability to model
a large set of compositions of these rich features.

3.2. Ablation studies

Performance layer-by-layer, without fine-tuning. To un-
derstand which layers are critical for detection performance,
we analyzed results on the VOC 2007 dataset for each of the
CNN’s last three layers. Layer pool5 was briefly described
in Section 3.1. The final two layers are summarized below.

Layer fc6 is fully connected to pool5. To compute fea-
tures, it multiplies a 4096⇥9216 weight matrix by the pool5
feature map (reshaped as a 9216-dimensional vector) and
then adds a vector of biases. This intermediate vector is
component-wise half-wave rectified (x max(0, x)).

Layer fc7 is the final layer of the network. It is imple-
mented by multiplying the features computed by fc6 by a
4096 ⇥ 4096 weight matrix, and similarly adding a vector
of biases and applying half-wave rectification.

We start by looking at results from the CNN without
fine-tuning on PASCAL, i.e. all CNN parameters were pre-
trained on ILSVRC 2012 only. Analyzing performance
layer-by-layer (Table 2 rows 1-3) reveals that features from
fc7 generalize worse than features from fc6. This means
that 29%, or about 16.8 million, of the CNN’s parameters
can be removed without degrading mAP. More surprising is
that removing both fc7 and fc6 produces quite good results
even though pool5 features are computed using only 6% of
the CNN’s parameters. Much of the CNN’s representational
power comes from its convolutional layers, rather than from
the much larger densely connected layers. This finding sug-
gests potential utility in computing a dense feature map, in
the sense of HOG, of an arbitrary-sized image by using only
the convolutional layers of the CNN. This representation
would enable experimentation with sliding-window detec-
tors, including DPM, on top of pool5 features.

Look for image patches that maximally excite particular activations



Fun with visualizations
Perform backprop all the way to the pixel-level and update pixels so as to maximize activations

http://yosinski.com/deepvis#toolbox

http://yosinski.com/deepvis#toolbox


Fun with visualizations

Figure 5. Visualization of example features of eight layers of a deep, convolutional neural network. The images reflect the true sizes
of the features at different layers. In each layer, we show visualizations from 4 random gradient descent runs for each channel. While
these images are hand picked to showcase the diversity and interpretability of the visualizations, one image for each filter of all five
convolutional layers is shown in Figure S1 in supplementary information. One can recognize important features of objects at different
scales, such as edges, corners, wheels, eyes, shoulders, faces, handles, bottles, etc. The visualizations show the increase in complexity
and variation on higher layers, comprised of simpler components from lower layers. The variation of patterns increases with increasing
layer number, indicating that increasingly invariant representations are learned. In particular, the jump from Layer 5 (the last convolution
layer) to Layer 6 (the first fully-connected layer) brings about a large increase in variation. Best viewed electronically, zoomed in.

8

Optimize pixels for output activations



Fun with visualizations

Figure 1. The bottom shows a screenshot from the interactive visualization software. The webcam input is shown, along with the whole

layer of conv5 activations. The selected channel pane shows an enlarged version of the 13x13 conv5151 channel activations. Below it,
the deconv starting at the selected channel is shown. On the right, three selections of nine images are shown: synthetic images produced
using the regularized gradient ascent methods described in Section 3, the top 9 image patches from the training set (the images from the
training set that caused the highest activations for the selected channel), and the deconv of the those top 9 images. All areas highlighted
with a green star relate to the particular selected channel, here conv5151; when the selection changes, these panels update. The top
depicts enlarged numerical optimization results for this and other channels. conv52 is a channel that responds most strongly to dog faces
(as evidenced by the top nine images, which are not shown due to space constraints), but it also responds to flowers on the blanket on the
bottom and half way up the right side of the image (as seen in the inset red highlight). This response to flowers can be partially seen in
the optimized images but would be missed in an analysis focusing only on the top nine images and their deconv versions, which contain
no flowers. conv5151 detects different types of faces. The top nine images are all of human faces, but here we see it responds also to the
cat’s face (and in Figure 2 a lion’s face). Finally, conv5111 activates strongly for the cat’s face, the optimized images show catlike fur
and ears, and the top nine images (not shown here) are also all of cats. For this image, the softmax output layer top two predictions are
“Egyptian Cat” and “Computer Keyboard.” All figures in this paper are best viewed digitally, in color, significantly zoomed in.

3

Optimize pixels for intermediate activations



GOFAI

Typical knowledge-base of discrete concepts (eg, propositional logic)

“good-old fashioned AI”



“For example, if you learn that chimpanzees like onions, you will probably raise your estimate of the probability 
that gorillas like onions. If you subsequently learn that gibbons and orangutans do not like onions, your estimate of 

the probability that gorillas that like onions will fall, though it may be higher than it was originally”

.:J 

CHAPTER 

Distributed Representations

G. E. HINTON, J. L. McCLELLAND, and D. E. RUMELHART

Given a network of simple computing elements and some entities to
be represented , the most straightforward scheme is to use one comput-
ing element for each entity. This is called a local representation. It is
easy to understand and easy to implement because the structure of the
physical network mirrors the structure of the knowledge it contains.
The naturalness and simplicity of this relationship between the
knowledge and the hardware that implements it have led many people
to simply assume that local representations are the best way to use
parallel hardware. There are, of course , a wide variety of more compli-
cated implementations in which there is no one-to-one correspondence
between concepts and hardware units, but these implementations are
only worth considering if they lead to increased efficiency or ,
interesting emergent properties that cannot be conveniently achieved
using local representations.

This chapter describes one type of representation that is less familiar
and harder to think about than local representations. Each entity is
represented by a pattern of activity distributed over many computing
elements, and each computing element is involved in representing
many different entities. The strength of this more complicated kind of
representation does not lie in its notational convenience or its ease of
implementation in a conventional computer, but rather in the efficiency
with which it makes use of the processing abilities of networks of sim-
ple , neuron-like computing elements.



Compositional perspectives on deep learning

Convolutional Neural Nets (CNNs). Lecun et al

Boltmann machines. Hinton et al



Deep Boltzmann Machines as deep latent-variable models

x

z1
w1

z2
w2

Binary latent variables: is there a (person, head, oriented edge) at a particular location(?)

1. Latent variables allow for sharing of information across a large collection of templates

2. Models can synthesize new combinations of latent variables

Salakhutdinov & Hinton 09

“subparts”

“parts”
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Deep Boltzmann Machines
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The messy details:
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Notation: hierarhical latent-variable models

P (z) / eS(z)
where S(z) =

1

2

zTWz + bT z

Boltzmann: zi 2 {0, 1}
Gaussian: zi 2 R

Rectified Gaussian: zi 2 R+

Let z0 = x
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Notation: hierarhical latent-variable models

P (z) / eS(z)
where S(z) =

1

2

zTWz + bT z

Boltzmann: zi 2 {0, 1}
Gaussian: zi 2 R

Rectified Gaussian: zi 2 R+

Let z0 = x



Convolutional Boltzmann Machines
Lee et al, ICML 09

The activation of a binary variable given lower-level binary features are given by a filter

“where”

“subparts”

“parts”

wheel filter

“what”



Convolutional Boltzmann Machines

Inference: compute P(x|z)
Hard to do

i

u

Option 1 (Gibbs sampling): Iteratively update zi[u] by computing P(zi[u]| all else)

(Hinton)



Gibbs sampling

i

u

Iteratively update zi[u] by computing P(zi[u]| all else)

zi[u] ⇠ sigmoid(bi + topi[u] + boti[u])

topi[u] =

X

v

wi+1[v]zi+1[u� v]

boti[u] =

X

v

wi[v]zi�1[u+ v] “convolution”

“correlation”



Mean feild updates

i

u

zi[u] ⇠ sigmoid(bi + topi[u] + boti[u])

topi[u] =

X

v

wi+1[v]zi+1[u� v]

boti[u] =

X

v

wi[v]zi�1[u+ v] “convolution”

zi[u] = sigmoid(bi + topi[u] + boti[u])

(Salakhutdinov & Hinton)

“correlation”



Claim: any sequence of updates can be written as a 
collection of filtering + nonlinear operations

Convolution + sigmoidal activations mimic computations on a binary latent-variable model



Use CNNS to learn to infer on Boltzmann machines

1. Use mean-field inference rather than Gibbs sampling 
(Salakhutdinov & Hinton) 

2. Unroll sequence of mean-field updates into a recurrent 
neural net (Goodfellow et al)
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Layerwise updates Neural net implementation



Top-down localization

1. Model “max-pooling” using lateral inhibition connections (red edges) 

2. Above model allows for top-down localization  
e.g., a car “object” can influence the activation and location of a wheel “part”



Implementation
1-pass inference (VGG-16)

2-pass inference (cf FCNs, DeConvNets,…)



Coarse-to-fine

Bottom-up

Top-down
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Alternate intepretation
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• Interpret the set of activations from fully-connected (FC7) layers as an embedding 
• Apply standard embedding visualizations (MDS, TSNE)



Embedding visualizations
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FT−All
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Figure 3: Analysis of unit allocation for two-layer wider
networks that expand both FC7 and FC6 with a total of
2,000 new units on SUN-397. X-axis: percentage of the
new units allocated to FC+

7 . Y-axis: multi-class classifi-
cation accuracy. We evaluate in the fine-tuning “New” and
“All” scenarios. The optimal pattern is a spread allocation
where the higher layer FC+

7 takes the majority of new units.

add FCa of size SDW on top of FC7 while expanding FC7

using FC+
7 of size SDW , where SDW 2 {1,024, 2,048}.

For the recursion of wider developmental network (WWD-
CNN) as shown in Figure 2e, we both expand FC7 using
FC+

7 of size SWW
7 and FC6 using FC+

6 of size SWW
6 ,

where SDW
7 2 {1,024, 2,048, 4,096} and SDW

6 is half of
SDW
7 .

We compare DWD-CNN and WWD-CNN with DD-
CNN and WD-CNN in Table 1. The two-layer wider net-
work generally achieves the best performance, indicating
the importance of augmenting the model capacity at differ-
ent and complementary levels. While the combined deeper
and wider network improves over the purely deeper net-
work, it lags a little bit behind the purely wider network.
This further implies different learning behaviors for deeper
and wider networks, thus making the combination of the
two a non-trivial task.

Diagnostic Analysis. While we summarize the best per-
formance in Table 1, we detail the performance change with
different number of augmented units SD, SW , SDW , and
SWW in Table 3. Importantly, all of these variations of
network architectures significantly outperform the conven-
tional fine-tuning baseline, demonstrating the robustness of
our approach. This again verifies the importance and gener-
ality of increasing model capacity when transferring a pre-
trained network for a novel task. Overall, the performance
increases with the augmented model capacity (represented
by the size of augmented layers) for both deeper and wider
networks, although the performance gain diminishes with
increasing number of new units.

Allocation of Units under a Size Budget. An interest-
ing question arises from this analysis: Given a budget of
fixed number of new units, what is an optimal pattern of
unit allocation to different layers. We analyze this issue
in the scenario of two-layer wider network (WWD-CNN)
since it has achieved the best performance. More precisely,

 

 

(a) Pre-Trained Network

 

 

(b) Conventional Fine-Tuning

 

 

(c) Deeper Network (DD-CNN)
 

 

(d) Wider Network (WD-CNN)

Figure 4: t-SNE visualizations of the top feature layers on
the SUN-397 validation set (best viewed in color).

we expand both FC7 and FC6 using a total of 2,000 new
units, i.e., SWW

7 + SWW
6 = 2,000. We change the size of

the expanded layers FC+
7 and FC+

6 linearly in a step size
of 200 while satisfying the constraint of the total number of
units, resulting in 11 WWD-CNN architectures. We then
fine-tune them in the “New” and “All” scenarios.

As shown in Figure 3, all of these network variations
are beneficial and outperform the conventional fine-tuning,
which is consistent with the observation in Table 3. Im-
portantly, diffusion of new units across both FC7 and FC6

leads to the best performance. This indicates that a better
strategy when augmenting the network capacity is to ex-
pand somehow at different layers rather than focus on a sole
layer. In addition, the augmented structure that achieves the
best performance demonstrates the shape of inverted trian-
gle, in which the higher layer FC+

7 takes the majority of
new units. This is partially because FC6 is more generic
to different tasks while FC7 is more specific to the original
task, making it require more capacity (new units) to repre-
sent the novel target tasks.

5.2. Understanding of Fine-Tuning Procedures

In this section, we analyze the fine-tuning procedures
from various perspectives to gain insight into how fine-
tuning modifies the pre-trained network and why it helps
by increasing model capacity. We evaluate on the SUN-397
validation set. For clear analysis and comparison, we focus
on single layer of deeper (DD-CNN) and wider (WD-CNN)
network, both with 2,048 new units.

Feature Visualization. To roughly understand the topol-
ogy of the feature spaces, we visualize features using the
standard t-SNE algorithm []. As shown in Figure 5, we
embed the 4,096-dim FC7 features of the pre-trained and
fine-tuned networks, the wider 6,144-dim FC7 + FC+

7 fea-
tures, and the deeper 2,048-dim FCa features into a 2-dim

6

Colors correspond to classes





Consider a particular neuron ‘a’ with a receptive feild of NxN pixels

…

a = max(0, w · x+ b)

CNNs as hierarchical embeddings



Consider a particular neuron ‘a’ with a receptive feild of NxN pixels

…

Interpret local neighbordhood of activations ‘x’ as an embedding for NxN patches

a = max(0, w · x+ b)

Claim:  
Semantics are not manifested in individual neurons, but rather local retinotopic neighborhoods

CNNs as hierarchical embeddings
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Figure 3: We visualize pairs of (PCA,TSNE) embedding of two conv5 neurons, along with user-
drawn linear boundaries (dotted red lines). For PCA, we also visualize the direction w (the yellow
arrow) that would maximally excite the given neuron, rather than the linear threshold boundary
which lies outside the image. For the left pair, we clearly observe a linear separator in the em-
beddings between bird heads with different orientations. The right illustrates a grouping of texture
patterns that may not be easily described linguistically, but appear to loosely correspond to keyboard,
cruise ship, and text.

Figure 4: We illustrate two search methods based on neuron 58 from conv5, which fires on images
of vehicles. We provide the 4 image patches in the ILSVRC validation set that maximally activate the
neuron (left). Filter Search (top) consists of finding the maximum weight for each spatial location
in the filter. We plot the learned weight values for each filter and indicate the maximum filter weight
with a red line. Correlation Search (bottom) consists of averaging the input features over the top-
100 activations of the neuron. Here we plot the averaged input for each filter and highlight the
maximum with a red line. For each search method, we also show the top image at each spatial
location corresponding to the retrieved conv4 filters.

imented with simpler linear projections obtained through PCA, which also allows us to visualize
neuron a as a 2D line given by the linear threshold function (w, b). Formally speaking, let us
write the 2-dimensional projected coordinates of a point x as (c1, c2) = (v1 · x, v2 · x), where
(v1, v2) are projection vectors given by PCA. Given that we can reconstruct x from its projection
with x = c1v1+c2v2, the linear threshold function can be written as wx+b = c1v1 ·w+c2v2 ·w+b,
or a 2D line with a normal vector (v1 · w, v2 · w) and offset b. This line is visualized in Fig. 3.

User-drawn concepts (PCA): Our embedding visualizations can be used to define new lin-
ear threshold boundaries, corresponding to user-defined visual concepts. In the case of PCA-
embeddings, these user-drawn linear thresholds can be back projected to define new filters and
biases. Formally, given a user-drawn line with normal vector (↵1,↵2) and offset �, the corre-
sponding high-dimensional filter producing the same response is given by ↵1c1 + ↵2c2 + � =

↵1v1 · x+↵2v2 · x+ � = w0 · x+ b0 where w0
= ↵1v1 +↵2v2 and b0 = �. We will show examples

of zero-shot models built with user-defined filters in our experimental results.

User-drawn concepts (TSNE): Reconstructing the filter from a TSNE embedding is much more
difficult. TSNE does not explicitly compute an embedding function, but rather directly out-
puts an embedding of a fixed set of input points (implying that the embedding cannot be ap-
plied to “out-of-sample” points). P-TSNE [20] is a parametric extension that essentially trains a
feedforward neural net to predict the TSNE embedding obtained for a fixed set of inputs - e.g.,
(c1, c2) = (f1(x), f2(x)). Once this function is learned, it can be applied to new “out-of-sample”
patches. Because the function is nonlinear, halfspaces in the embedded space do not correspond
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which lies outside the image. For the left pair, we clearly observe a linear separator in the em-
beddings between bird heads with different orientations. The right illustrates a grouping of texture
patterns that may not be easily described linguistically, but appear to loosely correspond to keyboard,
cruise ship, and text.

Figure 4: We illustrate two search methods based on neuron 58 from conv5, which fires on images
of vehicles. We provide the 4 image patches in the ILSVRC validation set that maximally activate the
neuron (left). Filter Search (top) consists of finding the maximum weight for each spatial location
in the filter. We plot the learned weight values for each filter and indicate the maximum filter weight
with a red line. Correlation Search (bottom) consists of averaging the input features over the top-
100 activations of the neuron. Here we plot the averaged input for each filter and highlight the
maximum with a red line. For each search method, we also show the top image at each spatial
location corresponding to the retrieved conv4 filters.

imented with simpler linear projections obtained through PCA, which also allows us to visualize
neuron a as a 2D line given by the linear threshold function (w, b). Formally speaking, let us
write the 2-dimensional projected coordinates of a point x as (c1, c2) = (v1 · x, v2 · x), where
(v1, v2) are projection vectors given by PCA. Given that we can reconstruct x from its projection
with x = c1v1+c2v2, the linear threshold function can be written as wx+b = c1v1 ·w+c2v2 ·w+b,
or a 2D line with a normal vector (v1 · w, v2 · w) and offset b. This line is visualized in Fig. 3.

User-drawn concepts (PCA): Our embedding visualizations can be used to define new lin-
ear threshold boundaries, corresponding to user-defined visual concepts. In the case of PCA-
embeddings, these user-drawn linear thresholds can be back projected to define new filters and
biases. Formally, given a user-drawn line with normal vector (↵1,↵2) and offset �, the corre-
sponding high-dimensional filter producing the same response is given by ↵1c1 + ↵2c2 + � =

↵1v1 · x+↵2v2 · x+ � = w0 · x+ b0 where w0
= ↵1v1 +↵2v2 and b0 = �. We will show examples

of zero-shot models built with user-defined filters in our experimental results.

User-drawn concepts (TSNE): Reconstructing the filter from a TSNE embedding is much more
difficult. TSNE does not explicitly compute an embedding function, but rather directly out-
puts an embedding of a fixed set of input points (implying that the embedding cannot be ap-
plied to “out-of-sample” points). P-TSNE [20] is a parametric extension that essentially trains a
feedforward neural net to predict the TSNE embedding obtained for a fixed set of inputs - e.g.,
(c1, c2) = (f1(x), f2(x)). Once this function is learned, it can be applied to new “out-of-sample”
patches. Because the function is nonlinear, halfspaces in the embedded space do not correspond
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beddings between bird heads with different orientations. The right illustrates a grouping of texture
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Figure 4: We illustrate two search methods based on neuron 58 from conv5, which fires on images
of vehicles. We provide the 4 image patches in the ILSVRC validation set that maximally activate the
neuron (left). Filter Search (top) consists of finding the maximum weight for each spatial location
in the filter. We plot the learned weight values for each filter and indicate the maximum filter weight
with a red line. Correlation Search (bottom) consists of averaging the input features over the top-
100 activations of the neuron. Here we plot the averaged input for each filter and highlight the
maximum with a red line. For each search method, we also show the top image at each spatial
location corresponding to the retrieved conv4 filters.

imented with simpler linear projections obtained through PCA, which also allows us to visualize
neuron a as a 2D line given by the linear threshold function (w, b). Formally speaking, let us
write the 2-dimensional projected coordinates of a point x as (c1, c2) = (v1 · x, v2 · x), where
(v1, v2) are projection vectors given by PCA. Given that we can reconstruct x from its projection
with x = c1v1+c2v2, the linear threshold function can be written as wx+b = c1v1 ·w+c2v2 ·w+b,
or a 2D line with a normal vector (v1 · w, v2 · w) and offset b. This line is visualized in Fig. 3.

User-drawn concepts (PCA): Our embedding visualizations can be used to define new lin-
ear threshold boundaries, corresponding to user-defined visual concepts. In the case of PCA-
embeddings, these user-drawn linear thresholds can be back projected to define new filters and
biases. Formally, given a user-drawn line with normal vector (↵1,↵2) and offset �, the corre-
sponding high-dimensional filter producing the same response is given by ↵1c1 + ↵2c2 + � =

↵1v1 · x+↵2v2 · x+ � = w0 · x+ b0 where w0
= ↵1v1 +↵2v2 and b0 = �. We will show examples

of zero-shot models built with user-defined filters in our experimental results.

User-drawn concepts (TSNE): Reconstructing the filter from a TSNE embedding is much more
difficult. TSNE does not explicitly compute an embedding function, but rather directly out-
puts an embedding of a fixed set of input points (implying that the embedding cannot be ap-
plied to “out-of-sample” points). P-TSNE [20] is a parametric extension that essentially trains a
feedforward neural net to predict the TSNE embedding obtained for a fixed set of inputs - e.g.,
(c1, c2) = (f1(x), f2(x)). Once this function is learned, it can be applied to new “out-of-sample”
patches. Because the function is nonlinear, halfspaces in the embedded space do not correspond
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which lies outside the image. For the left pair, we clearly observe a linear separator in the em-
beddings between bird heads with different orientations. The right illustrates a grouping of texture
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Figure 4: We illustrate two search methods based on neuron 58 from conv5, which fires on images
of vehicles. We provide the 4 image patches in the ILSVRC validation set that maximally activate the
neuron (left). Filter Search (top) consists of finding the maximum weight for each spatial location
in the filter. We plot the learned weight values for each filter and indicate the maximum filter weight
with a red line. Correlation Search (bottom) consists of averaging the input features over the top-
100 activations of the neuron. Here we plot the averaged input for each filter and highlight the
maximum with a red line. For each search method, we also show the top image at each spatial
location corresponding to the retrieved conv4 filters.

imented with simpler linear projections obtained through PCA, which also allows us to visualize
neuron a as a 2D line given by the linear threshold function (w, b). Formally speaking, let us
write the 2-dimensional projected coordinates of a point x as (c1, c2) = (v1 · x, v2 · x), where
(v1, v2) are projection vectors given by PCA. Given that we can reconstruct x from its projection
with x = c1v1+c2v2, the linear threshold function can be written as wx+b = c1v1 ·w+c2v2 ·w+b,
or a 2D line with a normal vector (v1 · w, v2 · w) and offset b. This line is visualized in Fig. 3.

User-drawn concepts (PCA): Our embedding visualizations can be used to define new lin-
ear threshold boundaries, corresponding to user-defined visual concepts. In the case of PCA-
embeddings, these user-drawn linear thresholds can be back projected to define new filters and
biases. Formally, given a user-drawn line with normal vector (↵1,↵2) and offset �, the corre-
sponding high-dimensional filter producing the same response is given by ↵1c1 + ↵2c2 + � =

↵1v1 · x+↵2v2 · x+ � = w0 · x+ b0 where w0
= ↵1v1 +↵2v2 and b0 = �. We will show examples

of zero-shot models built with user-defined filters in our experimental results.

User-drawn concepts (TSNE): Reconstructing the filter from a TSNE embedding is much more
difficult. TSNE does not explicitly compute an embedding function, but rather directly out-
puts an embedding of a fixed set of input points (implying that the embedding cannot be ap-
plied to “out-of-sample” points). P-TSNE [20] is a parametric extension that essentially trains a
feedforward neural net to predict the TSNE embedding obtained for a fixed set of inputs - e.g.,
(c1, c2) = (f1(x), f2(x)). Once this function is learned, it can be applied to new “out-of-sample”
patches. Because the function is nonlinear, halfspaces in the embedded space do not correspond
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Embeddings often contain additional semantics (pose variation of beaks)

Visualizing neurons
High-scoring patches vs (PCA) embeddings



(w · x) + b ≥ 0 

High-scoring patches vs (PCA) embeddings
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drawn linear boundaries (dotted red lines). For PCA, we also visualize the direction w (the yellow
arrow) that would maximally excite the given neuron, rather than the linear threshold boundary
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Figure 4: We illustrate two search methods based on neuron 58 from conv5, which fires on images
of vehicles. We provide the 4 image patches in the ILSVRC validation set that maximally activate the
neuron (left). Filter Search (top) consists of finding the maximum weight for each spatial location
in the filter. We plot the learned weight values for each filter and indicate the maximum filter weight
with a red line. Correlation Search (bottom) consists of averaging the input features over the top-
100 activations of the neuron. Here we plot the averaged input for each filter and highlight the
maximum with a red line. For each search method, we also show the top image at each spatial
location corresponding to the retrieved conv4 filters.

imented with simpler linear projections obtained through PCA, which also allows us to visualize
neuron a as a 2D line given by the linear threshold function (w, b). Formally speaking, let us
write the 2-dimensional projected coordinates of a point x as (c1, c2) = (v1 · x, v2 · x), where
(v1, v2) are projection vectors given by PCA. Given that we can reconstruct x from its projection
with x = c1v1+c2v2, the linear threshold function can be written as wx+b = c1v1 ·w+c2v2 ·w+b,
or a 2D line with a normal vector (v1 · w, v2 · w) and offset b. This line is visualized in Fig. 3.

User-drawn concepts (PCA): Our embedding visualizations can be used to define new lin-
ear threshold boundaries, corresponding to user-defined visual concepts. In the case of PCA-
embeddings, these user-drawn linear thresholds can be back projected to define new filters and
biases. Formally, given a user-drawn line with normal vector (↵1,↵2) and offset �, the corre-
sponding high-dimensional filter producing the same response is given by ↵1c1 + ↵2c2 + � =

↵1v1 · x+↵2v2 · x+ � = w0 · x+ b0 where w0
= ↵1v1 +↵2v2 and b0 = �. We will show examples

of zero-shot models built with user-defined filters in our experimental results.

User-drawn concepts (TSNE): Reconstructing the filter from a TSNE embedding is much more
difficult. TSNE does not explicitly compute an embedding function, but rather directly out-
puts an embedding of a fixed set of input points (implying that the embedding cannot be ap-
plied to “out-of-sample” points). P-TSNE [20] is a parametric extension that essentially trains a
feedforward neural net to predict the TSNE embedding obtained for a fixed set of inputs - e.g.,
(c1, c2) = (f1(x), f2(x)). Once this function is learned, it can be applied to new “out-of-sample”
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Figure 4: We illustrate two search methods based on neuron 58 from conv5, which fires on images
of vehicles. We provide the 4 image patches in the ILSVRC validation set that maximally activate the
neuron (left). Filter Search (top) consists of finding the maximum weight for each spatial location
in the filter. We plot the learned weight values for each filter and indicate the maximum filter weight
with a red line. Correlation Search (bottom) consists of averaging the input features over the top-
100 activations of the neuron. Here we plot the averaged input for each filter and highlight the
maximum with a red line. For each search method, we also show the top image at each spatial
location corresponding to the retrieved conv4 filters.

imented with simpler linear projections obtained through PCA, which also allows us to visualize
neuron a as a 2D line given by the linear threshold function (w, b). Formally speaking, let us
write the 2-dimensional projected coordinates of a point x as (c1, c2) = (v1 · x, v2 · x), where
(v1, v2) are projection vectors given by PCA. Given that we can reconstruct x from its projection
with x = c1v1+c2v2, the linear threshold function can be written as wx+b = c1v1 ·w+c2v2 ·w+b,
or a 2D line with a normal vector (v1 · w, v2 · w) and offset b. This line is visualized in Fig. 3.

User-drawn concepts (PCA): Our embedding visualizations can be used to define new lin-
ear threshold boundaries, corresponding to user-defined visual concepts. In the case of PCA-
embeddings, these user-drawn linear thresholds can be back projected to define new filters and
biases. Formally, given a user-drawn line with normal vector (↵1,↵2) and offset �, the corre-
sponding high-dimensional filter producing the same response is given by ↵1c1 + ↵2c2 + � =

↵1v1 · x+↵2v2 · x+ � = w0 · x+ b0 where w0
= ↵1v1 +↵2v2 and b0 = �. We will show examples

of zero-shot models built with user-defined filters in our experimental results.

User-drawn concepts (TSNE): Reconstructing the filter from a TSNE embedding is much more
difficult. TSNE does not explicitly compute an embedding function, but rather directly out-
puts an embedding of a fixed set of input points (implying that the embedding cannot be ap-
plied to “out-of-sample” points). P-TSNE [20] is a parametric extension that essentially trains a
feedforward neural net to predict the TSNE embedding obtained for a fixed set of inputs - e.g.,
(c1, c2) = (f1(x), f2(x)). Once this function is learned, it can be applied to new “out-of-sample”
patches. Because the function is nonlinear, halfspaces in the embedded space do not correspond
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Figure 3: We visualize pairs of (PCA,TSNE) embedding of two conv5 neurons, along with user-
drawn linear boundaries (dotted red lines). For PCA, we also visualize the direction w (the yellow
arrow) that would maximally excite the given neuron, rather than the linear threshold boundary
which lies outside the image. For the left pair, we clearly observe a linear separator in the em-
beddings between bird heads with different orientations. The right illustrates a grouping of texture
patterns that may not be easily described linguistically, but appear to loosely correspond to keyboard,
cruise ship, and text.

Figure 4: We illustrate two search methods based on neuron 58 from conv5, which fires on images
of vehicles. We provide the 4 image patches in the ILSVRC validation set that maximally activate the
neuron (left). Filter Search (top) consists of finding the maximum weight for each spatial location
in the filter. We plot the learned weight values for each filter and indicate the maximum filter weight
with a red line. Correlation Search (bottom) consists of averaging the input features over the top-
100 activations of the neuron. Here we plot the averaged input for each filter and highlight the
maximum with a red line. For each search method, we also show the top image at each spatial
location corresponding to the retrieved conv4 filters.

imented with simpler linear projections obtained through PCA, which also allows us to visualize
neuron a as a 2D line given by the linear threshold function (w, b). Formally speaking, let us
write the 2-dimensional projected coordinates of a point x as (c1, c2) = (v1 · x, v2 · x), where
(v1, v2) are projection vectors given by PCA. Given that we can reconstruct x from its projection
with x = c1v1+c2v2, the linear threshold function can be written as wx+b = c1v1 ·w+c2v2 ·w+b,
or a 2D line with a normal vector (v1 · w, v2 · w) and offset b. This line is visualized in Fig. 3.

User-drawn concepts (PCA): Our embedding visualizations can be used to define new lin-
ear threshold boundaries, corresponding to user-defined visual concepts. In the case of PCA-
embeddings, these user-drawn linear thresholds can be back projected to define new filters and
biases. Formally, given a user-drawn line with normal vector (↵1,↵2) and offset �, the corre-
sponding high-dimensional filter producing the same response is given by ↵1c1 + ↵2c2 + � =

↵1v1 · x+↵2v2 · x+ � = w0 · x+ b0 where w0
= ↵1v1 +↵2v2 and b0 = �. We will show examples

of zero-shot models built with user-defined filters in our experimental results.

User-drawn concepts (TSNE): Reconstructing the filter from a TSNE embedding is much more
difficult. TSNE does not explicitly compute an embedding function, but rather directly out-
puts an embedding of a fixed set of input points (implying that the embedding cannot be ap-
plied to “out-of-sample” points). P-TSNE [20] is a parametric extension that essentially trains a
feedforward neural net to predict the TSNE embedding obtained for a fixed set of inputs - e.g.,
(c1, c2) = (f1(x), f2(x)). Once this function is learned, it can be applied to new “out-of-sample”
patches. Because the function is nonlinear, halfspaces in the embedded space do not correspond
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drawn linear boundaries (dotted red lines). For PCA, we also visualize the direction w (the yellow
arrow) that would maximally excite the given neuron, rather than the linear threshold boundary
which lies outside the image. For the left pair, we clearly observe a linear separator in the em-
beddings between bird heads with different orientations. The right illustrates a grouping of texture
patterns that may not be easily described linguistically, but appear to loosely correspond to keyboard,
cruise ship, and text.

Figure 4: We illustrate two search methods based on neuron 58 from conv5, which fires on images
of vehicles. We provide the 4 image patches in the ILSVRC validation set that maximally activate the
neuron (left). Filter Search (top) consists of finding the maximum weight for each spatial location
in the filter. We plot the learned weight values for each filter and indicate the maximum filter weight
with a red line. Correlation Search (bottom) consists of averaging the input features over the top-
100 activations of the neuron. Here we plot the averaged input for each filter and highlight the
maximum with a red line. For each search method, we also show the top image at each spatial
location corresponding to the retrieved conv4 filters.

imented with simpler linear projections obtained through PCA, which also allows us to visualize
neuron a as a 2D line given by the linear threshold function (w, b). Formally speaking, let us
write the 2-dimensional projected coordinates of a point x as (c1, c2) = (v1 · x, v2 · x), where
(v1, v2) are projection vectors given by PCA. Given that we can reconstruct x from its projection
with x = c1v1+c2v2, the linear threshold function can be written as wx+b = c1v1 ·w+c2v2 ·w+b,
or a 2D line with a normal vector (v1 · w, v2 · w) and offset b. This line is visualized in Fig. 3.

User-drawn concepts (PCA): Our embedding visualizations can be used to define new lin-
ear threshold boundaries, corresponding to user-defined visual concepts. In the case of PCA-
embeddings, these user-drawn linear thresholds can be back projected to define new filters and
biases. Formally, given a user-drawn line with normal vector (↵1,↵2) and offset �, the corre-
sponding high-dimensional filter producing the same response is given by ↵1c1 + ↵2c2 + � =

↵1v1 · x+↵2v2 · x+ � = w0 · x+ b0 where w0
= ↵1v1 +↵2v2 and b0 = �. We will show examples

of zero-shot models built with user-defined filters in our experimental results.

User-drawn concepts (TSNE): Reconstructing the filter from a TSNE embedding is much more
difficult. TSNE does not explicitly compute an embedding function, but rather directly out-
puts an embedding of a fixed set of input points (implying that the embedding cannot be ap-
plied to “out-of-sample” points). P-TSNE [20] is a parametric extension that essentially trains a
feedforward neural net to predict the TSNE embedding obtained for a fixed set of inputs - e.g.,
(c1, c2) = (f1(x), f2(x)). Once this function is learned, it can be applied to new “out-of-sample”
patches. Because the function is nonlinear, halfspaces in the embedded space do not correspond
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drawn linear boundaries (dotted red lines). For PCA, we also visualize the direction w (the yellow
arrow) that would maximally excite the given neuron, rather than the linear threshold boundary
which lies outside the image. For the left pair, we clearly observe a linear separator in the em-
beddings between bird heads with different orientations. The right illustrates a grouping of texture
patterns that may not be easily described linguistically, but appear to loosely correspond to keyboard,
cruise ship, and text.

Figure 4: We illustrate two search methods based on neuron 58 from conv5, which fires on images
of vehicles. We provide the 4 image patches in the ILSVRC validation set that maximally activate the
neuron (left). Filter Search (top) consists of finding the maximum weight for each spatial location
in the filter. We plot the learned weight values for each filter and indicate the maximum filter weight
with a red line. Correlation Search (bottom) consists of averaging the input features over the top-
100 activations of the neuron. Here we plot the averaged input for each filter and highlight the
maximum with a red line. For each search method, we also show the top image at each spatial
location corresponding to the retrieved conv4 filters.

imented with simpler linear projections obtained through PCA, which also allows us to visualize
neuron a as a 2D line given by the linear threshold function (w, b). Formally speaking, let us
write the 2-dimensional projected coordinates of a point x as (c1, c2) = (v1 · x, v2 · x), where
(v1, v2) are projection vectors given by PCA. Given that we can reconstruct x from its projection
with x = c1v1+c2v2, the linear threshold function can be written as wx+b = c1v1 ·w+c2v2 ·w+b,
or a 2D line with a normal vector (v1 · w, v2 · w) and offset b. This line is visualized in Fig. 3.

User-drawn concepts (PCA): Our embedding visualizations can be used to define new lin-
ear threshold boundaries, corresponding to user-defined visual concepts. In the case of PCA-
embeddings, these user-drawn linear thresholds can be back projected to define new filters and
biases. Formally, given a user-drawn line with normal vector (↵1,↵2) and offset �, the corre-
sponding high-dimensional filter producing the same response is given by ↵1c1 + ↵2c2 + � =

↵1v1 · x+↵2v2 · x+ � = w0 · x+ b0 where w0
= ↵1v1 +↵2v2 and b0 = �. We will show examples

of zero-shot models built with user-defined filters in our experimental results.

User-drawn concepts (TSNE): Reconstructing the filter from a TSNE embedding is much more
difficult. TSNE does not explicitly compute an embedding function, but rather directly out-
puts an embedding of a fixed set of input points (implying that the embedding cannot be ap-
plied to “out-of-sample” points). P-TSNE [20] is a parametric extension that essentially trains a
feedforward neural net to predict the TSNE embedding obtained for a fixed set of inputs - e.g.,
(c1, c2) = (f1(x), f2(x)). Once this function is learned, it can be applied to new “out-of-sample”
patches. Because the function is nonlinear, halfspaces in the embedded space do not correspond
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Figure 3: We visualize pairs of (PCA,TSNE) embedding of two conv5 neurons, along with user-
drawn linear boundaries (dotted red lines). For PCA, we also visualize the direction w (the yellow
arrow) that would maximally excite the given neuron, rather than the linear threshold boundary
which lies outside the image. For the left pair, we clearly observe a linear separator in the em-
beddings between bird heads with different orientations. The right illustrates a grouping of texture
patterns that may not be easily described linguistically, but appear to loosely correspond to keyboard,
cruise ship, and text.

Figure 4: We illustrate two search methods based on neuron 58 from conv5, which fires on images
of vehicles. We provide the 4 image patches in the ILSVRC validation set that maximally activate the
neuron (left). Filter Search (top) consists of finding the maximum weight for each spatial location
in the filter. We plot the learned weight values for each filter and indicate the maximum filter weight
with a red line. Correlation Search (bottom) consists of averaging the input features over the top-
100 activations of the neuron. Here we plot the averaged input for each filter and highlight the
maximum with a red line. For each search method, we also show the top image at each spatial
location corresponding to the retrieved conv4 filters.

imented with simpler linear projections obtained through PCA, which also allows us to visualize
neuron a as a 2D line given by the linear threshold function (w, b). Formally speaking, let us
write the 2-dimensional projected coordinates of a point x as (c1, c2) = (v1 · x, v2 · x), where
(v1, v2) are projection vectors given by PCA. Given that we can reconstruct x from its projection
with x = c1v1+c2v2, the linear threshold function can be written as wx+b = c1v1 ·w+c2v2 ·w+b,
or a 2D line with a normal vector (v1 · w, v2 · w) and offset b. This line is visualized in Fig. 3.

User-drawn concepts (PCA): Our embedding visualizations can be used to define new lin-
ear threshold boundaries, corresponding to user-defined visual concepts. In the case of PCA-
embeddings, these user-drawn linear thresholds can be back projected to define new filters and
biases. Formally, given a user-drawn line with normal vector (↵1,↵2) and offset �, the corre-
sponding high-dimensional filter producing the same response is given by ↵1c1 + ↵2c2 + � =

↵1v1 · x+↵2v2 · x+ � = w0 · x+ b0 where w0
= ↵1v1 +↵2v2 and b0 = �. We will show examples

of zero-shot models built with user-defined filters in our experimental results.

User-drawn concepts (TSNE): Reconstructing the filter from a TSNE embedding is much more
difficult. TSNE does not explicitly compute an embedding function, but rather directly out-
puts an embedding of a fixed set of input points (implying that the embedding cannot be ap-
plied to “out-of-sample” points). P-TSNE [20] is a parametric extension that essentially trains a
feedforward neural net to predict the TSNE embedding obtained for a fixed set of inputs - e.g.,
(c1, c2) = (f1(x), f2(x)). Once this function is learned, it can be applied to new “out-of-sample”
patches. Because the function is nonlinear, halfspaces in the embedded space do not correspond
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Figure 3: We visualize pairs of (PCA,TSNE) embedding of two conv5 neurons, along with user-
drawn linear boundaries (dotted red lines). For PCA, we also visualize the direction w (the yellow
arrow) that would maximally excite the given neuron, rather than the linear threshold boundary
which lies outside the image. For the left pair, we clearly observe a linear separator in the em-
beddings between bird heads with different orientations. The right illustrates a grouping of texture
patterns that may not be easily described linguistically, but appear to loosely correspond to keyboard,
cruise ship, and text.

Figure 4: We illustrate two search methods based on neuron 58 from conv5, which fires on images
of vehicles. We provide the 4 image patches in the ILSVRC validation set that maximally activate the
neuron (left). Filter Search (top) consists of finding the maximum weight for each spatial location
in the filter. We plot the learned weight values for each filter and indicate the maximum filter weight
with a red line. Correlation Search (bottom) consists of averaging the input features over the top-
100 activations of the neuron. Here we plot the averaged input for each filter and highlight the
maximum with a red line. For each search method, we also show the top image at each spatial
location corresponding to the retrieved conv4 filters.

imented with simpler linear projections obtained through PCA, which also allows us to visualize
neuron a as a 2D line given by the linear threshold function (w, b). Formally speaking, let us
write the 2-dimensional projected coordinates of a point x as (c1, c2) = (v1 · x, v2 · x), where
(v1, v2) are projection vectors given by PCA. Given that we can reconstruct x from its projection
with x = c1v1+c2v2, the linear threshold function can be written as wx+b = c1v1 ·w+c2v2 ·w+b,
or a 2D line with a normal vector (v1 · w, v2 · w) and offset b. This line is visualized in Fig. 3.

User-drawn concepts (PCA): Our embedding visualizations can be used to define new lin-
ear threshold boundaries, corresponding to user-defined visual concepts. In the case of PCA-
embeddings, these user-drawn linear thresholds can be back projected to define new filters and
biases. Formally, given a user-drawn line with normal vector (↵1,↵2) and offset �, the corre-
sponding high-dimensional filter producing the same response is given by ↵1c1 + ↵2c2 + � =

↵1v1 · x+↵2v2 · x+ � = w0 · x+ b0 where w0
= ↵1v1 +↵2v2 and b0 = �. We will show examples

of zero-shot models built with user-defined filters in our experimental results.

User-drawn concepts (TSNE): Reconstructing the filter from a TSNE embedding is much more
difficult. TSNE does not explicitly compute an embedding function, but rather directly out-
puts an embedding of a fixed set of input points (implying that the embedding cannot be ap-
plied to “out-of-sample” points). P-TSNE [20] is a parametric extension that essentially trains a
feedforward neural net to predict the TSNE embedding obtained for a fixed set of inputs - e.g.,
(c1, c2) = (f1(x), f2(x)). Once this function is learned, it can be applied to new “out-of-sample”
patches. Because the function is nonlinear, halfspaces in the embedded space do not correspond
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Figure 3: We visualize pairs of (PCA,TSNE) embedding of two conv5 neurons, along with user-
drawn linear boundaries (dotted red lines). For PCA, we also visualize the direction w (the yellow
arrow) that would maximally excite the given neuron, rather than the linear threshold boundary
which lies outside the image. For the left pair, we clearly observe a linear separator in the em-
beddings between bird heads with different orientations. The right illustrates a grouping of texture
patterns that may not be easily described linguistically, but appear to loosely correspond to keyboard,
cruise ship, and text.

Figure 4: We illustrate two search methods based on neuron 58 from conv5, which fires on images
of vehicles. We provide the 4 image patches in the ILSVRC validation set that maximally activate the
neuron (left). Filter Search (top) consists of finding the maximum weight for each spatial location
in the filter. We plot the learned weight values for each filter and indicate the maximum filter weight
with a red line. Correlation Search (bottom) consists of averaging the input features over the top-
100 activations of the neuron. Here we plot the averaged input for each filter and highlight the
maximum with a red line. For each search method, we also show the top image at each spatial
location corresponding to the retrieved conv4 filters.

imented with simpler linear projections obtained through PCA, which also allows us to visualize
neuron a as a 2D line given by the linear threshold function (w, b). Formally speaking, let us
write the 2-dimensional projected coordinates of a point x as (c1, c2) = (v1 · x, v2 · x), where
(v1, v2) are projection vectors given by PCA. Given that we can reconstruct x from its projection
with x = c1v1+c2v2, the linear threshold function can be written as wx+b = c1v1 ·w+c2v2 ·w+b,
or a 2D line with a normal vector (v1 · w, v2 · w) and offset b. This line is visualized in Fig. 3.

User-drawn concepts (PCA): Our embedding visualizations can be used to define new lin-
ear threshold boundaries, corresponding to user-defined visual concepts. In the case of PCA-
embeddings, these user-drawn linear thresholds can be back projected to define new filters and
biases. Formally, given a user-drawn line with normal vector (↵1,↵2) and offset �, the corre-
sponding high-dimensional filter producing the same response is given by ↵1c1 + ↵2c2 + � =

↵1v1 · x+↵2v2 · x+ � = w0 · x+ b0 where w0
= ↵1v1 +↵2v2 and b0 = �. We will show examples

of zero-shot models built with user-defined filters in our experimental results.

User-drawn concepts (TSNE): Reconstructing the filter from a TSNE embedding is much more
difficult. TSNE does not explicitly compute an embedding function, but rather directly out-
puts an embedding of a fixed set of input points (implying that the embedding cannot be ap-
plied to “out-of-sample” points). P-TSNE [20] is a parametric extension that essentially trains a
feedforward neural net to predict the TSNE embedding obtained for a fixed set of inputs - e.g.,
(c1, c2) = (f1(x), f2(x)). Once this function is learned, it can be applied to new “out-of-sample”
patches. Because the function is nonlinear, halfspaces in the embedded space do not correspond

4

High-scoring patches vs (PCA) embeddings

Visualizing neurons



User-drawn filters that delineate ‘keyboards’ versus ‘cruise ships’

Visualizing neurons (tSNE)



Outline
• Motivation 

• Popular networks 

• Optimization 

• Backprop  

• Extensions: multiscale, attention, recurrence, LSTMs 

• Why does it work so well? distributed vs local codes


