Deep learning
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Why does it work so well”



Recall: chaining modules
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Extensions: DAG graphs
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Why 1s this reasonable?

objects

parts
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Maybe objects depend on parts and subparts



Backprop on DAGS
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dg(f(z),h(x))
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eg:  f(x)=ax +b
h(x) = x?
g(y,z) = yz = x*(ax+b)



Backprop on DAGS
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“Multivariable chain rule”

Og(f(x),h(x))  dgdf , dg Oh
Ox Of Ox = Oh Ox

Simply compute backprop signals along each path, adding up signals when paths merge



Multiscale classification

Classification:

Decision

—) Trees
SVMs, ...

Output
classifier

Output
m’ classifier

CNN Multi-scale CNN



Multiscale classification
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"‘DAG” = multiscale
FT = fine-tuning (use pre-trained model as starting point for gradient descent)



input
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pixel class-labels
landmark heatmaps
normals/depth

conva

Intuition
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: each pixel prediction makes use of a scanning-window (or receptive feild)

“Fully-convolutional networks (FCN)”
“HypercolumnS”
“Zoom-out models”



Multiscale pixel classitication
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Hypercolumn: Multiscale “foveal” descriptor

Naive approach: resize feature maps and explicitly construct
multiscale descriptor (hypercolumn) for each pixel
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Alternate approach: resize predictions
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Related topic:
dilated convolutions

Don’t ever downsample, but make use of “zero-interlaced” filters

Published as a conference paper at ICLR 2016

MULTI-SCALE CONTEXT AGGREGATION BY
DILATED CONVOLUTIONS

Fisher Yu
Princeton University

Vladlen Koltun
Intel Labs

v
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Object detection as heatmap prediction

Train sepearate heatmaps for large and small face detection



Can apply directly to object detection

Hu et al, CVPR 17

10 ms on GPU



Dominant approach for object
detection: region-based CNNs

R-CNN: Regions with CNN features
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Image proposals (~2k) CNN features regions



Region CNNs (RCNNS)

ConvNet

ConvNet

ConvNet

“Faster RCNN’: train a CNN to produce object proposals (similar to face detector)



Aside:
attentional cascades for recognition

ViolaJones (OpenCV detection)

Conceptually, we can think of as a (sort-of) linear classifier defined on box-filter features (Haar wavelets)

https://en.wikipedia.org/wiki/Viola%E2%80%93Jones_object_detection_framework



https://en.wikipedia.org/wiki/Viola%E2%80%93Jones_object_detection_framework

Attentional cascades

Final classifier 1s a linear combination of thresholded features

M

h{x) = sign Z aihj(x)

j=1

o [=s; if £ <6,
=1

otherwise

Learn a sequential cascade of classifiers

These 2 features can filter out 60% of BG windows (without missing essentially any faces)

This kind of sparse reasoning is currently missing in deep networks
(but an active area of research known as attentional deep networks)



Proposal-based CNNs

ConvNet

ConvNet

ConvNet

Can we learn a proposal network that produces accurate object detectors?
Requires us to backprop through a warp
(e.g., compute gradient of loss wrt warp parameters)



Solution:
Spatial transformer networks

Spatial Transformer

Figure 2: The architecture of a spatial transformer module. The input feature map U is passed to a localisation
network which regresses the transformation parameters #. The regular spatial grid GG over V' is transformed to
the sampling grid 79 (G), which is applied to U as described in Sect. 3.3, producing the warped output feature
map V. The combination of the localisation network and sampling mechanism defines a spatial transformer.
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Extensions: recurrent CNNs

Activation depends on below layer and previous value of activation

Vision Language
Deep CNN Generating RNN
‘\ /-\V A group of people
/.\ \ shopping at an outdoor
.\ /‘ ‘ market.
‘/ \.
~a— There are many
/. vegetables at the
® fruit stand.




Extensions: recurrent CNNs
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Can unroll into a “standard” CNN with tied weights

Does this complicate learning?



Recurrent nets

X v Z v y

(nput) @ —JNI— @ —EN— @ (outpu)

eg: Z = WX
y =Wz
y = W2X



Recurrent nets
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z=1(w,z) y = g(w,2)

ly/dw = dg/dw + dg/dz dz/dw
lz/dw = df/dw

e

ly/dw = dg/dw + dg/dz df/dw



Recurrent nets

y
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dy/dw = dg/dw + dg/dz df/dw

1. Naively apply backprop assuming weights aren’t tied together

W
V y

X v z
dy/dw =dg/dw
dy/dv = dg/dz df/dw

2. Post-hoc, simply add together gradients that are tied together!



Applications: image captioning

Vision Language
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Applications: video analysis

Strangely, state-of-the-art deep features for video analysis not
that much better than previous hand-designed counterparts
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Still an open research question!



Final difficulties in training

Vanishing or exploding gradients imply lower layers can be hard to learn
(would presumably be less of an 1ssue with second-order optimization)
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My intuition: multiscale skip connections and weight-tying (recurrence) alleviate this



| ong-range dependancies
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Consider sequences where the next word (or video frame) is effected by an observation long ago

(e.g., a person walked 1nto a building 10 minutes ago)



Approach
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Add functionality to switch between z>=wz;+vx2 (normal update)
72 = VX2 (forget past)
72 = Z| (remember)

To do so, multiply in sigmoidal activations that act as gates (returning O or 1)

=’ »



A closer |ook

Recurent models typically make use of tanh nonlinearities
(unbounded nonlinear functions tend to allow activations to grow over time)



| STMSs

Long short-term memory

Still kind of mysterious to me...
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Why does it work so well”?

Visualizations
Distributed representations
Compositional representations



Visualizations

First-layer 11x11 filters



Visualizaing other layers

Look for image patches that maximally excite particular activations

.O7r 07!

Figure 3: Top regions for six pool; units. Receptive fields and activation values are drawn in white. Some units are aligned to concepts,
such as people (row 1) or text (4). Other units capture texture and material properties, such as dot arrays (2) and specular reflections (6).



Fun with visualizations

Perform backprop all the way to the pixel-level and update pixels so as to maximize activations
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http://yosinski.com/deepvis#toolbox



http://yosinski.com/deepvis#toolbox

Fun with visualizations

Optimize pixels for output activations

Pirate Ship Rocking Chair Teddy Bear



Fun with visualizations

Optimize pixels for intermediate activations

conv); (dog face + flower) conv5s; (human face + cat face) conv)|| (cat face)



GOFA|

“000d-old fashioned AI”

| propositiond proposition4
- o
¥ %
John Bill

Typical knowledge-base of discrete concepts (eg, propositional logic)



'LEARNING DISTRIBUTED REPRESENTATIONS OF CONCEPTS

Geoffrey E. Hinlon
Computer Science Department
Carnegie-Melion University

“For example, if you learn that chimpanzees like onions, you will probably raise your estimate of the probability
that gorillas like onions. If you subsequently learn that gibbons and orangutans do not like onions, your estimate of
the probability that gorillas that like onions will fall, though it may be higher than it was originally”
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This chapter describes one type of representation that is less familiar
and harder to think about than local representations. Each entity is
represented by a pattern of activity distributed over many computing
elements, and each computing element is involved in representing
many different entities. The strength of this more complicated kind of
representation does not lie in its notational convenience or its ease of
implementation in a conventional computer, but rather in the efficiency
with which it makes use of the processing abilities of networks of sim-
ple, neuron-like computing elements.




Compositional perspectives on deep learning

Inpuc layer (S1) 4 feature maps

Boltmann machines. Hinton et al



Deep Boltzmann Machines as deep latent-variable models

Salakhutdinov & Hinton 09
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Binary latent variables: 1s there a (person, head, oriented edge) at a particular location(?)

X

1. Latent variables allow for sharing of information across a large collection of templates

2. Models can synthesize new combinations of latent variables



Deep Boltzmann Machines
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The messy details:
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P(x,z) e Boltz(T,2)



Notation: hierarhical latent-variable models
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Boltzmann: z; € {0,1}



Notation: hierarhical latent-variable models
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Letzo=x

1
P(z) x e’®)  where S(z)= §ZTWZ + b1z

Boltzmann: z; € {0,1}

Gaussian: z; € R



Convolutional Boltzmann Machines

Lee et al, ICML 09
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The activation of a binary variable given lower-level binary features are given by a filter

wheel filter
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Convolutional Boltzmann Machines
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Inference: compute P(x|z)
Hard to do
Option 1 (Gibbs sampling): Iteratively update z[u] by computing P(zi[u]| all else)

(Hinton)



G1bbs sampling
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Iteratively update zi[u] by computing P(zi[u]| all else)

tOp,,;

bot; |u

| ~ sigmoid(b; + top;|u] + bot;|u])

| = Z w;1|v|2i41lu —v]  “correlation”

E wz Zz 1 —HJ] “convolution”



Mean feild updates

Wﬁ‘g\‘%“% ‘%‘ |
SRR REREE

u

(Salakhutdinov & Hinton)
25 [u] = sigmoid(b; + top;|u] + bot;|ul)

tOPz E wz—l—l Zz—l—l (I U] “correlation”

bot; |u E w; vz 1 |u 4+ v “convolution”



Claim: any sequence of updates can be written as a
collection of filtering + nonlinear operations

Inpuc layer (S1) 4 feature maps

(Cl) 4 feature maps (52) 6 feature maps (C2) 6 feature maps

convolution layer sub-sampling layer convolution layer sub-sampling layer  fully connected MLP

Convolution + sigmoidal activations mimic computations on a binary latent-variable model



Use CNNS to learn to infer on Boltzmann machines

1. Use mean-field inference rather than Gibbs sampling
(Salakhutdinov & Hinton)

2. Unroll sequence of mean-field updates into a recurrent
neural net (Goodfellow et al)
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Bot-up Bot-up + Top-down CNN Recurrent-CNN




Top-down localization
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1. Model “max-pooling” using lateral inhibition connections (red edges)

2. Above model allows for top-down localization
€.g., a car “object” can influence the activation and location of a wheel “part™



Implementation

1-pass inference (VGG-16)
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Bottom-up

Example results




Alternate intepretation
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* Interpret the set of activations from fully-connected (FC7) layers as an embedding
* Apply standard embedding visualizations (MDS, TSNE)




Embedding visualizations
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Colors correspond to classes



80k MS COCO images* in 5 minutes

Larry Zitnick

*All images are from the training set.



CNNss as hierarchical embeddings

NV

Consider a particular neuron ‘a’ with a receptive feild of NxN pixels

= max(0,w - =+ b)



CNNss as hierarchical embeddings

NV

Consider a particular neuron ‘a’ with a receptive feild of NxN pixels
= max(0,w - =+ b)

Interpret local neighbordhood of activations “:’as an embedding for NxN patches

Claim:
Semantics are not manifested in individual neurons, but rather local



Visualizing neurons

High-scoring patches vs (PCA) embeddings

_._

Embeddings often contain additional semantics (pose variation of beaks)



Visualizing neurons

High-scoring patches vs (PCA) embeddings

_._

Convolutional filters are linear thresholds in embedded space



Visualizing neurons

High-scoring patches vs (PCA) embeddings

Allow users to instantiate new filters by drawing new lines (left vs right-facing beaks)



Visualizing neurons (tSNE)
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User-drawn filters that delineate ‘keyboards’ versus ‘cruise ships’
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Why does it work so well”? distributed vs local codes



