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within-class between-class
activation textures of objects spatial cueing
inhibition NMS mutual exclusion

global expected counts co-occurrence
Table 1. A taxonomy of interactions captured in our model.
Within a single object class, our model can favor typical spa-
tial layouts of objects (people often stand in crowds) while di-
rectly learning how to inhibit overlapping detections in such cases
(NMS). Our model also captures long-range interactions between
objects, such as the constraint that there exists at most one object
instance (counting). Analogous interactions exist between object
classes, including typical spatial relations between objects (bottles
sit on tables), mutual exclusion (dog and cat detectors should not
respond to the same image region), and co-occurrence (couches
and cars do not commonly co-occur).

other (Fig.2). In general, spatial object-object interactions
may be arbitrarily complex and depend on latent informa-
tion which is not readily available from single image. As an
extreme example, studies of proxemics [11], the body spac-
ing and pose of people as they interact, shows that physical
spacing between people depends in complicated ways on
their “social distance”. While such complex interactions are
difficult to encode, we argue there does exist useful infor-
mation that is being ignored by current ad-hoc approaches
to NMS.

NMS is generally described in terms of intra-class in-
hibition, but can be generalized to suppression of overlap-
ping detections between different classes. We refer to this
more general constraint, that two objects cannot occupy the
same 3D volume at the same time, as mutual exclusion. As
seen in a 2D image projection, the exact nature of this con-
straint depends on the object classes. Fig.2(right) shows
an example of ground-truth labelings in the PASCAL VOC
dataset in which strict mutual-exclusion would produce sub-
optimal performance.

Object detections can also serve to enhance rather than
inhibit other detections within a scene. This has been an
area of active research in object recognition over the last
few years [22, 18, 10, 12, 13, 4, 15]. For example, different
object classes may be likely to co-occur in a particular spa-
tial layout. People ride on bikes, bottles rest on tables, and
so on. In contextual cueing, a confident detection of one
object (a bike) provides evidence that increases the likeli-
hood of detecting another object (a person above the bike)
[4, 10, 15]. Contextual cueing can also occur within an ob-
ject category, e.g., a crowd of pedestrians reinforcing each
other’s detection responses. An extreme example of this
phenomena is near-regular texture in which the spatial lo-
cations of nearly identical elements provides a strong prior
on the expected locations of additional elements, lowering
their detection threshold [17].

In Table 1 we outline a simplified taxonomy of different
types of object-object interactions, both positive and nega-

Non−Maxima Suppression Mutual Exclusion

Figure 2. Our novel contributions include the ability to learn in-
hibitory intra-class constraints (NMS) and inhibitory inter-class
constraints (Mutual Exclusion) in a single unified model along
with contextual cuing and spatial co-occurrence. Naive methods
for NMS or mutual exclusion may fail for objects that tend to
overlap themselves (left) and other objects (right). In contrast,
our framework learns how best to enforce such constraints from
training data. We formulate the tasks of NMS and Mutual Exclu-
sion using the language of structured prediction. This allows us
to compute an optimal model by minimizing a convex objective
function.

tive, within and between classes. The contribution of this
paper is a single model that incorporates all interactions
from Table 1 through the framework of structured predic-
tion. Rather than returning a binary label for a each image
window, our model simultaneously predicts a set of detec-
tions for multiple objects from multiple classes over the en-
tire image. Given training images with ground-truth object
locations, we show how to formulate parameter estimation
as a convex max-margin learning problem. We employ the
cutting plane algorithm of [14] to efficiently learn globally
optimal parameters from thousands of training images.

In the sections that follow we formulate the structured
output model in detail, describe how to perform inference
and learning, and detail the optimization procedures used
to efficiently learn parameters. We show state-of-the-art re-
sults on the PASCAL 2007 VOC benchmark[7], indicating
the benefits of learning a global model that encapsulates the
layout statistics of multiple objects classes in real images.
We conclude with a discussion of related work and future
directions.

2. Model
We describe a model for capturing interactions across

a family of object detectors. To do so, we will explicitly
represent an image as a collection of overlapping windows
at various scales. The location of the ith window is given
by its center and scale, written as li = (x, y, s). The col-
lection of M windows are precisely the regions scored by
a scanning-window detector. Write xi for the features ex-
tracted from window i, for example, a histogram of gradient
features [6]. The entire image can then be represented as the
collection of feature vectors X = {xi : i = 1 . . . M}

Assume we have K object models. We write yi �
{0 . . . K} for the label of the ith window, where the 0 la-
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Large-scale learning

Learning from large-scale training sets is challenging 
(optimization can take days or weeks)

negpos



Statistical classification  
(30 min overview!)

Why?

This is the world in which we live - statistical models 
from data overpower classic “hand-designed” models 

Good texts:



Statistical classification 

x 2 R

N

y 2 {�1, 1}
{(xi, yi)}

Given training points (xi,yi), learn function f(x) that predicts a label  {-1,1}
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Statistical classification 

x 2 R

N
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Version 0: nearest neighbor classification
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Test time: expensive

Surprisingly powerful!



Statistical classification 

x 2 R

N

y 2 {�1, 1}
{(xi, yi)}

Given training points (xi,yi), learn function f(x) that predicts a label  {-1,1}

Version 0: nearest neighbor classification
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What’s the best line?

min
w

X

i

[yi 6= thresh(w · xi)]

Find w that minimizes mistakes on training data

[Hard to optimize]
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What’s the best line?

Easy to optimize - least squares!
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Alternate visualization: heightfeild

Lecture 16
 -  

Fei-Fei Li

KEnearest'neighbor'

x x 

x 
x

x 

x 

x 

x 
o 

o 
o 

o 

o 

o 

o 

x2 

x1 

+ 
Dist(Xn,Xm ) = (Xi

n − Xi
m )

i=1

D

∑
2

Distance'measure'E'Euclidean'

Where'Xn'and'Xm'are'the'nEth'and'mEth'data'points'

techn
ical 

note 

x

f(x)
x xx x

0000



Lecture 16
 -  

Fei-Fei Li

KEnearest'neighbor'

x x 

x 
x

x 

x 

x 

x 
o 

o 
o 

o 

o 

o 

o 

x2 

x1 

+ 
Dist(Xn,Xm ) = (Xi

n − Xi
m )

i=1

D

∑
2

Distance'measure'E'Euclidean'

Where'Xn'and'Xm'are'the'nEth'and'mEth'data'points'

techn
ical 

note 

Unified notation:  
regularized loss minimization

losssquared(m) = (1�m)2

loss01(m) = I(m < 0)

min
w

�R(w) +
X

i

loss(yifw(xi))

R(w) =
1

2
||w||2

fw(xi) = w · xi

m

loss(m)



Birds-eye view of ML

(Logistic regression)

(Support vector machine)

loss

squared

(m) = (1�m)

2

loss

log
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�m

)

loss

hinge

(m) = max(0, 1 +m)

fw(xi) = w

T
xi

fw(xi) = CNNw(xi)

Linear classifier

Nonlinear classifier

(Linear regression)

min
w
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X

i

loss(yifw(xi))
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1
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RL1(w) =
X
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|wj |

(L2 regularization)

(L1/sparse regularization)



squared loss
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Learning with losses
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Learning with  
gradient descent

w := w � step ⇤
�
w +

X

i

(fw(xi)� yi)
@fw(xi)

@w

�

min
w

L(w) where L(w) =
1

2
||w||2 +

X

i

(fw(xi)� yi)
2

Early 2000’s: obsession with convex L(w)



min
w

1

2
||w||2 +

X

i

(fw(xi)� yi)
2

w := w � step ⇤
�
w + (fw(xi)� yi)

@fw(xi)

@w

�

Trivially “out-of-core”: most contemporary models are trained in this manner

Large-scale learning: 
stochastic gradient descent



Special case: SVMs

w appears quadratically (sort of)… can we differentiate and set = 0?

[We’ll set lambda = 1 to simplify notation]

min

w
L(w) where L(w) =
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max(0, 1� yiw · xi)



w appears quadratically (sort of)… can we differentiate and set = 0?

min

w
L(w) where L(w) =

1

2

||w||2 +
X

i

max(0, 1� yiw · xi)

@max(0, w)

@w
⇡ ↵w, 0  ↵  1

SVMs



SVMs

w =
X

i

↵iyixi

min

w
L(w) where L(w) =

1

2

||w||2 +
X

i

max(0, 1� yiw · xi)

Easy : yiw · xi � 0 ) ↵i = 0

Marg : yiw · xi = 0 ) 0  ↵i  1

Hard : yiw · xi = 1 ) ↵i = 1

“KKT conditions”



SVMs
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Easily visualize easy, hard, and marginally hard examples 

Throwing away easy examples does not change optimization



Large-scale learning

Our test set distribution is highly imbalanced; so should be the training set
(hundreds of positives, hundreds of millions of negatives)

negpos

(turn continuous search over parameters into combinatorial search over data)

Support vector machines (SVMs) are attractive because they generate sparse learning problems



How to interpret positive and negative weights?
w·x > 0

(wpos - wneg)·x > 0

wpos·x > wneg·x

What do negative weights mean?

(w+ - w-)x > 0

w+ > w-x

Complete system should compete pedestrian/pillar/doorway models

Discriminative models come equipped with own bg

(avoid firing on doorways by penalizing vertical edges)

>

wx > 0

pedestrian 
model

pedestrian 
background
model

What do negative weights mean?

(w+ - w-)x > 0

w+ > w-x

Complete system should compete pedestrian/pillar/doorway models

Discriminative models come equipped with own bg

(avoid firing on doorways by penalizing vertical edges)

>

wx > 0

pedestrian 
model

pedestrian 
background
model

>

Right approach is to compete pedestrian, pillar, doorway... models

Pedestrian  
template

Pedestrian  
background 

template

Background class is hard to model - easier to penalize particular vertical edges

Historically, model-based approaches tend not to model negative set
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But what if we actually try to 
model positives and negatives?

Simple generative model P(x,y) = P(y) P(x|y):

1. P(y): Flip (biased) coin to select class ‘k’ 
2. P(x|y): Sample from Gaussian (mu_k, Sigma_k)

y 2 {�1, 1}
x 2 R

N



A look aheadDiscriminative Decorrelation for Clustering and Classification 7

(a) AP (b) Centered (c) LDA

Fig. 3. The performance (AP) of the LDA model and the centered model (LDA with-
out whitening) vis-a-vis a standard linear SVM on HOG features. We also show the
detectors for the centered model and the LDA model.

3 Pedestrian detection

HOG feature vectors were first described in detail in [1], where they were shown
to significantly outperform other competing features in the task of pedestrian de-
tection. This is a relatively easy detection task, since pedestrians don’t vary sig-
nificantly in pose. Our local implementation of the Dalal-Triggs detector achieves
an average precision (AP) of 79.66% on the INRIA dataset, outperforming the
original AP of 76.2% reported in Dalal’s thesis [18]. We think this di↵erence is
due to our SVM solver, which implements multiple passes of data-mining for
hard negatives. We choose this task as our first test bed for WHO features.

We use our LDA model to train a detector and evaluate its performance.
Figure 3 shows our performance compared to that of a standard linear SVM on
HOG features. We achieve an AP of 75.10%. This is slightly lower than the SVM
performance, but nearly equivalent to the original performance of [18]. However,
note that compared to the SVM model, the LDA model is estimated only from a
few positive image patches and neither requires access to large pools of negative
images nor involves any costly bootstrapping steps. Given this overwhelmingly
reduced computation, this performance is impressive.

Constructing our LDA model from HOG feature vectors involves two steps,
i.e, subtracting µ0 (centering) and multiplying by ⌃�1 (whitening). To tease
out the contribution of whitening, we also evaluate the performance when the
whitening step is removed. In other words, we consider the detector formed by
simply taking the mean of the centered positive feature vectors. We call this
the “centered model”, and its performance is indicated by the black curve in
Figure 3. It achieves an AP of less than 10%, indicating that whitening is crucial
to performance. We also show the detectors in Figure 3, and it can be clearly
seen that the LDA model does a better job of identifying the discriminative
contours (the characteristic shape of the head and shoulders) compared to simple
centering.

Simple linear discriminant analysis gets us 90% of the way there…



Class-conditional Gaussians
If we assume all classes have same Sigma….

(For notational ease, let’s assume priors for class y in {0,1} are equal)

p(y = 1|x) = p(x|y = 1)p(y = 1)

p(x|y = 1)p(y = 1) + p(x|y = 0)p(y = 0)

=
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⌃
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⌃
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p(y = 1|x) > .5 when fw(x) = w

T
x+ b > 0, w = ⌃�1(µ1 � µ0)



Class-conditional Gaussians
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What happens if Sigmas for the two classes are different?



LDA: a closer look

Learn templates with generic (de)correlation model

SVM Gaussian model

Hariharan, Malik, Ramanan ECCV 12
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(a) AP (b) Centered (c) LDA

Fig. 3. The performance (AP) of the LDA model and the centered model (LDA with-
out whitening) vis-a-vis a standard linear SVM on HOG features. We also show the
detectors for the centered model and the LDA model.

3 Pedestrian detection

HOG feature vectors were first described in detail in [1], where they were shown
to significantly outperform other competing features in the task of pedestrian de-
tection. This is a relatively easy detection task, since pedestrians don’t vary sig-
nificantly in pose. Our local implementation of the Dalal-Triggs detector achieves
an average precision (AP) of 79.66% on the INRIA dataset, outperforming the
original AP of 76.2% reported in Dalal’s thesis [18]. We think this di�erence is
due to our SVM solver, which implements multiple passes of data-mining for
hard negatives. We choose this task as our first test bed for WHO features.

We use our LDA model to train a detector and evaluate its performance.
Figure 3 shows our performance compared to that of a standard linear SVM on
HOG features. We achieve an AP of 75.10%. This is slightly lower than the SVM
performance, but nearly equivalent to the original performance of [18]. However,
note that compared to the SVM model, the LDA model is estimated only from a
few positive image patches and neither requires access to large pools of negative
images nor involves any costly bootstrapping steps. Given this overwhelmingly
reduced computation, this performance is impressive.

Constructing our LDA model from HOG feature vectors involves two steps,
i.e, subtracting µ0 (centering) and multiplying by ��1 (whitening). To tease
out the contribution of whitening, we also evaluate the performance when the
whitening step is removed. In other words, we consider the detector formed by
simply taking the mean of the centered positive feature vectors. We call this
the “centered model”, and its performance is indicated by the black curve in
Figure 3. It achieves an AP of less than 10%, indicating that whitening is crucial
to performance. We also show the detectors in Figure 3, and it can be clearly
seen that the LDA model does a better job of identifying the discriminative
contours (the characteristic shape of the head and shoulders) compared to simple
centering.
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What’s the covariance matrix capturing?
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with a strong response at a horizontally-adjacent location. Multiplying gradi-
ent features by ⌃�1 subtracts o↵ such correlated measurements. Because ⌃�1

is sparse, features need only be de-correlated with adjacent or nearby spatial
locations. This in turn suggests that image gradients can be fit will with a 3rd
or 4th-order spatial Markov model, which may make for easier estimation and
faster computations. A spatial Markov assumption makes intuitive sense; given
we see a strong horizontal gradient at a particular location, we expect to see
a strong gradient to its right regardless of the statistics to its left. We experi-
mented with such sparse models [15], but found an unrestricted ⌃ to work well
and simpler to implement.

Implications: Our statistical model, though quite simple, has several impli-
cations for scanning-window templates. (1) One should learn templates of larger
spatial extent than the object. For example, a 2nd-order spatial Markov model
implies that one should score gradient features two cells away from the object
border in order to de-correlate features. Intuitively, this makes sense; a pedes-
trian template wants to find vertical edges at the side of the face, but if it also
finds vertical edges above the face, then this evidence maybe better explained
by the vertical contour of a tree or doorway. Dalal and Triggs actually made the
empirical observation that larger templates perform better, but attributed this
to local context [1]; our analysis suggests that decorrelation may be a better ex-
planation. (2) Current strategies for modeling occlusion/truncation by “zero”ing
regions of a template may not su�ce [16, 17]. Rather, our model allows us to
properly marginalize out such regions from µ and ⌃. The resulting template
w will not be equivalent to a zero-ed out version of the original template, be-
cause the de-correlation operation must change for gradient features near the
occluded/truncated regions.
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Fig. 2.We visualize correlations between 9 orientation features in horizontally-adjacent
HOG cells as concatenated set of 9 ⇥ 9 matrices. Light pixels are positive while dark
pixels are negative. We plot the covariance and precision matrix on the left, and the
positive and negative values of the precision matrix on the right. Multiplying a HOG
vector with ⌃

�1 decorrelates it, subtracting o↵ gradient measurements from adjacent
orientations and locations. The sparsity pattern of ⌃

�1 suggests that one needs to
decorrelate features only a few cells away, indicating that gradients maybe well-modeled
by a low-order spatial Markov model.
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(a) AP (b) Centered (c) LDA

Fig. 3. The performance (AP) of the LDA model and the centered model (LDA with-
out whitening) vis-a-vis a standard linear SVM on HOG features. We also show the
detectors for the centered model and the LDA model.

3 Pedestrian detection

HOG feature vectors were first described in detail in [1], where they were shown
to significantly outperform other competing features in the task of pedestrian de-
tection. This is a relatively easy detection task, since pedestrians don’t vary sig-
nificantly in pose. Our local implementation of the Dalal-Triggs detector achieves
an average precision (AP) of 79.66% on the INRIA dataset, outperforming the
original AP of 76.2% reported in Dalal’s thesis [18]. We think this di↵erence is
due to our SVM solver, which implements multiple passes of data-mining for
hard negatives. We choose this task as our first test bed for WHO features.

We use our LDA model to train a detector and evaluate its performance.
Figure 3 shows our performance compared to that of a standard linear SVM on
HOG features. We achieve an AP of 75.10%. This is slightly lower than the SVM
performance, but nearly equivalent to the original performance of [18]. However,
note that compared to the SVM model, the LDA model is estimated only from a
few positive image patches and neither requires access to large pools of negative
images nor involves any costly bootstrapping steps. Given this overwhelmingly
reduced computation, this performance is impressive.

Constructing our LDA model from HOG feature vectors involves two steps,
i.e, subtracting µ0 (centering) and multiplying by ⌃�1 (whitening). To tease
out the contribution of whitening, we also evaluate the performance when the
whitening step is removed. In other words, we consider the detector formed by
simply taking the mean of the centered positive feature vectors. We call this
the “centered model”, and its performance is indicated by the black curve in
Figure 3. It achieves an AP of less than 10%, indicating that whitening is crucial
to performance. We also show the detectors in Figure 3, and it can be clearly
seen that the LDA model does a better job of identifying the discriminative
contours (the characteristic shape of the head and shoulders) compared to simple
centering.

Simple linear discriminant analysis gets us 90% of the way there…



Parting thoughts on LDA
1. Fischer Discriminant Analysis when derived using other criteria (maximizing ratio of between to 
within-class variances)

2. One can also obtain the LDA / FDA solution by discriminative learning with a squared error loss
(Hastie et al, Elements of Statistical Learning)

2. Can be easily generalized to multiple classes - how?

squared loss

lo
ss

(m
)

m

Implies the distinction between generative and discriminative models can be blurred…



Parting thoughts on statistical classification

Loss functions: hinge, log-loss, squared loss

Cross-entropy loss:

SVMs generate sparse optimization problems

Generative models are promising, but current state-of-the-art relies on discrimative loss minimization

Things that will appear later:

minimizing cross-entropy of binary prediction is equivalent to log-loss

Soft-max loss: minimizing cross-entropy of K-way prediction is equivalent to soft-max



Outline

• Classifiers 

• Apearance variation 

• Parts



Back to vision…. 

variation in pose, viewpointvariation in appearance

occlusion & clutter

Classic “nuisance factors” for general object recognition

variation in illumination



“Sub”categories

Train sub-category templates for each type of pose, body-shape, etc.



Also applies to other objects…

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

CVPR
#328

CVPR
#328

CVPR 2013 Submission #328. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 3: Our overall pipeline. We learn a massive num-
ber of candidate subcategory models in parallel, each ini-
tialized with its own training example and particular clus-
ter size. We train each subcategory with a discriminative
meanshift algorithm that iterates between selecting exam-
ples for sharing and learning detectors given those exam-
ples. Finally, we select a subset of candidate subcategory
detectors for each object class as to maximize recognition
accuracy. We show that this selection naturally produces
subcategories with long-tail distribution of sizes.

with a single-mixture deformable part model (DPM) [14].
Our overall pipeline is summarized in Fig. 3. We explain
each step in detail in the following.

3.1. Initialization

We begin by training a large “overcomplete” set of tens
of thousands of candidate subcategory models in parallel.
This large set of models will later be pruned. We initialize
our subcategory models by learning a discriminative tem-
plate for each positive example using exemplar SVMs [20].
We visualize exemplar root templates in Fig. 4. In terms of
category detection accuracy, they perform reasonably well
(25% AP). But because it easy to overfit to a single exam-
ple, many templates include noisy features from the back-
ground.

Regularization: To help smooth out noisy gradients,
let us retrain subcategory model m with the N

m

highest-
scoring positive examples under the exemplar model. We
visualize these templates for N

m

= 50 in Fig. 4. They
almost double performance, producing an AP of 42%. Intu-
itively, the N

m

neighbors act as a regularizer for each exem-
plar, smoothing out the noisy gradients. Indeed, averaging
across N

m

similar training examples maybe more natural
than penalizing the squared norm of a template, as is typ-
ically done to prevent overfiting. This motivating example
suggests that subcategory clusters need not be mutually ex-
clusive and may overlap. In fact, we find that some positive
examples are shared by many subcategories, a phenomena
that we will investigate further.

Iteration: We make two further observations. First, one
can iterate the procedure and find the N

m

highest scoring
examples with the retrained subcategory model and repeat.
The optimal choice of neighbors for one cluster is indepen-

Iter0

Iter1

Figure 4: We visualize examples training images on the
top. We show initial exemplar models trained with them
in the middle. These templates perform well (25% AP on
VOC2007), but sometimes emphasize gradients in the back-
ground, such as the tree in the top-left corner of the top-left
image. Retraining with the N

m

= 50 highest-scoring ex-
amples (bottom) smooths out the template, de-emphasizing
such noisy gradients (since they tend not be found in the
N

m

neighbors). This significantly improves performance
to 42%. This suggests that optimal subcategory clusters
may be overlapping, and maybe computed independantly
for each subcategory. [Deva: Remake figure with larger
templates]

dant of the choice of another cluster, suggesting these iter-
ations can be performed independantly and in parallel. We
show that such a distributed, iterative algorithm is garuan-
teed to converge since it can be formalized as joint optimiza-
tion of a well-defined (discriminative) objective function.
We call the resulting algorithm discriminative meanshift-
clustering.

Cluster-size: Selecting the optimal cluster size N

m

is
tricky. We want large N

m

for common cases. Rare clus-
ters are particularly hard to model; from one perspective,
they should use a small N

m

so that learned detectors aren’t
polluted by visually dissimilar examples. On the other
hand, models learned from very small clusters may tend
to overfit because they are trained with less data. As ar-
gued above, we treat N

m

as a subcategory-specific regu-
larization parameter that is tuned on validation data (much
as one tunes the C regularization parameter for SVMs).
Specifically, we learn models for a range of N

m

2 N =

{50, 100, 200, 400, 800, 1600} values. Given a dataset with
P positives, we learn a total of K = |N |P candidate sub-
categories mixtures in parallel, spanning both examples and
cluster sizes. After training this large redundant set, we se-
lect a subset on validation data.

3.2. Discriminative meanshift-clustering
We formalize the iterative algorithm introduced in the

previous section. We do so by writing a objective function
for jointly training all K subcategory models, and describe
a coordinate descent optimization produce that naturally de-
couples across subcategories.

3

iterate

iterate

iterate

Figure 3: Our overall pipeline. We learn a massive number
of candidate subcategory models in parallel, each initialized
with its own training example (an exemplar) and particu-
lar cluster size. We train each subcategory with a discrim-
inative clustering algorithm that iterates between selecting
examples for sharing and learning detectors given those ex-
amples. Finally, we select a subset of candidate subcategory
detectors for each object class as to maximize recognition
accuracy. We show that this selection naturally produces
subcategories with long-tail distribution of sizes.

based mixtures of an object [28, 33]. Typically, subcate-
gory mixtures are supervised, but not always [21]. We share
global examples rather an local parts, as the former is more
amenable to brute-force distributed optimization.

3. Learning long-tail subcategory models
In this section, we describe our approach for learning

long-tail subcategory models. We model each subcategory
with a single-mixture deformable part model (DPM) [14].
Our overall pipeline is summarized in Fig. 3. We explain
each step in detail in the following.

3.1. Initialization
We begin by training a large “overcomplete” set of thou-

sands to tens of thousands of candidate subcategory models
in parallel. This large set of models will later be pruned.
We initialize our subcategory models by learning a discrim-
inative template for each positive example using exemplar
SVMs [20]. We visualize exemplar root templates for cars
in Fig. 4. In terms of category detection accuracy, they per-
form reasonably well (25% AP). But because it is easy to
overfit to a single example, many templates include noisy
features from the background.

Sharing as regularization: To help learning more re-
liable templates for the rare examples, we retrain subcate-
gory model m with the n

m

highest-scoring positive exam-
ples under the exemplar model. We consider the sharing as
a form of “regularization” that prevents overfitting to noisy
gradients. To demonstrate the effect of sharing, we visual-
ize the exemplar templates and the retrained templates for
n

m

= 50 in Fig. 4. The templates “regularized” by shared
examples have less noisy gradients and almost double per-
formance, producing an AP of 42%. Indeed, “averaging”

Figure 4: We visualize examples training images on the
top. We show initial exemplar models trained with them
in the middle. These templates perform well (25% AP on
VOC2007), but sometimes emphasize incorrect gradients,
such as the foreground tree in the center image. Retrain-
ing with the n

m

= 50 highest-scoring examples (bottom)
smooths out the template, de-emphasizing such noisy gra-
dients (since they tend not be found in the n

m

neighbors).
This significantly improves performance to 42%. This sug-
gests that optimal subcategory clusters may be overlapping,
and maybe computed independently for each subcategory.

across n

m

similar training examples maybe more natural
than penalizing the squared norm of a template, as is typi-
cally done to prevent overfitting. This motivating example
suggests that subcategory clusters need not be mutually ex-
clusive and may overlap. In fact, we find that some positive
examples are shared by many subcategories, a phenomenon
that we will investigate later in Fig. 9.

Iteration: We make two further observations. First, one
can iterate the procedure and find the n

m

highest scoring
examples with the retrained subcategory model and repeat.
The optimal choice of neighbors for one cluster is inde-
pendent of the choice of another cluster, suggesting these
iterations can be performed independently and in parallel.
We show in Sec. 3.2 that such a distributed, iterative algo-
rithm is guaranteed to converge since it can be formalized
as joint optimization of a well-defined (discriminative) ob-
jective function.

Cluster-size: Selecting the optimal cluster size n

m

is
tricky. We want large n

m

for common cases. Rare clus-
ters are particularly hard to model; from one perspective,
they should use a small n

m

so that learned detectors aren’t
polluted by visually dissimilar examples. On the other
hand, models learned from very small clusters may tend
to overfit because they are trained with less data. As ar-
gued above, we treat n

m

as a subcategory-specific regular-
ization parameter that is tuned on validation data. Specifi-
cally, we learn models for a log-linear range of n

m

2 N =

{50, 100, 200, 400, 800, 1600} values. Given a dataset of
positives P , we learn a large set of candidate subcategories
mixtures M (|M | = |N ||P |) in parallel, spanning both ex-
amples and cluster sizes. After training this large redundant
set, we select a subset on validation data.



But how to handle...

We need lots of templates, but will likely have little data of ‘twisted’ poses



But how to handle...

We need lots of templates, but will likely have little data of ‘rare’ car-appearances



Difficulties: long tails
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Difficulties: long tails
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“One-shot learning”: sharing



Parts to the rescue!
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Figure 3: We take a “data-driven” approach to orientation-modeling by clustering the relative locations of parts with respect
to their parents. These clusters are used to generate mixture labels for parts during training. For example, heads tend to
be upright, and so the associated mixture models focus on upright orientations. Because hands articulate to a large degree,
mixture models for the hand are spread apart to capture a larger variety of relative orientations.
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Figure 5: A visualization of our full-body model for T = 4, trained on the Parse dataset. Note that we show them as 4
separate models, but we emphasize that our representation allows for the composition of any part type with any other part
type, where the score associated with each combination decomposes into a tree (and so is efficient to search over) and is
learned from training data.

Image Parse Testset
Method Torso Head Upper legs Lower legs Upper arms Lower arms Total
R Gradient[?] 39.5 21.4 20.7 20.7 12.7 11.7 19.2
R Gradient+RGB[?] 52.1 37.5 31.0 29.0 17.5 13.6 27.2
ARS HOG [?] 81.4 75.6 63.2 55.1 47.6 31.7 55.2
JE HOG [?] 73.2 62.4 58.6 52.2 47.8 32.5 51.8
JE HOG+RGB [?] 77.6 68.8 61.5 54.9 53.2 39.3 56.4
SNH ROG [?] 54.8
SNH ROG+RGB [?] 91.2 76.6 71.5 64.9 50.0 34.2 60.9
Our Model HOG 89.8 87.8 78.5 69.0 64.4 36.1 67.4

Table 1: We compare our model to all previous published results on the Parse dataset, using the standard criteria of PCP [?].
Our total performance of 67.4% compares favorably to the best previous result of 60.9%. We also beat all previous results
on a per-part basis, except for torso and lower arm detection, for which we are second. [?] uses the same HOG feature set as
us, but embedded in a classic articulated pictorial structure. The relative improvement of our approach is 20%, indicating the
quality of our flexible part-mixture representation.



History over 40 years

Model encodes local appearance + pairwise geometry 
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Fig. 1. Detections obtained with a single component person model. The model is defined by a coarse root filter (a), several

higher resolution part filters (b) and a spatial model for the location of each part relative to the root (c). The filters specify

weights for histogram of oriented gradients features. Their visualization show the positive weights at different orientations. The

visualization of the spatial models reflects the “cost” of placing the center of a part at different locations relative to the root.

To train models using partially labeled data we use a latent variable formulation of MI-SVM

[3] that we call latent SVM (LSVM). In a latent SVM each example x is scored by a function

of the following form,

f�(x) = max
z�Z(x)

� · �(x, z). (1)

Here � is a vector of model parameters, z are latent values, and �(x, z) is a feature vector.

In the case of one of our star models � is the concatenation of the root filter, the part filters,

and deformation cost weights, z is a specification of the object configuration, and �(x, z) is a

concatenation of subwindows from a feature pyramid and part deformation features.

We note that (1) can handle very general forms of latent information. For example, z could

specify a derivation under a rich visual grammar.

Our second class of models represents each object category by a mixture of star models.

The score of one of our mixture models at a given position and scale is the maximum over

components, of the score of that component model at the given location. In this case the latent

information, z, specifies a component label and a configuration for that component. Figure 2

shows a mixture model for the bicycle category.

To obtain high performance using discriminative training it is often important to use large

training sets. In the case of object detection the training problem is highly unbalanced because

there is vastly more background than objects. This motivates a process of searching through

the background to find a relatively small number of potential false positives. A methodology of
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