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Core visual understanding task:  
finding correspondences between images

(a) incline L.jpg (img1) (b) incline R.jpg (img2) (c) img2 warped to img1’s frame

Figure 5: Example output for Q6.1: Original images img1 and img2 (left and center) and
img2 warped to fit img1 (right). Notice that the warped image clips out of the image. We
will fix this in Q6.2

H2to1=computeH(p1,p2)

Inputs: p1 and p2 should be 2⇥N matrices of corresponding (x, y)T coordinates
between two images.
Outputs: H2to1 should be a 3⇥ 3 matrix encoding the homography that best matches
the linear equation derived above for Equation 8 (in the least squares sense). Hint:
Remember that a homography is only determined up to scale. The Matlab functions
eig() or svd() will be useful. Note that this function can be written without an
explicit for-loop over the data points.

6 Stitching it together: Panoramas (30 pts)

We can also use homographies to create a panorama image from multiple views of the same
scene. This is possible for example when there is no camera translation between the views
(e.g., only rotation about the camera center), as we saw in Q4.2.

First, you will generate panoramas using matched point correspondences between images
using the BRIEF matching you implemented in Q2.4. We will assume that there is no error
in your matched point correspondences between images (Although there might be some
errors).

In the next section you will extend the technique to use (potentially noisy) keypoint
matches.

You will need to use the provided function warp im=warpH(im, H, out size), which
warps image im using the homography transform H. The pixels in warp_im are sampled
at coordinates in the rectangle (1, 1) to (out_size(2), out_size(1)). The coordinates of
the pixels in the source image are taken to be (1, 1) to (size(im,2), size(im,1)) and
transformed according to H.

• Q6.1 (15pts) In this problem you will implement and use the function (stub provided
in matlab/imageStitching.m):

[panoImg] = imageStitching(img1, img2, H2to1)

on two images from the Dusquesne incline. This function accepts two images and the
output from the homography estimation function. This function will:
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Figure 6: Final panorama view. With homography estimated with RANSAC.

• a folder matlab containing all the .m and .mat files you were asked to write and
generate

• a pdf named writeup.pdf containing the results, explanations and images asked for
in the assignment along with to the answers to the questions on homographies.

Submit all the code needed to make your panorama generator run. Make sure all the .m

files that need to run are accessable from the matlab folder without any editing of the path
variable. If you downloaded and used a feature detector for the extra credit, include the
code with your submission and mention it in your writeup. You may leave the data folder
in your submission, but it is not needed. Please zip your homework as usual and submit it
using blackboard.

Appendix: Image Blending

Note: This section is not for credit and is for informational purposes only.

For overlapping pixels, it is common to blend the values of both images. You can sim-
ply average the values but that will leave a seam at the edges of the overlapping images.
Alternatively, you can obtain a blending value for each image that fades one image into the
other. To do this, first create a mask like this for each image you wish to blend:

mask = zeros(size(im,1), size(im,2));

mask(1,:) = 1; mask(end,:) = 1; mask(:,1) = 1; mask(:,end) = 1;

mask = bwdist(mask, ’city’);

mask = mask/max(mask(:));

The function bwdist computes the distance transform of the binarized input image, so this
mask will be zero at the borders and 1 at the center of the image. You can warp this mask
just as you warped your images. How would you use the mask weights to compute a linear
combination of the pixels in the overlap region? Your function should behave well where
one or both of the blending constants are zero.
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Example: image matching of landmarks

Correspondence + geometry estimation



Object recognition by matching

Figure 3. An exemplar with a subset of feature points marked (left), the novel “probe” image with all feature points in white, and
the feature points found to correspond with the exemplar feature points marked in corresponding colors (left center), the exemplar
with all its feature points marked in color, coded by location in the image (right center), and the probe with the exemplar feature
points mapped by a thin plate spline transform based on the correspondences, again colored by position in the exemplar (far right).
See Figure 7 for more examples
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where da penalizes the change in direction, and dl penal-
izes change in length. A correspondence σ resulting from
pure scale and translation will result in da(σ) = 0, while
σ resulting from pure translation and rotation will result in
dl(σ) = 0. The constants αd, βd, µd, are all terms allowing
slightly more flexibility for nearby points in order to deal
with local “noise” factors such as sampling, localization,
etc. They should be set relative to the scale of these lo-
cal phenomena. The constant γ weighs the angle distortion
term against the length distortion term.
Outliers Each point pi, in P , is mapped to a qσ(i), in Q.

This mapping automatically allows outliers in Q as it is not
necessarily surjective – points qj may not be the image any
point pi under σ. We introduce an additional point qnull and
use σ(i) = null to allow a point pi to be an outlier. We limit
the number of points pi which can be assigned to qnull, thus
allowing for outliers in both P andQ.

5. Correspondence Algorithm
Finding an assignment to minimize a cost function de-

scribed by the terms in Equations 3 and 2 above can be
written as an Integer Quadratic Programming (IQP) prob-
lem.

cost(x) =
∑

a,b

H(a, b)xaxb +
∑

a

c(a)xa (7)

Where the binary indicator variable x has entries xa, that
if 1, indicate σ(ai) = aj . We then have H(a, b) =
H(ai, aj , bi, bj), and c(a) = c(ai, aj) from Equations 3
and 2.
We constrain x to represent an assignment. Write xij in

place of xaiaj
. We require

∑

j xij = 1 for each i. Futher-
more if we allow outliers as discussed in Section 4, then we

require
∑

i xinull ≤ k, where k is the maximum number of
outliers allowed. Using outliers does not increase the cost
in our problems, so this is equivalent to

∑

i xinull = k.
Each of these linear constraints are encoded in one row of
A and an entry of b. Replacing H with a matrix having
entries Hab = H(a, b) and c with a vector having entries
ca = c(a). We can now write the IQP in matrix form:

min cost(x) =x′Hx + c′x subject to, (8)
Ax = b, x ∈ {0, 1}n

5.1. Approximation
Integer Quadratic Programming is NP-Complete, how-

ever specific instances may be easy to solve. We follow a
two step process that results in good solutions to our prob-
lem. We first find the minimum of a linear bounding prob-
lem, an approximation to the quadratic problem, then follow
local gradient descent to find a locally minimal assignment.
Although we do not necessarily find global minima of the
cost function in practice the results are quite good.
We define a linear objective function over assignments

that is a lower bound for our cost function in two steps. First
compute qa = min

∑

b Habxb. Note that from here on we
will omit writing the constraints Ax = b and x ∈ {0, 1}n

for brevity.
If xa represents σ(i) = j then qa is a lower bound for

the cost contributed to any assignment by using σ(i) = j.
Now we have L(x) =

∑

a(qa + ca)xa as a lower bound for
cost(x) from Equation 8. This construction follows [19],
and is a standard bound for a quadratic program. Of note is
the operational similarity to geometric hashing.
The equations for qa and L are both integer linear pro-

gramming problems, but since the vertices of the constraint
polytopes lie only on integer coordinates, they can be re-
laxed to linear programming problemswithout changing the
optima, and solved easily. In fact due to the structure of the
problems in our setup they can be solved explicitly by con-
struction. If n is the length of x, each problem takes O(n)
operations with a very small constant. Computing qa for
a = 1 . . . n requiresO(n2) time.

Sparse correspondence

Figure 3. An exemplar with a subset of feature points marked (left), the novel “probe” image with all feature points in white, and
the feature points found to correspond with the exemplar feature points marked in corresponding colors (left center), the exemplar
with all its feature points marked in color, coded by location in the image (right center), and the probe with the exemplar feature
points mapped by a thin plate spline transform based on the correspondences, again colored by position in the exemplar (far right).
See Figure 7 for more examples
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where da penalizes the change in direction, and dl penal-
izes change in length. A correspondence σ resulting from
pure scale and translation will result in da(σ) = 0, while
σ resulting from pure translation and rotation will result in
dl(σ) = 0. The constants αd, βd, µd, are all terms allowing
slightly more flexibility for nearby points in order to deal
with local “noise” factors such as sampling, localization,
etc. They should be set relative to the scale of these lo-
cal phenomena. The constant γ weighs the angle distortion
term against the length distortion term.
Outliers Each point pi, in P , is mapped to a qσ(i), in Q.

This mapping automatically allows outliers in Q as it is not
necessarily surjective – points qj may not be the image any
point pi under σ. We introduce an additional point qnull and
use σ(i) = null to allow a point pi to be an outlier. We limit
the number of points pi which can be assigned to qnull, thus
allowing for outliers in both P andQ.

5. Correspondence Algorithm
Finding an assignment to minimize a cost function de-

scribed by the terms in Equations 3 and 2 above can be
written as an Integer Quadratic Programming (IQP) prob-
lem.

cost(x) =
∑

a,b

H(a, b)xaxb +
∑
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c(a)xa (7)

Where the binary indicator variable x has entries xa, that
if 1, indicate σ(ai) = aj . We then have H(a, b) =
H(ai, aj , bi, bj), and c(a) = c(ai, aj) from Equations 3
and 2.
We constrain x to represent an assignment. Write xij in

place of xaiaj
. We require

∑

j xij = 1 for each i. Futher-
more if we allow outliers as discussed in Section 4, then we

require
∑

i xinull ≤ k, where k is the maximum number of
outliers allowed. Using outliers does not increase the cost
in our problems, so this is equivalent to

∑

i xinull = k.
Each of these linear constraints are encoded in one row of
A and an entry of b. Replacing H with a matrix having
entries Hab = H(a, b) and c with a vector having entries
ca = c(a). We can now write the IQP in matrix form:

min cost(x) =x′Hx + c′x subject to, (8)
Ax = b, x ∈ {0, 1}n

5.1. Approximation
Integer Quadratic Programming is NP-Complete, how-

ever specific instances may be easy to solve. We follow a
two step process that results in good solutions to our prob-
lem. We first find the minimum of a linear bounding prob-
lem, an approximation to the quadratic problem, then follow
local gradient descent to find a locally minimal assignment.
Although we do not necessarily find global minima of the
cost function in practice the results are quite good.
We define a linear objective function over assignments

that is a lower bound for our cost function in two steps. First
compute qa = min

∑

b Habxb. Note that from here on we
will omit writing the constraints Ax = b and x ∈ {0, 1}n

for brevity.
If xa represents σ(i) = j then qa is a lower bound for

the cost contributed to any assignment by using σ(i) = j.
Now we have L(x) =

∑

a(qa + ca)xa as a lower bound for
cost(x) from Equation 8. This construction follows [19],
and is a standard bound for a quadratic program. Of note is
the operational similarity to geometric hashing.
The equations for qa and L are both integer linear pro-

gramming problems, but since the vertices of the constraint
polytopes lie only on integer coordinates, they can be re-
laxed to linear programming problemswithout changing the
optima, and solved easily. In fact due to the structure of the
problems in our setup they can be solved explicitly by con-
struction. If n is the length of x, each problem takes O(n)
operations with a very small constant. Computing qa for
a = 1 . . . n requiresO(n2) time.
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Example: license plate recognition



Example: product recognition

Google Glass
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Distinctive Image Features
from Scale-Invariant Keypoints

David G. Lowe
Computer Science Department
University of British Columbia
Vancouver, B.C., Canada

lowe@cs.ubc.ca

January 5, 2004

Abstract

This paper presents a method for extracting distinctive invariant features from
images that can be used to perform reliable matching between different views of
an object or scene. The features are invariant to image scale and rotation, and
are shown to provide robust matching across a a substantial range of affine dis-
tortion, change in 3D viewpoint, addition of noise, and change in illumination.
The features are highly distinctive, in the sense that a single feature can be cor-
rectly matched with high probability against a large database of features from
many images. This paper also describes an approach to using these features
for object recognition. The recognition proceeds by matching individual fea-
tures to a database of features from known objects using a fast nearest-neighbor
algorithm, followed by a Hough transform to identify clusters belonging to a sin-
gle object, and finally performing verification through least-squares solution for
consistent pose parameters. This approach to recognition can robustly identify
objects among clutter and occlusion while achieving near real-time performance.

Accepted for publication in the International Journal of Computer Vision, 2004.
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Motivation

Which of these patches are easier to match?

Why? How can we mathematically operationalize this?



Corner Detector: Basic Idea

“flat” region: 
no change in any 
direction

“edge”: 
no change along the 
edge direction

“corner”: 
significant change in 
all directions

Defn: points are “matchable” if small shifts always produce a large SSD error



Ex0,y0(u, v) =
�

(x,y)�W (x0,y0)

[I(x + u, y + v)� I(x, y)]2

The math

W

where

Defn: points are “matchable” if small shifts always produce a large SSD error

cornerness(x0, y0) = min

u,v

E

x0,y0(u, v)

Why can’t this be right?



Ex0,y0(u, v) =
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The math

W

where

Defn: points are “matchable” if small shifts always produce a large SSD error

cornerness(x0, y0) = min

u,v

E

x0,y0(u, v)

u2 + v2 = 1



General mathematical tool: nonlinear least squares

https://en.wikipedia.org/wiki/Non-linear_least_squares

Ex0,y0(u, v) =
�

(x,y)�W (x0,y0)

[I(x + u, y + v)� I(x, y)]2
where

cornerness(x0, y0) = min

u,v

E

x0,y0(u, v)

u2 + v2 = 1

We’ll apply a “standard technique”: Gauss-Netwon optimization

https://en.wikipedia.org/wiki/Non-linear_least_squares


Background: taylor series expansion

f(x+ u) = f(x) +
@f(x)
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u

2 +Higher Order Terms

Approximation of  f(x) = ex  at x=0 

Why are low-order expansions reasonable?  
Underyling smoothness of real-world signals



Multivariate taylor series
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what’s this vector called?

what’s this matrix called?
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Multivariate taylor series
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Consider shifting the window W by (u,v) 
• how do the pixels in W change? 
• compare each pixel before and after by 

summing up the squared differences 
• this defines an “error” of E(u,v):

Feature detection:  the math

W
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The math (cont’d)

W

where

Defn: points are “matchable” if small shifts always produce a large SSD error

Claim 1: ‘A’ is symmetric (AT = A) and PSD
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second-moment matrix  

is simple products of Ix,Iy

Claim 2: Corner-ness is given by min eigenvalue of ‘A’
Question: Is ‘A’ a Hessian matrix?



Recall: spectral decompositions

Defn: a symmetric matrix A is PSD if xTAx >=0 for all x Figure 2: Visualizing the spectral eigendecomposition of a symmetric PSD matrix.

This makes intuitive sense geometrically; taking the k largest singular values and vectors
produces a transformation A

0 that uses as much of the output space as possible. The sketch
of the proof relies on the fact that U and V act as rotations and so do not e↵ect the rank of
A. The best k-rank approximation of A is then given by the best k-rank approximation of
the (diagonal) matrix ⌃.

Corollary 2: The solution of a homogenous least squares problem is given by smallest
right singular value:

min
h:hT h=1

||Ah||2 = V (:, end)

The proof sketch follows by the fact that any input v must project to one of the right
singular vectors (because they form a basis). A closely related result is that for any PSD
matrix B = A

T
A, minh:hT h=1 h

T
Bh = V (:, end), where V (:, end) the eigenvector with the

smallest eigenvalue.
Corollary 3: The pseudoinverse of A is given by

A

+ = argmin
A+

||A+
A� I||F = V
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which could also be obtained by mimimizing ||AA+ � I||F (without proof).
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A is PSD <=> eigenvalues are all positive
A is PSD <=> A = XXT, where

Eigenvectors of A = left singular vectors of X 
    Eigenvalues of A = squared singular values of X

X =
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�1v1
p
�2v2 . . .

⇤
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1
2V

A = V ⇤V T

X = U⌃V T ! A = XXT = U⌃2UT



Aside: turns out spectral decomposition holds for any symmetric matrix

Figure 2: Visualizing the spectral eigendecomposition of a symmetric PSD matrix.

This makes intuitive sense geometrically; taking the k largest singular values and vectors
produces a transformation A

0 that uses as much of the output space as possible. The sketch
of the proof relies on the fact that U and V act as rotations and so do not e↵ect the rank of
A. The best k-rank approximation of A is then given by the best k-rank approximation of
the (diagonal) matrix ⌃.

Corollary 2: The solution of a homogenous least squares problem is given by smallest
right singular value:

min
h:hT h=1

||Ah||2 = V (:, end)

The proof sketch follows by the fact that any input v must project to one of the right
singular vectors (because they form a basis). A closely related result is that for any PSD
matrix B = A

T
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T
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SVD

Deva Ramanan

February 1, 2016

Let us represent a linear transformation as follows:

y = Ax, A 2 R

n⇥m (1)

where A is a matrix with n columns and m rows. This document uses the singular value
decomposition (SVD) to decompose A into a series of geometric transformations, focusing
intuition rather than a precise formulation. For simplicity, let n = 2 and m = 3, such that
A transforms points in 2D to 3D.

Figure 1: Visualizing a matrix A 2 R

2⇥3 as a transformation of points from R

2 to R

3.

Orthonormal basis: First, let us recall that the projection of a vector x 2 R

n along a
unit vector v (e.g., vTv = 1) can be written as vTx. Let us construct a set of n unit vectors
and write them as a matrix

V =
⇥
v1 v2, . . . vn

⇤
.

We can then compute the projection or coordinates of vector x along the unit vectors with a
matrix multiplication p = V

T
x. If all the unit vectors are orthogonal to each other (vTi vj = 0

for i 6= j), then V

T
V = I. This implies that V can be thought o↵ as a rotation matrix (whos

inverse is V

T ), making it easy to undo the projection. The set of vectors in V form an
orthogonal basis for Rn. Let us similar construct an orthonormal basis for the output space

U =
⇥
u1 u2 . . .

⇤

1

⇤ =

2
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�1 0 0 . . .
0 �2 0 . . .
0 0 �3 . . .
...
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3

7775

A = V ⇤V T

V TV = I

A = V ⇤V T

In the general case, eigenvalues can be negative



Alternative visualization of PSD matrices
A = V ⇤V T

Consider set of (x1,x2) points for which:
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Back to corner(ness)

W

where

Defn: points are “matchable” if small shifts always produce a large SSD error

Corner(x0, y0) = min

u2+v2=1
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Solution is given by minimum eigenvalue 
Implies (xo,yo) is a good corner if minimum eigenvalue is large

(or alternatively, if both eigenvalues of ‘A’ are large)



What will eigenvalues (and eigenvectors) look like?

let’s think about ‘A’ matrix…





Intuition behind eigenvalues

λ1

λ2

“Corner” 
λ1 and λ2 are large, 
 λ1 ~ λ2; 
E increases in all 
directions

λ1 and λ2 are small; 
E is almost constant 
in all directions

“Edge”  
λ1 >> λ2

“Edge”  
λ2 >> λ1

“Flat” 
region

Classification of image 
points using eigenvalues 
of A:



– Det(A) = λminλmax  
– Trace(A) = λmin+λmax

Efficient computation
Computing eigenvalues (and eigenvectors) is expensive

Turns out that it’s easy to compute their sum (trace) and product (determinant)

(is proportional to the ratio of 
eigvenvalues and is 1 if they are equal)

(also favors large eigenvalues)

R = 4
Det(A)

Trace(A)2

R = Det(A)� ↵Trace(A)2

(trace = sum of diagonal entries)



Harris detector example



corner value (red high, blue low)
Question: can we compute these heat maps with convolutions?



Threshold (f > value) 



Harris features (in red)

The tops of the horns are detected in both images



Scale and rotation invariance

Will interest point detector still fire on rotated & scaled images?



Rotation invariance (?)

Are eigenvector stable under rotations? 
Are eigenvalues stable under rotations?

No 
Yes



Scale invariance?

Are eigenvector stable under scalings? 
Are eigenvalues stable under scalings?

Yes 
No



A solution to scale

59
http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf

search over image pyramid scales
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A solution to scale

Look for local maxima in (x,y,sigma)

cornerness(x, y,�) = det(A(x, y,�))� ↵Trace

2
(A(x, y,�))

Scale

Figure 2: Maxima and minima of the difference-of-Gaussian images are detected by comparing a
pixel (marked with X) to its 26 neighbors in 3x3 regions at the current and adjacent scales (marked
with circles).

Laplacian. The factor (k − 1) in the equation is a constant over all scales and therefore does
not influence extrema location. The approximation error will go to zero as k goes to 1, but
in practice we have found that the approximation has almost no impact on the stability of
extrema detection or localization for even signifi cant differences in scale, such as k =

√
2.

An effi cient approach to construction of D(x, y,σ) is shown in Figure 1. The initial
image is incrementally convolved with Gaussians to produce images separated by a constant
factor k in scale space, shown stacked in the left column. We choose to divide each octave
of scale space (i.e., doubling of σ) into an integer number, s, of intervals, so k = 21/s.
We must produce s + 3 images in the stack of blurred images for each octave, so that fi nal
extrema detection covers a complete octave. Adjacent image scales are subtracted to produce
the difference-of-Gaussian images shown on the right. Once a complete octave has been
processed, we resample the Gaussian image that has twice the initial value of σ (it will be 2
images from the top of the stack) by taking every second pixel in each row and column. The
accuracy of sampling relative to σ is no different than for the start of the previous octave,
while computation is greatly reduced.

3.1 Local extrema detection

In order to detect the local maxima and minima ofD(x, y,σ), each sample point is compared
to its eight neighbors in the current image and nine neighbors in the scale above and below
(see Figure 2). It is selected only if it is larger than all of these neighbors or smaller than all
of them. The cost of this check is reasonably low due to the fact that most sample points will
be eliminated following the fi rst few checks.

An important issue is to determine the frequency of sampling in the image and scale do-
mains that is needed to reliably detect the extrema. Unfortunately, it turns out that there is
no minimum spacing of samples that will detect all extrema, as the extrema can be arbitrar-
ily close together. This can be seen by considering a white circle on a black background,
which will have a single scale space maximum where the circular positive central region of
the difference-of-Gaussian function matches the size and location of the circle. For a very
elongated ellipse, there will be two maxima near each end of the ellipse. As the locations of
maxima are a continuous function of the image, for some ellipse with intermediate elongation
there will be a transition from a single maximum to two, with the maxima arbitrarily close to
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Annoying “details”

59
http://www-bcs.mit.edu/people/adelson/pub_pdfs/pyramid83.pdf

Soln: construct blurred versions of image

2. Gradients across scales aren’t comparable  
(gradients always smaller on blurred images)

1. Positions across scales don’t align

Soln: multiply gradients by scale factor



Putting it all together: Harris-Laplacian detector

Relate Gaussian for integration with Gaussian for computing derivatives

Heuristic: �D = .7�I
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https://en.wikipedia.org/wiki/Harris_affine_region_detector

https://en.wikipedia.org/wiki/Harris_affine_region_detector


i. Given (x,y), we can find maximal sigma with finer search

Repeat (i,ii) over local neighborhoods of (sigma,x,y) until convergence

1. Optimize cornerness(x,y,sigma) over discrete set of locations and scales

2. Fine-tune “sub-pixel” accuracy by iterating the following:

ii. Given sigma, find maximal (x,y) of cornerness

“Sub-pixel” accuracy across sigma (and x,y)



Slide from Tinne Tuytelaars

Lindeberg et al, 1996

Slide from Tinne Tuytelaars

Lindeberg et al., 1996

Scale selection in 2D



Scale selection in 2D



Scale selection in 2D



Scale selection in 2D



Scale selection in 2D



Scale selection in 2D



Scale selection in 2D



Extension 1: anisotropic scale
Need richer description of “neighborhood” or scale

Replace scalar � with⌃

i. Given (x,y), find maximal Sigma with local search

1. Optimize cornerness(x,y,sigma) over discrete set of locations and scales

2. Fine-tune “sub-pixel” accuracy by iterating the following:

ii. Given Sigma, find maximal (x,y) of cornerness

(e.g., scale differently long x and y, or even a diagonal axis)



Affine Invariance



Application: Finding correspondences



Final matches: 32 correct correspondences 
Scale: 4.9 
Rotation: 19o

Example from Mikolajczyk and Schmid 2004



Extension 2: directly work with scale-space features or “blobs”

 Scale
 (first
 octave)

Scale
(next
octave)

Gaussian
Difference of
Gaussian (DOG)

. . .

Figure 1: For each octave of scale space, the initial image is repeatedly convolved with Gaussians to
produce the set of scale space images shown on the left. Adjacent Gaussian images are subtracted
to produce the difference-of-Gaussian images on the right. After each octave, the Gaussian image is
down-sampled by a factor of 2, and the process repeated.

In addition, the difference-of-Gaussian function provides a close approximation to the
scale-normalized Laplacian of Gaussian, σ2∇2G, as studied by Lindeberg (1994). Lindeberg
showed that the normalization of the Laplacian with the factor σ2 is required for true scale
invariance. In detailed experimental comparisons, Mikolajczyk (2002) found that the maxima
and minima of σ2∇2G produce the most stable image features compared to a range of other
possible image functions, such as the gradient, Hessian, or Harris corner function.

The relationship betweenD and σ2∇2G can be understood from the heat diffusion equa-
tion (parameterized in terms of σ rather than the more usual t = σ2):

∂G

∂σ
= σ∇2G.

From this, we see that ∇2G can be computed from the fi nite difference approximation to
∂G/∂σ, using the difference of nearby scales at kσ and σ:

σ∇2G =
∂G

∂σ
≈ G(x, y, kσ) − G(x, y,σ)

kσ − σ

and therefore,

G(x, y, kσ) − G(x, y,σ) ≈ (k − 1)σ2∇2G.

This shows that when the difference-of-Gaussian function has scales differing by a con-
stant factor it already incorporates the σ2 scale normalization required for the scale-invariant

6

Pope and Lowe (2000) used features based on the hierarchical grouping of image contours,
which are particularly useful for objects lacking detailed texture.

The history of research on visual recognition contains work on a diverse set of other
image properties that can be used as feature measurements. Carneiro and Jepson (2002)
describe phase-based local features that represent the phase rather than the magnitude of local
spatial frequencies, which is likely to provide improved invariance to illumination. Schiele
and Crowley (2000) have proposed the use of multidimensional histograms summarizing the
distribution of measurements within image regions. This type of feature may be particularly
useful for recognition of textured objects with deformable shapes. Basri and Jacobs (1997)
have demonstrated the value of extracting local region boundaries for recognition. Other
useful properties to incorporate include color, motion, fi gure-ground discrimination, region
shape descriptors, and stereo depth cues. The local feature approach can easily incorporate
novel feature types because extra features contribute to robustness when they provide correct
matches, but otherwise do little harm other than their cost of computation. Therefore, future
systems are likely to combine many feature types.

3 Detection of scale-space extrema

As described in the introduction, we will detect keypoints using a cascade fi ltering approach
that uses effi cient algorithms to identify candidate locations that are then examined in further
detail. The fi rst stage of keypoint detection is to identify locations and scales that can be
repeatably assigned under differing views of the same object. Detecting locations that are
invariant to scale change of the image can be accomplished by searching for stable features
across all possible scales, using a continuous function of scale known as scale space (Witkin,
1983).

It has been shown by Koenderink (1984) and Lindeberg (1994) that under a variety of
reasonable assumptions the only possible scale-space kernel is the Gaussian function. There-
fore, the scale space of an image is defi ned as a function, L(x, y,σ), that is produced from
the convolution of a variable-scale Gaussian, G(x, y,σ), with an input image, I(x, y):

L(x, y,σ) = G(x, y,σ) ∗ I(x, y),

where ∗ is the convolution operation in x and y, and

G(x, y,σ) =
1

2πσ2
e−(x2+y2)/2σ2

.

To effi ciently detect stable keypoint locations in scale space, we have proposed (Lowe, 1999)
using scale-space extrema in the difference-of-Gaussian function convolved with the image,
D(x, y,σ), which can be computed from the difference of two nearby scales separated by a
constant multiplicative factor k:

D(x, y,σ) = (G(x, y, kσ) − G(x, y,σ)) ∗ I(x, y)
= L(x, y, kσ) − L(x, y,σ). (1)

There are a number of reasons for choosing this function. First, it is a particularly effi cient
function to compute, as the smoothed images, L, need to be computed in any case for scale
space feature description, and D can therefore be computed by simple image subtraction.
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k = 2
1
s where s = # levels in an octave

https://en.wikipedia.org/wiki/Scale-invariant_feature_transform

https://en.wikipedia.org/wiki/Scale-invariant_feature_transform


Local maxima of D(x,y,sigma) D(x,y,sigma) > thresh 
D

xx

D
xy

D
yx

D
yy

�

min eigenvalue of Hessian > thresh

Look for “blob detections” that are 

locally maximal, high confidence, and localizeable

 
Added benefit of Hessian: use second-order taylor expansion to get “subpixel” accuracy

https://en.wikipedia.org/wiki/Scale-invariant_feature_transform

https://en.wikipedia.org/wiki/Scale-invariant_feature_transform


Alternative approach for rotation invariance 

(Lowe, SIFT)

Compute gradients for all pixels in patch. Histrogram (bin) gradients by orientation

0 2π

(I prefer this because you can look for multiple peaks)



Comparison
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Coordinate frames

Represent each patch in a canonical scale and orientation (or general affine coordinate frame)
 



Basic idea: 
• Take 16x16 square window around detected feature 
• Compute edge orientation (angle of the gradient - 90°) for each pixel 
• Throw out weak edges (threshold gradient magnitude) 
• Create histogram of surviving edge orientations

Scale Invariant Feature Transform

Adapted from slide by David Lowe

0 2π
angle histogram



SIFT descriptor
Full version 

• Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below) 
• Compute an orientation histogram for each cell 
• 16 cells * 8 orientations = 128 dimensional descriptor

Adapted from slide by David Lowe



Properties of SIFT
Extraordinarily robust matching technique 

• Can handle changes in viewpoint 
– Up to about 60 degree out of plane rotation 

• Can handle significant changes in illumination 
– Sometimes even day vs. night (below) 

• Fast and efficient—can run in real time 
• Lots of code available 

– http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT 

http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT


http://www.vlfeat.org/overview/sift.html

We’ll discuss many more on Thursday!

http://www.vlfeat.org/overview/sift.html

