
Transformations and
alignment

Outline

• Review from last lec

• Transformations (2D/3D)

• Direct methods

• Lucas Kanade

Review from last lecture
�

2

4
x

y

1

3

5 =

2

4
fs

x

fs

✓

o

x

0 fs

y

o

y

0 0 1

3

5

2

4
r11 r12 r13 t

x

r21 r22 r23 t

y

r31 r32 r33 t

z

3

5

2

664

X

Y

Z

1

3

775

= K3⇥3

⇥
R3⇥3 T3⇥1

⇤

2

664

X

Y

Z

1

3

775

= M3⇥4

2

664

X

Y

Z

1

3

775

Claims:
1. A 3x4 matrix ‘M’ can be a camera matrix iff det(A) is not zero (allows one to cast a ray)
2. M is determined only up to a scale factor (easy to show)

Computing homography projections

�

2

4
x2

y2

1

3

5 =

2

4
a b c

d e f

g h i

3

5

2

4
x1

y1

1

3

5

Given (x1,y1) and H, how do we compute (x2,y2)?

x2 =
�x2

�

=
ax1 + by1 + c

gx1 + hy1 + i

Image
correspondences

Estimating homographies

Image
correspondences

Given corresponding 2D points in left and right image, estimate H

Homogenous linear systemAH(:) =

2

64
0
0
...

3

75

x2(gx1 + hy1 + i) = ax1 + by1 + c

...

min
||H(:)||2=1

||AH(:)||2

Recall: SVD

SVD

Deva Ramanan

February 1, 2016

Let us represent a linear transformation as follows:

y = Ax, A 2 R

n⇥m (1)

where A is a matrix with n columns and m rows. This document uses the singular value
decomposition (SVD) to decompose A into a series of geometric transformations, focusing
intuition rather than a precise formulation. For simplicity, let n = 2 and m = 3, such that
A transforms points in 2D to 3D.

Figure 1: Visualizing a matrix A 2 R

2⇥3 as a transformation of points from R

2 to R

3.

Orthonormal basis: First, let us recall that the projection of a vector x 2 R

n along a
unit vector v (e.g., vTv = 1) can be written as vTx. Let us construct a set of n unit vectors
and write them as a matrix

V =
⇥
v1 v2, . . . vn

⇤
.

We can then compute the projection or coordinates of vector x along the unit vectors with a
matrix multiplication p = V

T
x. If all the unit vectors are orthogonal to each other (vTi vj = 0

for i 6= j), then V

T
V = I. This implies that V can be thought o↵ as a rotation matrix (whos

inverse is V

T), making it easy to undo the projection. The set of vectors in V form an
orthogonal basis for Rn. Let us similar construct an orthonormal basis for the output space

U =
⇥
u1 u2 . . .

⇤

1

y = Ax

y = U⌃V T
x

Any linear operator can be thought of as mapping from Rn to Rm

1. projection (with right singular vectors in V)
2. scaling (with singular values in Sigma),
3. reconstruction (with left singular vectors in U)

Figure 2: Visualizing the spectral eigendecomposition of a symmetric PSD matrix.

This makes intuitive sense geometrically; taking the k largest singular values and vectors
produces a transformation A

0 that uses as much of the output space as possible. The sketch
of the proof relies on the fact that U and V act as rotations and so do not e↵ect the rank of
A. The best k-rank approximation of A is then given by the best k-rank approximation of
the (diagonal) matrix ⌃.

Corollary 2: The solution of a homogenous least squares problem is given by smallest
right singular value:

min
h:hT h=1

||Ah||2 = V (:, end)

The proof sketch follows by the fact that any input v must project to one of the right
singular vectors (because they form a basis). A closely related result is that for any PSD
matrix B = A

T
A, minh:hT h=1 h

T
Bh = V (:, end), where V (:, end) the eigenvector with the

smallest eigenvalue.
Corollary 3: The pseudoinverse of A is given by

A

+ = argmin
A+

||A+
A� I||F = V

2

6664

1
�1

0 0 . . .

0 1
�2

0 . . .

0 0 1
�3

. . .

...
...

...

3

7775

T

U

T

which could also be obtained by mimimizing ||AA+ � I||F (without proof).

3

Homogenous least-squares:

RANSAC for estimating transformation

RANSAC loop:
1. Select feature pairs (at random)
2. Compute transformation T (exact)
3. Compute inliers (point matches where |pi’ - T pi|2< ε)
4. Keep largest set of inliers

Because transformation is fit using minimal # of points,
algebraic (homogenous least squares) solution often suffices

(e.g., noise-free soln exists when estimating H from 4 pts)

Outline

• Review from last lec

• Transformations (2D/3D)

• Direct methods

• Lucas Kanade

Transformations in 3D

Make use of 3D homogenous coordinates
2

664

x

y

z

1

3

775

Transformations in 3D

Transformations in 3D

Normalize by last coordinate to recover 3D points
2

664

�x

�y

�z

�

3

775

36 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

y

x

similarity

Euclidean affine

projective

translation

Figure 2.4 Basic set of 2D planar transformations.

Translation. 2D translations can be written as x0 = x + t or

x0 =
h

I t
i
x̄ (2.14)

where I is the (2⇥ 2) identity matrix or

x̄0 =

"
I t

0

T 1

#
x̄ (2.15)

where 0 is the zero vector. Using a 2⇥ 3 matrix results in a more compact notation, whereas
using a full-rank 3⇥ 3 matrix (which can be obtained from the 2⇥ 3 matrix by appending a
[0T 1] row) makes it possible to chain transformations using matrix multiplication. Note that
in any equation where an augmented vector such as x̄ appears on both sides, it can always be
replaced with a full homogeneous vector x̃.

Rotation + translation. This transformation is also known as 2D rigid body motion or the
2D Euclidean transformation (since Euclidean distances are preserved). It can be written as
x0 = Rx + t or

x0 =
h

R t
i
x̄ (2.16)

where

R =

"
cos ✓ � sin ✓

sin ✓ cos ✓

#
(2.17)

is an orthonormal rotation matrix with RRT = I and |R| = 1.

Scaled rotation. Also known as the similarity transform, this transformation can be ex-
pressed as x0 = sRx + t where s is an arbitrary scale factor. It can also be written as

x0 =
h

sR t
i
x̄ =

"
a �b tx
b a ty

#
x̄, (2.18)

where we no longer require that a2 + b2 = 1. The similarity transform preserves angles
between lines.

Transformations in 2D

Image warping
3.6 Geometric transformations 163

f

x

h
f fg

h

g

h hg

x

f

x

g

x

Figure 3.44 Image warping involves modifying the domain of an image function rather than
its range.

y

x

similarity

Euclidean affine

projective

translation

Figure 3.45 Basic set of 2D geometric image transformations.

here we look at functions that transform the domain,

g(x) = f(h(x)) (3.88)

(see Figure 3.44).
We begin by studying the global parametric 2D transformation first introduced in Sec-

tion 2.1.2. (Such a transformation is called parametric because it is controlled by a small
number of parameters.) We then turn our attention to more local general deformations such as
those defined on meshes (Section 3.6.2). Finally, we show how image warps can be combined
with cross-dissolves to create interesting morphs (in-between animations) in Section 3.6.3.
For readers interested in more details on these topics, there is an excellent survey by Heck-
bert (1986) as well as very accessible textbooks by Wolberg (1990), Gomes, Darsa, Costa
et al. (1999) and Akenine-Möller and Haines (2002). Note that Heckbert’s survey is on tex-
ture mapping, which is how the computer graphics community refers to the topic of warping
images onto surfaces.

3.6.1 Parametric transformations

Parametric transformations apply a global deformation to an image, where the behavior of the
transformation is controlled by a small number of parameters. Figure 3.45 shows a few ex-

g(x) = h(x) ⇤ f(x)

Filtering Warping

g(x) = f(h(x))

Family of image warps

3.6 Geometric transformations 163

f

x

h
f fg

h

g

h hg

x

f

x

g

x

Figure 3.44 Image warping involves modifying the domain of an image function rather than
its range.

y

x

similarity

Euclidean affine

projective

translation

Figure 3.45 Basic set of 2D geometric image transformations.

here we look at functions that transform the domain,

g(x) = f(h(x)) (3.88)

(see Figure 3.44).
We begin by studying the global parametric 2D transformation first introduced in Sec-

tion 2.1.2. (Such a transformation is called parametric because it is controlled by a small
number of parameters.) We then turn our attention to more local general deformations such as
those defined on meshes (Section 3.6.2). Finally, we show how image warps can be combined
with cross-dissolves to create interesting morphs (in-between animations) in Section 3.6.3.
For readers interested in more details on these topics, there is an excellent survey by Heck-
bert (1986) as well as very accessible textbooks by Wolberg (1990), Gomes, Darsa, Costa
et al. (1999) and Akenine-Möller and Haines (2002). Note that Heckbert’s survey is on tex-
ture mapping, which is how the computer graphics community refers to the topic of warping
images onto surfaces.

3.6.1 Parametric transformations

Parametric transformations apply a global deformation to an image, where the behavior of the
transformation is controlled by a small number of parameters. Figure 3.45 shows a few ex-

(homography)

Family of 2D warps164 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Transformation Matrix # DoF Preserves Icon

translation
h

I t
i

2⇥3
2 orientation

rigid (Euclidean)
h

R t
i

2⇥3
3 lengths ⇢⇢

⇢⇢
SS
SS

similarity
h

sR t
i

2⇥3
4 angles ⇢

⇢
S
S

affine
h

A
i

2⇥3
6 parallelism ⇥⇥ ⇥⇥

projective
h

˜H
i

3⇥3
8 straight lines `̀

Table 3.5 Hierarchy of 2D coordinate transformations. Each transformation also preserves
the properties listed in the rows below it, i.e., similarity preserves not only angles but also
parallelism and straight lines. The 2⇥3 matrices are extended with a third [0T 1] row to form
a full 3⇥ 3 matrix for homogeneous coordinate transformations.

amples of such transformations, which are based on the 2D geometric transformations shown
in Figure 2.4. The formulas for these transformations were originally given in Table 2.1 and
are reproduced here in Table 3.5 for ease of reference.

In general, given a transformation specified by a formula x0 = h(x) and a source image
f(x), how do we compute the values of the pixels in the new image g(x), as given in (3.88)?
Think about this for a minute before proceeding and see if you can figure it out.

If you are like most people, you will come up with an algorithm that looks something like
Algorithm 3.1. This process is called forward warping or forward mapping and is shown in
Figure 3.46a. Can you think of any problems with this approach?

procedure forwardWarp(f,h, out g):

For every pixel x in f(x)

1. Compute the destination location x0 = h(x).

2. Copy the pixel f(x) to g(x0).

Algorithm 3.1 Forward warping algorithm for transforming an image f(x) into an image
g(x0) through the parametric transform x0 = h(x).

x

0 = x+ t

x

y

0 = y + t

y

x

0

y

0

�
=

1 0 t

x

0 1 t

y

�2

4
x

y

1

3

5

Family of 2D warps164 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Transformation Matrix # DoF Preserves Icon

translation
h

I t
i

2⇥3
2 orientation

rigid (Euclidean)
h

R t
i

2⇥3
3 lengths ⇢⇢

⇢⇢
SS
SS

similarity
h

sR t
i

2⇥3
4 angles ⇢

⇢
S
S

affine
h

A
i

2⇥3
6 parallelism ⇥⇥ ⇥⇥

projective
h

˜H
i

3⇥3
8 straight lines `̀

Table 3.5 Hierarchy of 2D coordinate transformations. Each transformation also preserves
the properties listed in the rows below it, i.e., similarity preserves not only angles but also
parallelism and straight lines. The 2⇥3 matrices are extended with a third [0T 1] row to form
a full 3⇥ 3 matrix for homogeneous coordinate transformations.

amples of such transformations, which are based on the 2D geometric transformations shown
in Figure 2.4. The formulas for these transformations were originally given in Table 2.1 and
are reproduced here in Table 3.5 for ease of reference.

In general, given a transformation specified by a formula x0 = h(x) and a source image
f(x), how do we compute the values of the pixels in the new image g(x), as given in (3.88)?
Think about this for a minute before proceeding and see if you can figure it out.

If you are like most people, you will come up with an algorithm that looks something like
Algorithm 3.1. This process is called forward warping or forward mapping and is shown in
Figure 3.46a. Can you think of any problems with this approach?

procedure forwardWarp(f,h, out g):

For every pixel x in f(x)

1. Compute the destination location x0 = h(x).

2. Copy the pixel f(x) to g(x0).

Algorithm 3.1 Forward warping algorithm for transforming an image f(x) into an image
g(x0) through the parametric transform x0 = h(x).

x

0

y

0

�
=

cos ✓ � sin ✓ t

x

sin ✓ cos ✓ t

y

�2

4
x

y

1

3

5

Family of 2D warps164 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Transformation Matrix # DoF Preserves Icon

translation
h

I t
i

2⇥3
2 orientation

rigid (Euclidean)
h

R t
i

2⇥3
3 lengths ⇢⇢

⇢⇢
SS
SS

similarity
h

sR t
i

2⇥3
4 angles ⇢

⇢
S
S

affine
h

A
i

2⇥3
6 parallelism ⇥⇥ ⇥⇥

projective
h

˜H
i

3⇥3
8 straight lines `̀

Table 3.5 Hierarchy of 2D coordinate transformations. Each transformation also preserves
the properties listed in the rows below it, i.e., similarity preserves not only angles but also
parallelism and straight lines. The 2⇥3 matrices are extended with a third [0T 1] row to form
a full 3⇥ 3 matrix for homogeneous coordinate transformations.

amples of such transformations, which are based on the 2D geometric transformations shown
in Figure 2.4. The formulas for these transformations were originally given in Table 2.1 and
are reproduced here in Table 3.5 for ease of reference.

In general, given a transformation specified by a formula x0 = h(x) and a source image
f(x), how do we compute the values of the pixels in the new image g(x), as given in (3.88)?
Think about this for a minute before proceeding and see if you can figure it out.

If you are like most people, you will come up with an algorithm that looks something like
Algorithm 3.1. This process is called forward warping or forward mapping and is shown in
Figure 3.46a. Can you think of any problems with this approach?

procedure forwardWarp(f,h, out g):

For every pixel x in f(x)

1. Compute the destination location x0 = h(x).

2. Copy the pixel f(x) to g(x0).

Algorithm 3.1 Forward warping algorithm for transforming an image f(x) into an image
g(x0) through the parametric transform x0 = h(x).

x

0

y

0

�
=

s cos ✓ � sin ✓ t

x

sin ✓ s cos ✓ t

y

�2

4
x

y

1

3

5

Family of 2D warps164 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Transformation Matrix # DoF Preserves Icon

translation
h

I t
i

2⇥3
2 orientation

rigid (Euclidean)
h

R t
i

2⇥3
3 lengths ⇢⇢

⇢⇢
SS
SS

similarity
h

sR t
i

2⇥3
4 angles ⇢

⇢
S
S

affine
h

A
i

2⇥3
6 parallelism ⇥⇥ ⇥⇥

projective
h

˜H
i

3⇥3
8 straight lines `̀

Table 3.5 Hierarchy of 2D coordinate transformations. Each transformation also preserves
the properties listed in the rows below it, i.e., similarity preserves not only angles but also
parallelism and straight lines. The 2⇥3 matrices are extended with a third [0T 1] row to form
a full 3⇥ 3 matrix for homogeneous coordinate transformations.

amples of such transformations, which are based on the 2D geometric transformations shown
in Figure 2.4. The formulas for these transformations were originally given in Table 2.1 and
are reproduced here in Table 3.5 for ease of reference.

In general, given a transformation specified by a formula x0 = h(x) and a source image
f(x), how do we compute the values of the pixels in the new image g(x), as given in (3.88)?
Think about this for a minute before proceeding and see if you can figure it out.

If you are like most people, you will come up with an algorithm that looks something like
Algorithm 3.1. This process is called forward warping or forward mapping and is shown in
Figure 3.46a. Can you think of any problems with this approach?

procedure forwardWarp(f,h, out g):

For every pixel x in f(x)

1. Compute the destination location x0 = h(x).

2. Copy the pixel f(x) to g(x0).

Algorithm 3.1 Forward warping algorithm for transforming an image f(x) into an image
g(x0) through the parametric transform x0 = h(x).

x

0

y

0

�
=

a b c

d e f

�2

4
x

y

1

3

5

How is this different than a linear transformation?

Relates the image projections of the same 3D scene under 2 affine cameras (will prove in future lectures)

Think of as change of basis and 2D translation

Family of 2D warps164 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Transformation Matrix # DoF Preserves Icon

translation
h

I t
i

2⇥3
2 orientation

rigid (Euclidean)
h

R t
i

2⇥3
3 lengths ⇢⇢

⇢⇢
SS
SS

similarity
h

sR t
i

2⇥3
4 angles ⇢

⇢
S
S

affine
h

A
i

2⇥3
6 parallelism ⇥⇥ ⇥⇥

projective
h

˜H
i

3⇥3
8 straight lines `̀

Table 3.5 Hierarchy of 2D coordinate transformations. Each transformation also preserves
the properties listed in the rows below it, i.e., similarity preserves not only angles but also
parallelism and straight lines. The 2⇥3 matrices are extended with a third [0T 1] row to form
a full 3⇥ 3 matrix for homogeneous coordinate transformations.

amples of such transformations, which are based on the 2D geometric transformations shown
in Figure 2.4. The formulas for these transformations were originally given in Table 2.1 and
are reproduced here in Table 3.5 for ease of reference.

In general, given a transformation specified by a formula x0 = h(x) and a source image
f(x), how do we compute the values of the pixels in the new image g(x), as given in (3.88)?
Think about this for a minute before proceeding and see if you can figure it out.

If you are like most people, you will come up with an algorithm that looks something like
Algorithm 3.1. This process is called forward warping or forward mapping and is shown in
Figure 3.46a. Can you think of any problems with this approach?

procedure forwardWarp(f,h, out g):

For every pixel x in f(x)

1. Compute the destination location x0 = h(x).

2. Copy the pixel f(x) to g(x0).

Algorithm 3.1 Forward warping algorithm for transforming an image f(x) into an image
g(x0) through the parametric transform x0 = h(x).

�

2

4
x

0

y

0

1

3

5 =

2

4
a b c

d e f

g h i

3

5

2

4
x

y

1

3

5

Relates the image projections of
(1) planar scene under pinhole cameras or (2) any scene under rotated cameras

Family of 2D warps164 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Transformation Matrix # DoF Preserves Icon

translation
h

I t
i

2⇥3
2 orientation

rigid (Euclidean)
h

R t
i

2⇥3
3 lengths ⇢⇢

⇢⇢
SS
SS

similarity
h

sR t
i

2⇥3
4 angles ⇢

⇢
S
S

affine
h

A
i

2⇥3
6 parallelism ⇥⇥ ⇥⇥

projective
h

˜H
i

3⇥3
8 straight lines `̀

Table 3.5 Hierarchy of 2D coordinate transformations. Each transformation also preserves
the properties listed in the rows below it, i.e., similarity preserves not only angles but also
parallelism and straight lines. The 2⇥3 matrices are extended with a third [0T 1] row to form
a full 3⇥ 3 matrix for homogeneous coordinate transformations.

amples of such transformations, which are based on the 2D geometric transformations shown
in Figure 2.4. The formulas for these transformations were originally given in Table 2.1 and
are reproduced here in Table 3.5 for ease of reference.

In general, given a transformation specified by a formula x0 = h(x) and a source image
f(x), how do we compute the values of the pixels in the new image g(x), as given in (3.88)?
Think about this for a minute before proceeding and see if you can figure it out.

If you are like most people, you will come up with an algorithm that looks something like
Algorithm 3.1. This process is called forward warping or forward mapping and is shown in
Figure 3.46a. Can you think of any problems with this approach?

procedure forwardWarp(f,h, out g):

For every pixel x in f(x)

1. Compute the destination location x0 = h(x).

2. Copy the pixel f(x) to g(x0).

Algorithm 3.1 Forward warping algorithm for transforming an image f(x) into an image
g(x0) through the parametric transform x0 = h(x).

Do Euclidean transformations relate image projections of same scene under orthographic cameras?

Forward vs inverse warping3.6 Geometric transformations 165

f(x) g(x’)x x’

x’=h(x)

f(x) g(x’)x x’

x’=h(x)

(a) (b)

Figure 3.46 Forward warping algorithm: (a) a pixel f(x) is copied to its corresponding
location x0 = h(x) in image g(x0); (b) detail of the source and destination pixel locations.

In fact, this approach suffers from several limitations. The process of copying a pixel
f(x) to a location x0 in g is not well defined when x0 has a non-integer value. What do we
do in such a case? What would you do?

You can round the value of x0 to the nearest integer coordinate and copy the pixel there,
but the resulting image has severe aliasing and pixels that jump around a lot when animating
the transformation. You can also “distribute” the value among its four nearest neighbors in
a weighted (bilinear) fashion, keeping track of the per-pixel weights and normalizing at the
end. This technique is called splatting and is sometimes used for volume rendering in the
graphics community (Levoy and Whitted 1985; Levoy 1988; Westover 1989; Rusinkiewicz
and Levoy 2000). Unfortunately, it suffers from both moderate amounts of aliasing and a
fair amount of blur (loss of high-resolution detail).

The second major problem with forward warping is the appearance of cracks and holes,
especially when magnifying an image. Filling such holes with their nearby neighbors can
lead to further aliasing and blurring.

What can we do instead? A preferable solution is to use inverse warping (Algorithm 3.2),
where each pixel in the destination image g(x0) is sampled from the original image f(x)
(Figure 3.47).

How does this differ from the forward warping algorithm? For one thing, since ˆh(x0)
is (presumably) defined for all pixels in g(x0), we no longer have holes. More importantly,
resampling an image at non-integer locations is a well-studied problem (general image inter-
polation, see Section 3.5.2) and high-quality filters that control aliasing can be used.

Where does the function ˆh(x0) come from? Quite often, it can simply be computed as the
inverse of h(x). In fact, all of the parametric transforms listed in Table 3.5 have closed form
solutions for the inverse transform: simply take the inverse of the 3⇥ 3 matrix specifying the
transform.

In other cases, it is preferable to formulate the problem of image warping as that of re-
sampling a source image f(x) given a mapping x = ˆh(x0) from destination pixels x0 to
source pixels x. For example, in optical flow (Section 8.4), we estimate the flow field as the

166 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

procedure inverseWarp(f,h, out g):

For every pixel x0 in g(x0)

1. Compute the source location x = ˆh(x0)

2. Resample f(x) at location x and copy to g(x0)

Algorithm 3.2 Inverse warping algorithm for creating an image g(x0) from an image f(x)
using the parametric transform x0 = h(x).

f(x) g(x’)x x’

x=h(x’)^

f(x) g(x’)x x’

x=h(x’)^

(a) (b)

Figure 3.47 Inverse warping algorithm: (a) a pixel g(x0) is sampled from its corresponding
location x = ˆh(x0) in image f(x); (b) detail of the source and destination pixel locations.

location of the source pixel which produced the current pixel whose flow is being estimated,
as opposed to computing the destination pixel to which it is going. Similarly, when correcting
for radial distortion (Section 2.1.6), we calibrate the lens by computing for each pixel in the
final (undistorted) image the corresponding pixel location in the original (distorted) image.

What kinds of interpolation filter are suitable for the resampling process? Any of the fil-
ters we studied in Section 3.5.2 can be used, including nearest neighbor, bilinear, bicubic, and
windowed sinc functions. While bilinear is often used for speed (e.g., inside the inner loop
of a patch-tracking algorithm, see Section 8.1.3), bicubic, and windowed sinc are preferable
where visual quality is important.

To compute the value of f(x) at a non-integer location x, we simply apply our usual FIR
resampling filter,

g(x, y) =
X

k,l

f(k, l)h(x� k, y � l), (3.89)

where (x, y) are the sub-pixel coordinate values and h(x, y) is some interpolating or smooth-
ing kernel. Recall from Section 3.5.2 that when decimation is being performed, the smoothing
kernel is stretched and re-scaled according to the downsampling rate r.

Unfortunately, for a general (non-zoom) image transformation, the resampling rate r is
not well defined. Consider a transformation that stretches the x dimensions while squashing

3.6 Geometric transformations 165

f(x) g(x’)x x’

x’=h(x)

f(x) g(x’)x x’

x’=h(x)

(a) (b)

Figure 3.46 Forward warping algorithm: (a) a pixel f(x) is copied to its corresponding
location x0 = h(x) in image g(x0); (b) detail of the source and destination pixel locations.

In fact, this approach suffers from several limitations. The process of copying a pixel
f(x) to a location x0 in g is not well defined when x0 has a non-integer value. What do we
do in such a case? What would you do?

You can round the value of x0 to the nearest integer coordinate and copy the pixel there,
but the resulting image has severe aliasing and pixels that jump around a lot when animating
the transformation. You can also “distribute” the value among its four nearest neighbors in
a weighted (bilinear) fashion, keeping track of the per-pixel weights and normalizing at the
end. This technique is called splatting and is sometimes used for volume rendering in the
graphics community (Levoy and Whitted 1985; Levoy 1988; Westover 1989; Rusinkiewicz
and Levoy 2000). Unfortunately, it suffers from both moderate amounts of aliasing and a
fair amount of blur (loss of high-resolution detail).

The second major problem with forward warping is the appearance of cracks and holes,
especially when magnifying an image. Filling such holes with their nearby neighbors can
lead to further aliasing and blurring.

What can we do instead? A preferable solution is to use inverse warping (Algorithm 3.2),
where each pixel in the destination image g(x0) is sampled from the original image f(x)
(Figure 3.47).

How does this differ from the forward warping algorithm? For one thing, since ˆh(x0)
is (presumably) defined for all pixels in g(x0), we no longer have holes. More importantly,
resampling an image at non-integer locations is a well-studied problem (general image inter-
polation, see Section 3.5.2) and high-quality filters that control aliasing can be used.

Where does the function ˆh(x0) come from? Quite often, it can simply be computed as the
inverse of h(x). In fact, all of the parametric transforms listed in Table 3.5 have closed form
solutions for the inverse transform: simply take the inverse of the 3⇥ 3 matrix specifying the
transform.

In other cases, it is preferable to formulate the problem of image warping as that of re-
sampling a source image f(x) given a mapping x = ˆh(x0) from destination pixels x0 to
source pixels x. For example, in optical flow (Section 8.4), we estimate the flow field as the

Example: warping triangles

A

B

C A’
C’

B’

Source Destination

What kind of transformation is this? How many DOFs?

Example application:
 image morphing

Piecewise affine warps (cut each quadrilateral into 2 triangles)

Example application: shape modeling

D’Arcy Thompson
“On Growth and Form” 1915

Example application:
data augmentation

Hypothesis: we’ll see more of this in the future!

Data augmentation by geometric warping046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

2 AUTHOR(S): REPRESENTATIONS FOR PRIMITIVE 3D SHAPE CATEGORIZATION

Dryer Cardboard BoxCargo ContainerCabinet

Cuboidal object dataset
Pose-normalized

Pose-retargeting/synthesis

Figure 1: We examine 3D shape categorization of cuboidal objects (left). Such objects share
similar shape, so conventional folk wisdom might advocate the use of shape-invariant (or
pose-normalized) representations for recognition (top) that are attractive because they (1)
factor out shape (which seems uninformative when classifying objects with similar shape)
and (2) can generalize to novel shapes not encountered in training data. We show that this
approach is not optimal. One reason is that current methods produce small errors in geo-
metric alignment, which can result in large fluctuations in the pose-normalized appearance.
However, even with ground-truth alignment, pose-normalization is still not optimal. We
demonstrate that pose-synthesis (bottom), a simple approach of augmenting training data
with geometrically perturbed training samples, is a surprisingly effective strategy that allows
for state-of-the-art categorization and automatic 3D alignment.

Pose-retargeting: First and foremost, we demonstrate that pose-normalization is not
the optimal strategy for dealing with appearance variation due to pose. One explanation
maybe the inaccuracy of current systems for pose estimation - small misalignments in the
predicted pose may cause large errors in the pose-normalized appearance. Surprisingly, we
show that even with ground-truth alignment on test images, pose-normalization is still not
optimal. In short, pose-normalization (a) removes geometric cues that maybe helpful for
recognition (washing machines may have differing aspect ratio from microwaves) and (b)
artificially re-weights foreshortened regions of the objects. To address these limitations, we
describe an approach that warps (or retargets) training examples to the shape and viewpoint
of a particular detected instance, and performs recognition using this retargeted training set.

Pose-synthesis: We demonstrate that pose-retargeting is the optimal approach given
ground-truth alignment, but falls short given the accuracy of current systems that estimate
cuboidal alignments [10]. To address this limitation, we evaluate another approach that pre-
synthesizes a large set of possible target poses. The synthesized set is used to train a prac-
tical system that jointly performs categorization and 3D alignment, at a level of accuracy
that surpasses the current state-of-the-art. We evaluate systems based on exemplar match-
ing and discriminative template-matching. Importantly, synthesis also allows our system to
generalize to unseen viewpoints and shapes not seen in the training set without requiring
pose-normalization.

Data-augmentation: Our proposed approaches are inspired by learning architectures
that apply synthetic perturbations to training data. Such “data-augmentation” appears to be
crucial components of state-of-the-art methods like deep learning [15, 17]. However, instead
of applying simple perturbations like rotations, we make use of an image-based rendering
engine to generating new training images (using piecewise-constant homographies and affine
transformations). With a rich enough synthesis engine, the resulting learning algorithm does

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

WACV
#385

WACV
#385

WACV 2016 Submission #385. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Categorizing Cubes: Revisiting Pose Normalization

Anonymous WACV submission

Paper ID 385

Abstract

This paper introduces and analyzes the novel task of
categorical classification of cuboidal objects - e.g., distin-
guishing washing machines versus filing cabinets. To do so,
it makes use of recent methods for automatic alignment of
cuboidal objects in images. Given such geometric align-
ments, the natural approach for recognition might extract
pose-normalized appearance features from a canonically-
aligned coordinate frame. Though such approaches are ex-
traordinarily common, we demonstrate that they are not
optimal, both theoretically and empirically. One rea-
son is that such approaches require accurate shape align-
ment. However, even with ground-truth alignment, pose-
normalized representations may still be sub-optimal. In-
stead, we introduce methods based on pose-synthesis, a
somewhat simple approach of augmenting training data
with geometrically perturbed training samples. We demon-
strate, both theoretically and empirically, that synthesis
is a surprisingly simple but effective strategy that allows
for state-of-the-art categorization and automatic 3D align-
ment. To aid our empirical analysis, we introduce a novel
dataset for cuboidal object categorization.

1. Introduction
This paper examines geometric representations for 3D

shape categorization, focusing on cuboidal object categories
such as washing machines, cabinets, etc. We specifically fo-
cus on the task of categorization (“is this a washing machine
or a cabinet?”), but demonstrate that our developed repre-
sentation also produce competitive estimates of 3D shape
(“where are the corners of its faces?”) Cuboidal objects are
interesting since they share the same basic shape, allowing
one to explicitly explore the interplay of geometry and ap-
pearance.

Alignment: Aligning 3D models to images is a classic
problem in computer vision, dating back to model-based
techniques such as geometric hashing [18]. Combining
such approaches with data-driven statistical models have
proven quite effective [26, 22, 37, 16, 23, 27]. Most related

Dryer Cardboard BoxCargo ContainerCabinet

Cuboidal object dataset
Pose-normalized

Pose-retargeting/synthesis

Figure 1. We examine categorization of cuboidal objects (left) into
washing machines, cabinets, etc. Such objects share similar shape,
so conventional wisdom might advocate the use of shape-invariant
(or pose-normalized) representations for recognition (top). Such
approaches are attractive because they (1) factor out shape (which
seems uninformative when classifying objects with similar shape)
and (2) can generalize to novel shapes not encountered in train-
ing data. We show that this strategy is not optimal. One reason
is that current methods produce small errors in geometric align-
ment, which can result in large fluctuations in the pose-normalized
appearance. However, even with ground-truth alignment, pose-
normalization is still not optimal. We demonstrate that pose-
synthesis (bottom), a simple approach of augmenting training data
with geometrically perturbed training samples, is a surprisingly ef-
fective strategy that allows for state-of-the-art categorization and
automatic 3D alignment.

to us are methods that focus on cuboidal objects, motivated
by their generality and usefulness for describing many com-
mon objects [11, 33, 10, 13]. Interestingly, cuboidal align-
ment has also proven helpful for analyzing indoor scenes
of cuboidal rooms [8, 6, 24, 9]. We build on such work
by attempting the natural “next step”: how should one use
one of the aforementioned geometric-alignment engines to
recognize different categories of cuboidal objects?

Pose-normalization: Perhaps the most natural ap-
proach would use the estimated alignment to extract pose-
normalized appearance features. For a cuboidal object, one
might represent the appearance of each cuboidal face in a
fronto-parallel view (Fig. 1). Many state-of-the-art systems
for recognition (such as faces [29, 15], cars [16], animal
species [2, 7], or general attributes [35]) similarly normalize
landmarks/keypoints into a canonical coordinate frame dur-
ing training and or testing. For example, the vast majority
of face recognition systems work by detecting landmarks,
warping the image such that landmarks are aligned into a

1

Example application:
interactive video tracking

Figure 2: Synthesis overview. We assume the first frame of the video, as well as its pose label, is available upon test time
(left). We define a generic library of poses that represents all potential poses (top). We use an image-based rendering
engine to warp body parts from the first frame into target poses from the library (middle). Notably, we make use of layered
compositing to accurately render self-occlusions between the arm and torso, a notoriously difficult problem for articulated
models. We use the collection of rendered frames to construct a custom “Rachel” training data as shown in Fig. 1. This
training set is powerful enough to produce state-of-art pose estimation results using low-resolution pixel features (bottom).

to recognize Phoebe in her living room. Instead, we pro-
pose to train a highly-tuned appearance model that overfits
the particular video using a large set of synthetic training
data.

Data-augmentation: Our approach of image-based
synthesis is inspired by learning architectures that ap-
ply synthetic perturbations to training data. Such “data-
augmentation” appears to be crucial components of state-
of-the-art methods like deep learning [27, 17]. However,
instead of applying simple perturbations like rotations, we
make use of an image-based rendering engine to “cut and
paste” regions of image in a layered fashion, generating new
scene configurations. With a rich enough synthesis engine,
the resulting learning algorithm (a) does not need to gen-
eralize to unseen test poses (because they can be directly
synthesized) and (b) does not need to be invariant to nui-
sance factors like color (because only scene-specific colors
will be synthesized). Both observations imply that “its all
about the data”, and that simple learning architectures (such
as NN-matching) and pixel features will suffice.

Self-occlusions: Our simple approach addresses a no-
torious difficulty of articulated pose estimation - self-
occlusions. It is difficult to estimate poses where the torso is
occluded by the arm. This is because the resulting edge pat-
terns are heavily dependent on clothing. Our approach syn-
thesizes the “right” clothing and edge patterns. To synthe-
size accurate self-occlusions, our rendering engine makes
use of a 2.1D layered depth model. Similarly, our approach
synthesize body parts that appear shrunk due to out-of-plane

rotation. This is particularly effective for lower arms [29].
Overview: After discussing related work in Sec.2, we

describe our synthesis engines in Sec.3. Pixel synthesis is
the process of generating a synthetic frame given a target
pose and pose-annotated first frame; pose synthesis defines
a set of target poses to synthesize. In Sec.4, we describe a
simple nearest-neighbor algorithm for estimating pose. In
Sec.5, we diagnose and evaluate our approach for the task
of estimating upper body pose using Friends dataset.

2. Related work
Visual tracking: The problem of visual tracking have

been addressed in various settings of inputs and initializa-
tions; first-frame labeled [38], online tracking [36], inter-
active tracking [5], etc. Articulated tracking [12], [39],
[29], [3] recently gained attention. See [32] for com-
plete discussion. Much recent work has focused on single-
frame pose estimation, as such methods will likely be use-
ful to (re) initialize a tracker. Our work requires the first
frame to be labeled (a historically commonplace assump-
tion [8, 31, 15, 22]), but differs from past initialized track-
ers in that no temporal tracking is performed (making our
approach resistant to drift).

Appearance models: Tracking with learned appearance
models [26, 14] have proved to be effective. Our work is
closest to [15] in that they use labeled first frame to learn
an appearance model that is then used to track the articu-
lation of human body in subsequent frames. Our work is

Figure 2: Synthesis overview. We assume the first frame of the video, as well as its pose label, is available upon test time
(left). We define a generic library of poses that represents all potential poses (top). We use an image-based rendering
engine to warp body parts from the first frame into target poses from the library (middle). Notably, we make use of layered
compositing to accurately render self-occlusions between the arm and torso, a notoriously difficult problem for articulated
models. We use the collection of rendered frames to construct a custom “Rachel” training data as shown in Fig. 1. This
training set is powerful enough to produce state-of-art pose estimation results using low-resolution pixel features (bottom).

to recognize Phoebe in her living room. Instead, we pro-
pose to train a highly-tuned appearance model that overfits
the particular video using a large set of synthetic training
data.

Data-augmentation: Our approach of image-based
synthesis is inspired by learning architectures that ap-
ply synthetic perturbations to training data. Such “data-
augmentation” appears to be crucial components of state-
of-the-art methods like deep learning [27, 17]. However,
instead of applying simple perturbations like rotations, we
make use of an image-based rendering engine to “cut and
paste” regions of image in a layered fashion, generating new
scene configurations. With a rich enough synthesis engine,
the resulting learning algorithm (a) does not need to gen-
eralize to unseen test poses (because they can be directly
synthesized) and (b) does not need to be invariant to nui-
sance factors like color (because only scene-specific colors
will be synthesized). Both observations imply that “its all
about the data”, and that simple learning architectures (such
as NN-matching) and pixel features will suffice.

Self-occlusions: Our simple approach addresses a no-
torious difficulty of articulated pose estimation - self-
occlusions. It is difficult to estimate poses where the torso is
occluded by the arm. This is because the resulting edge pat-
terns are heavily dependent on clothing. Our approach syn-
thesizes the “right” clothing and edge patterns. To synthe-
size accurate self-occlusions, our rendering engine makes
use of a 2.1D layered depth model. Similarly, our approach
synthesize body parts that appear shrunk due to out-of-plane

rotation. This is particularly effective for lower arms [29].
Overview: After discussing related work in Sec.2, we

describe our synthesis engines in Sec.3. Pixel synthesis is
the process of generating a synthetic frame given a target
pose and pose-annotated first frame; pose synthesis defines
a set of target poses to synthesize. In Sec.4, we describe a
simple nearest-neighbor algorithm for estimating pose. In
Sec.5, we diagnose and evaluate our approach for the task
of estimating upper body pose using Friends dataset.

2. Related work
Visual tracking: The problem of visual tracking have

been addressed in various settings of inputs and initializa-
tions; first-frame labeled [38], online tracking [36], inter-
active tracking [5], etc. Articulated tracking [12], [39],
[29], [3] recently gained attention. See [32] for com-
plete discussion. Much recent work has focused on single-
frame pose estimation, as such methods will likely be use-
ful to (re) initialize a tracker. Our work requires the first
frame to be labeled (a historically commonplace assump-
tion [8, 31, 15, 22]), but differs from past initialized track-
ers in that no temporal tracking is performed (making our
approach resistant to drift).

Appearance models: Tracking with learned appearance
models [26, 14] have proved to be effective. Our work is
closest to [15] in that they use labeled first frame to learn
an appearance model that is then used to track the articu-
lation of human body in subsequent frames. Our work is

Labeled first frame

Layered (2.1D) warps

Figure 4: Pixel synthesis. Our rendering engine is based on
a 2.1D representations of images. We first decompose the
labeled first frame (a) into multiple depth layers (b). Oc-
clusion (black) regions are estimated using standard hole-
filling algorithms (c). Given a target pose (d), we warp cor-
responding body parts from (c) into new locations (e) by
rotating and scaling them. By compositing each layer ac-
cording to a target depth ordering, we produce a synthetic
frame (f).

[37, 35], where each pixel is augmented by its depth layer.
To derive a part region from pose parameters (s, ✓, r, d),
we need to define a forward kinematics model and a shape
model.

Forward kinematics. P represents pose in a local co-
ordinate frame because it more natural for the pose synthe-
sis algorithm in Sec. 3.1. To render an associated image,
we need to compute part locations in global image coordi-
nates. This is straightforward with classic forward kinemat-
ics ([23], [21]). Specifically, given P and a tree-structured
graph T = (V,E) specifying part connectivity, we derive
two global pose parameters for a part indexed by i; orien-
tation angle ✓

g
i and translation vector tgi . tgi is the pixel po-

sition of part i’s joint (e.g. elbow for lower arm). For no-
tational simplicity, we drop the dependance on global scale
s0:

✓

g
i = ✓

g
par(i) + ✓i (2)

t

g
i = t

g
par(i) + Rot(✓par(i))liri (3)

✓

g
root = ✓root (4)
t

g
root = (x0, y0) (5)

where par(i) is the part index of parent of i as defined in
graph T , Rot is a 2D rotation matrix, and li is the location
offset of joint with i with respect to the joint of its parent
(e.g. default location of elbow in the reference frame of
shoulder). We now can write the global location, orienta-
tion, and foreshortening of part i as

gi = (tgi , ✓
g
i , ri)

Part shapes: Let us write Mi 2 {0, 1}W⇥H for a bi-
nary support mask for part i transformed to location gi.
This mask is computed by translating, rotating, and scal-
ing a canonical support mask for part i [1, 9, 15]. We use
a mean shape mask obtained by averaging annotated part
support masks from a generic dataset of segmented people
(not from the testset). We visualize example shape masks in
Fig.5.

Part textures: Let us write Ri 2 RW⇥H⇥3 for a RGB
texture map for part i transformed to location gi. We learn
part-specific texture maps from the first frame I1. We do
this by computing a binary pixel region mask for each part
i. Each region is divided into two types of subregions: vis-
ible regions and occluded regions (due to overlapping parts
in a closer depth layer). Most layers include occluded re-
gions. We estimate occluded pixel values using standard
hole-filling algorithms [4, 6]. We experimented with var-
ious approaches such as PatchMatch [2], but found simple
linear interpolation to look well. We visualize the procedure
for part texture extraction in Fig. 4(a)-(c).

Compositing layers: Given a target pose P with asso-
ciated global part positions {gi}, we wish to create the im-
age by recompositing the layered part textures. Let us write
Mi 2 {0, 1}W⇥H for the binary support mask for part i
at global position gi. If parts have been ordered from back
(i = N) to front (i = 1), the final rendered image is gener-
ated by initializing the back layer CN = MN and iterating
to the front:

I = C1 where Ci = (1�Mi)Ci+1 +MiRi (6)

The compositing process is visualized in Fig. 4(d)-(f).

3.3. Low resolution rendering
An ideal synthesis engine needs to generate a training

set with two computationally demanding properties; (1) it
needs to be photorealistic enough so that it matches well

Figure 4: Pixel synthesis. Our rendering engine is based on
a 2.1D representations of images. We first decompose the
labeled first frame (a) into multiple depth layers (b). Oc-
clusion (black) regions are estimated using standard hole-
filling algorithms (c). Given a target pose (d), we warp cor-
responding body parts from (c) into new locations (e) by
rotating and scaling them. By compositing each layer ac-
cording to a target depth ordering, we produce a synthetic
frame (f).

[37, 35], where each pixel is augmented by its depth layer.
To derive a part region from pose parameters (s, ✓, r, d),
we need to define a forward kinematics model and a shape
model.

Forward kinematics. P represents pose in a local co-
ordinate frame because it more natural for the pose synthe-
sis algorithm in Sec. 3.1. To render an associated image,
we need to compute part locations in global image coordi-
nates. This is straightforward with classic forward kinemat-
ics ([23], [21]). Specifically, given P and a tree-structured
graph T = (V,E) specifying part connectivity, we derive
two global pose parameters for a part indexed by i; orien-
tation angle ✓

g
i and translation vector tgi . tgi is the pixel po-

sition of part i’s joint (e.g. elbow for lower arm). For no-
tational simplicity, we drop the dependance on global scale
s0:

✓

g
i = ✓

g
par(i) + ✓i (2)

t

g
i = t

g
par(i) + Rot(✓par(i))liri (3)

✓

g
root = ✓root (4)
t

g
root = (x0, y0) (5)

where par(i) is the part index of parent of i as defined in
graph T , Rot is a 2D rotation matrix, and li is the location
offset of joint with i with respect to the joint of its parent
(e.g. default location of elbow in the reference frame of
shoulder). We now can write the global location, orienta-
tion, and foreshortening of part i as

gi = (tgi , ✓
g
i , ri)

Part shapes: Let us write Mi 2 {0, 1}W⇥H for a bi-
nary support mask for part i transformed to location gi.
This mask is computed by translating, rotating, and scal-
ing a canonical support mask for part i [1, 9, 15]. We use
a mean shape mask obtained by averaging annotated part
support masks from a generic dataset of segmented people
(not from the testset). We visualize example shape masks in
Fig.5.

Part textures: Let us write Ri 2 RW⇥H⇥3 for a RGB
texture map for part i transformed to location gi. We learn
part-specific texture maps from the first frame I1. We do
this by computing a binary pixel region mask for each part
i. Each region is divided into two types of subregions: vis-
ible regions and occluded regions (due to overlapping parts
in a closer depth layer). Most layers include occluded re-
gions. We estimate occluded pixel values using standard
hole-filling algorithms [4, 6]. We experimented with var-
ious approaches such as PatchMatch [2], but found simple
linear interpolation to look well. We visualize the procedure
for part texture extraction in Fig. 4(a)-(c).

Compositing layers: Given a target pose P with asso-
ciated global part positions {gi}, we wish to create the im-
age by recompositing the layered part textures. Let us write
Mi 2 {0, 1}W⇥H for the binary support mask for part i
at global position gi. If parts have been ordered from back
(i = N) to front (i = 1), the final rendered image is gener-
ated by initializing the back layer CN = MN and iterating
to the front:

I = C1 where Ci = (1�Mi)Ci+1 +MiRi (6)

The compositing process is visualized in Fig. 4(d)-(f).

3.3. Low resolution rendering
An ideal synthesis engine needs to generate a training

set with two computationally demanding properties; (1) it
needs to be photorealistic enough so that it matches well

Figure 4: Pixel synthesis. Our rendering engine is based on
a 2.1D representations of images. We first decompose the
labeled first frame (a) into multiple depth layers (b). Oc-
clusion (black) regions are estimated using standard hole-
filling algorithms (c). Given a target pose (d), we warp cor-
responding body parts from (c) into new locations (e) by
rotating and scaling them. By compositing each layer ac-
cording to a target depth ordering, we produce a synthetic
frame (f).

[37, 35], where each pixel is augmented by its depth layer.
To derive a part region from pose parameters (s, ✓, r, d),
we need to define a forward kinematics model and a shape
model.

Forward kinematics. P represents pose in a local co-
ordinate frame because it more natural for the pose synthe-
sis algorithm in Sec. 3.1. To render an associated image,
we need to compute part locations in global image coordi-
nates. This is straightforward with classic forward kinemat-
ics ([23], [21]). Specifically, given P and a tree-structured
graph T = (V,E) specifying part connectivity, we derive
two global pose parameters for a part indexed by i; orien-
tation angle ✓

g
i and translation vector tgi . tgi is the pixel po-

sition of part i’s joint (e.g. elbow for lower arm). For no-
tational simplicity, we drop the dependance on global scale
s0:

✓

g
i = ✓

g
par(i) + ✓i (2)

t

g
i = t

g
par(i) + Rot(✓par(i))liri (3)

✓

g
root = ✓root (4)
t

g
root = (x0, y0) (5)

where par(i) is the part index of parent of i as defined in
graph T , Rot is a 2D rotation matrix, and li is the location
offset of joint with i with respect to the joint of its parent
(e.g. default location of elbow in the reference frame of
shoulder). We now can write the global location, orienta-
tion, and foreshortening of part i as

gi = (tgi , ✓
g
i , ri)

Part shapes: Let us write Mi 2 {0, 1}W⇥H for a bi-
nary support mask for part i transformed to location gi.
This mask is computed by translating, rotating, and scal-
ing a canonical support mask for part i [1, 9, 15]. We use
a mean shape mask obtained by averaging annotated part
support masks from a generic dataset of segmented people
(not from the testset). We visualize example shape masks in
Fig.5.

Part textures: Let us write Ri 2 RW⇥H⇥3 for a RGB
texture map for part i transformed to location gi. We learn
part-specific texture maps from the first frame I1. We do
this by computing a binary pixel region mask for each part
i. Each region is divided into two types of subregions: vis-
ible regions and occluded regions (due to overlapping parts
in a closer depth layer). Most layers include occluded re-
gions. We estimate occluded pixel values using standard
hole-filling algorithms [4, 6]. We experimented with var-
ious approaches such as PatchMatch [2], but found simple
linear interpolation to look well. We visualize the procedure
for part texture extraction in Fig. 4(a)-(c).

Compositing layers: Given a target pose P with asso-
ciated global part positions {gi}, we wish to create the im-
age by recompositing the layered part textures. Let us write
Mi 2 {0, 1}W⇥H for the binary support mask for part i
at global position gi. If parts have been ordered from back
(i = N) to front (i = 1), the final rendered image is gener-
ated by initializing the back layer CN = MN and iterating
to the front:

I = C1 where Ci = (1�Mi)Ci+1 +MiRi (6)

The compositing process is visualized in Fig. 4(d)-(f).

3.3. Low resolution rendering
An ideal synthesis engine needs to generate a training

set with two computationally demanding properties; (1) it
needs to be photorealistic enough so that it matches well

Figure 4: Pixel synthesis. Our rendering engine is based on
a 2.1D representations of images. We first decompose the
labeled first frame (a) into multiple depth layers (b). Oc-
clusion (black) regions are estimated using standard hole-
filling algorithms (c). Given a target pose (d), we warp cor-
responding body parts from (c) into new locations (e) by
rotating and scaling them. By compositing each layer ac-
cording to a target depth ordering, we produce a synthetic
frame (f).

[37, 35], where each pixel is augmented by its depth layer.
To derive a part region from pose parameters (s, ✓, r, d),
we need to define a forward kinematics model and a shape
model.

Forward kinematics. P represents pose in a local co-
ordinate frame because it more natural for the pose synthe-
sis algorithm in Sec. 3.1. To render an associated image,
we need to compute part locations in global image coordi-
nates. This is straightforward with classic forward kinemat-
ics ([23], [21]). Specifically, given P and a tree-structured
graph T = (V,E) specifying part connectivity, we derive
two global pose parameters for a part indexed by i; orien-
tation angle ✓

g
i and translation vector tgi . tgi is the pixel po-

sition of part i’s joint (e.g. elbow for lower arm). For no-
tational simplicity, we drop the dependance on global scale
s0:

✓

g
i = ✓

g
par(i) + ✓i (2)

t

g
i = t

g
par(i) + Rot(✓par(i))liri (3)

✓

g
root = ✓root (4)
t

g
root = (x0, y0) (5)

where par(i) is the part index of parent of i as defined in
graph T , Rot is a 2D rotation matrix, and li is the location
offset of joint with i with respect to the joint of its parent
(e.g. default location of elbow in the reference frame of
shoulder). We now can write the global location, orienta-
tion, and foreshortening of part i as

gi = (tgi , ✓
g
i , ri)

Part shapes: Let us write Mi 2 {0, 1}W⇥H for a bi-
nary support mask for part i transformed to location gi.
This mask is computed by translating, rotating, and scal-
ing a canonical support mask for part i [1, 9, 15]. We use
a mean shape mask obtained by averaging annotated part
support masks from a generic dataset of segmented people
(not from the testset). We visualize example shape masks in
Fig.5.

Part textures: Let us write Ri 2 RW⇥H⇥3 for a RGB
texture map for part i transformed to location gi. We learn
part-specific texture maps from the first frame I1. We do
this by computing a binary pixel region mask for each part
i. Each region is divided into two types of subregions: vis-
ible regions and occluded regions (due to overlapping parts
in a closer depth layer). Most layers include occluded re-
gions. We estimate occluded pixel values using standard
hole-filling algorithms [4, 6]. We experimented with var-
ious approaches such as PatchMatch [2], but found simple
linear interpolation to look well. We visualize the procedure
for part texture extraction in Fig. 4(a)-(c).

Compositing layers: Given a target pose P with asso-
ciated global part positions {gi}, we wish to create the im-
age by recompositing the layered part textures. Let us write
Mi 2 {0, 1}W⇥H for the binary support mask for part i
at global position gi. If parts have been ordered from back
(i = N) to front (i = 1), the final rendered image is gener-
ated by initializing the back layer CN = MN and iterating
to the front:

I = C1 where Ci = (1�Mi)Ci+1 +MiRi (6)

The compositing process is visualized in Fig. 4(d)-(f).

3.3. Low resolution rendering
An ideal synthesis engine needs to generate a training

set with two computationally demanding properties; (1) it
needs to be photorealistic enough so that it matches well

Figure 4: Pixel synthesis. Our rendering engine is based on
a 2.1D representations of images. We first decompose the
labeled first frame (a) into multiple depth layers (b). Oc-
clusion (black) regions are estimated using standard hole-
filling algorithms (c). Given a target pose (d), we warp cor-
responding body parts from (c) into new locations (e) by
rotating and scaling them. By compositing each layer ac-
cording to a target depth ordering, we produce a synthetic
frame (f).

[37, 35], where each pixel is augmented by its depth layer.
To derive a part region from pose parameters (s, ✓, r, d),
we need to define a forward kinematics model and a shape
model.

Forward kinematics. P represents pose in a local co-
ordinate frame because it more natural for the pose synthe-
sis algorithm in Sec. 3.1. To render an associated image,
we need to compute part locations in global image coordi-
nates. This is straightforward with classic forward kinemat-
ics ([23], [21]). Specifically, given P and a tree-structured
graph T = (V,E) specifying part connectivity, we derive
two global pose parameters for a part indexed by i; orien-
tation angle ✓

g
i and translation vector tgi . tgi is the pixel po-

sition of part i’s joint (e.g. elbow for lower arm). For no-
tational simplicity, we drop the dependance on global scale
s0:

✓

g
i = ✓

g
par(i) + ✓i (2)

t

g
i = t

g
par(i) + Rot(✓par(i))liri (3)

✓

g
root = ✓root (4)
t

g
root = (x0, y0) (5)

where par(i) is the part index of parent of i as defined in
graph T , Rot is a 2D rotation matrix, and li is the location
offset of joint with i with respect to the joint of its parent
(e.g. default location of elbow in the reference frame of
shoulder). We now can write the global location, orienta-
tion, and foreshortening of part i as

gi = (tgi , ✓
g
i , ri)

Part shapes: Let us write Mi 2 {0, 1}W⇥H for a bi-
nary support mask for part i transformed to location gi.
This mask is computed by translating, rotating, and scal-
ing a canonical support mask for part i [1, 9, 15]. We use
a mean shape mask obtained by averaging annotated part
support masks from a generic dataset of segmented people
(not from the testset). We visualize example shape masks in
Fig.5.

Part textures: Let us write Ri 2 RW⇥H⇥3 for a RGB
texture map for part i transformed to location gi. We learn
part-specific texture maps from the first frame I1. We do
this by computing a binary pixel region mask for each part
i. Each region is divided into two types of subregions: vis-
ible regions and occluded regions (due to overlapping parts
in a closer depth layer). Most layers include occluded re-
gions. We estimate occluded pixel values using standard
hole-filling algorithms [4, 6]. We experimented with var-
ious approaches such as PatchMatch [2], but found simple
linear interpolation to look well. We visualize the procedure
for part texture extraction in Fig. 4(a)-(c).

Compositing layers: Given a target pose P with asso-
ciated global part positions {gi}, we wish to create the im-
age by recompositing the layered part textures. Let us write
Mi 2 {0, 1}W⇥H for the binary support mask for part i
at global position gi. If parts have been ordered from back
(i = N) to front (i = 1), the final rendered image is gener-
ated by initializing the back layer CN = MN and iterating
to the front:

I = C1 where Ci = (1�Mi)Ci+1 +MiRi (6)

The compositing process is visualized in Fig. 4(d)-(f).

3.3. Low resolution rendering
An ideal synthesis engine needs to generate a training

set with two computationally demanding properties; (1) it
needs to be photorealistic enough so that it matches well

2D similarity transformations

Overall pipeline

Figure 2: Synthesis overview. We assume the first frame of the video, as well as its pose label, is available upon test time
(left). We define a generic library of poses that represents all potential poses (top). We use an image-based rendering
engine to warp body parts from the first frame into target poses from the library (middle). Notably, we make use of layered
compositing to accurately render self-occlusions between the arm and torso, a notoriously difficult problem for articulated
models. We use the collection of rendered frames to construct a custom “Rachel” training data as shown in Fig. 1. This
training set is powerful enough to produce state-of-art pose estimation results using low-resolution pixel features (bottom).

to recognize Phoebe in her living room. Instead, we pro-
pose to train a highly-tuned appearance model that overfits
the particular video using a large set of synthetic training
data.

Data-augmentation: Our approach of image-based
synthesis is inspired by learning architectures that ap-
ply synthetic perturbations to training data. Such “data-
augmentation” appears to be crucial components of state-
of-the-art methods like deep learning [27, 17]. However,
instead of applying simple perturbations like rotations, we
make use of an image-based rendering engine to “cut and
paste” regions of image in a layered fashion, generating new
scene configurations. With a rich enough synthesis engine,
the resulting learning algorithm (a) does not need to gen-
eralize to unseen test poses (because they can be directly
synthesized) and (b) does not need to be invariant to nui-
sance factors like color (because only scene-specific colors
will be synthesized). Both observations imply that “its all
about the data”, and that simple learning architectures (such
as NN-matching) and pixel features will suffice.

Self-occlusions: Our simple approach addresses a no-
torious difficulty of articulated pose estimation - self-
occlusions. It is difficult to estimate poses where the torso is
occluded by the arm. This is because the resulting edge pat-
terns are heavily dependent on clothing. Our approach syn-
thesizes the “right” clothing and edge patterns. To synthe-
size accurate self-occlusions, our rendering engine makes
use of a 2.1D layered depth model. Similarly, our approach
synthesize body parts that appear shrunk due to out-of-plane

rotation. This is particularly effective for lower arms [29].
Overview: After discussing related work in Sec.2, we

describe our synthesis engines in Sec.3. Pixel synthesis is
the process of generating a synthetic frame given a target
pose and pose-annotated first frame; pose synthesis defines
a set of target poses to synthesize. In Sec.4, we describe a
simple nearest-neighbor algorithm for estimating pose. In
Sec.5, we diagnose and evaluate our approach for the task
of estimating upper body pose using Friends dataset.

2. Related work
Visual tracking: The problem of visual tracking have

been addressed in various settings of inputs and initializa-
tions; first-frame labeled [38], online tracking [36], inter-
active tracking [5], etc. Articulated tracking [12], [39],
[29], [3] recently gained attention. See [32] for com-
plete discussion. Much recent work has focused on single-
frame pose estimation, as such methods will likely be use-
ful to (re) initialize a tracker. Our work requires the first
frame to be labeled (a historically commonplace assump-
tion [8, 31, 15, 22]), but differs from past initialized track-
ers in that no temporal tracking is performed (making our
approach resistant to drift).

Appearance models: Tracking with learned appearance
models [26, 14] have proved to be effective. Our work is
closest to [15] in that they use labeled first frame to learn
an appearance model that is then used to track the articu-
lation of human body in subsequent frames. Our work is

(lots of domain knowledge)

Overall pipeline

Figure 2: Synthesis overview. We assume the first frame of the video, as well as its pose label, is available upon test time
(left). We define a generic library of poses that represents all potential poses (top). We use an image-based rendering
engine to warp body parts from the first frame into target poses from the library (middle). Notably, we make use of layered
compositing to accurately render self-occlusions between the arm and torso, a notoriously difficult problem for articulated
models. We use the collection of rendered frames to construct a custom “Rachel” training data as shown in Fig. 1. This
training set is powerful enough to produce state-of-art pose estimation results using low-resolution pixel features (bottom).

to recognize Phoebe in her living room. Instead, we pro-
pose to train a highly-tuned appearance model that overfits
the particular video using a large set of synthetic training
data.

Data-augmentation: Our approach of image-based
synthesis is inspired by learning architectures that ap-
ply synthetic perturbations to training data. Such “data-
augmentation” appears to be crucial components of state-
of-the-art methods like deep learning [27, 17]. However,
instead of applying simple perturbations like rotations, we
make use of an image-based rendering engine to “cut and
paste” regions of image in a layered fashion, generating new
scene configurations. With a rich enough synthesis engine,
the resulting learning algorithm (a) does not need to gen-
eralize to unseen test poses (because they can be directly
synthesized) and (b) does not need to be invariant to nui-
sance factors like color (because only scene-specific colors
will be synthesized). Both observations imply that “its all
about the data”, and that simple learning architectures (such
as NN-matching) and pixel features will suffice.

Self-occlusions: Our simple approach addresses a no-
torious difficulty of articulated pose estimation - self-
occlusions. It is difficult to estimate poses where the torso is
occluded by the arm. This is because the resulting edge pat-
terns are heavily dependent on clothing. Our approach syn-
thesizes the “right” clothing and edge patterns. To synthe-
size accurate self-occlusions, our rendering engine makes
use of a 2.1D layered depth model. Similarly, our approach
synthesize body parts that appear shrunk due to out-of-plane

rotation. This is particularly effective for lower arms [29].
Overview: After discussing related work in Sec.2, we

describe our synthesis engines in Sec.3. Pixel synthesis is
the process of generating a synthetic frame given a target
pose and pose-annotated first frame; pose synthesis defines
a set of target poses to synthesize. In Sec.4, we describe a
simple nearest-neighbor algorithm for estimating pose. In
Sec.5, we diagnose and evaluate our approach for the task
of estimating upper body pose using Friends dataset.

2. Related work
Visual tracking: The problem of visual tracking have

been addressed in various settings of inputs and initializa-
tions; first-frame labeled [38], online tracking [36], inter-
active tracking [5], etc. Articulated tracking [12], [39],
[29], [3] recently gained attention. See [32] for com-
plete discussion. Much recent work has focused on single-
frame pose estimation, as such methods will likely be use-
ful to (re) initialize a tracker. Our work requires the first
frame to be labeled (a historically commonplace assump-
tion [8, 31, 15, 22]), but differs from past initialized track-
ers in that no temporal tracking is performed (making our
approach resistant to drift).

Appearance models: Tracking with learned appearance
models [26, 14] have proved to be effective. Our work is
closest to [15] in that they use labeled first frame to learn
an appearance model that is then used to track the articu-
lation of human body in subsequent frames. Our work is

Overall pipeline

Figure 2: Synthesis overview. We assume the first frame of the video, as well as its pose label, is available upon test time
(left). We define a generic library of poses that represents all potential poses (top). We use an image-based rendering
engine to warp body parts from the first frame into target poses from the library (middle). Notably, we make use of layered
compositing to accurately render self-occlusions between the arm and torso, a notoriously difficult problem for articulated
models. We use the collection of rendered frames to construct a custom “Rachel” training data as shown in Fig. 1. This
training set is powerful enough to produce state-of-art pose estimation results using low-resolution pixel features (bottom).

to recognize Phoebe in her living room. Instead, we pro-
pose to train a highly-tuned appearance model that overfits
the particular video using a large set of synthetic training
data.

Data-augmentation: Our approach of image-based
synthesis is inspired by learning architectures that ap-
ply synthetic perturbations to training data. Such “data-
augmentation” appears to be crucial components of state-
of-the-art methods like deep learning [27, 17]. However,
instead of applying simple perturbations like rotations, we
make use of an image-based rendering engine to “cut and
paste” regions of image in a layered fashion, generating new
scene configurations. With a rich enough synthesis engine,
the resulting learning algorithm (a) does not need to gen-
eralize to unseen test poses (because they can be directly
synthesized) and (b) does not need to be invariant to nui-
sance factors like color (because only scene-specific colors
will be synthesized). Both observations imply that “its all
about the data”, and that simple learning architectures (such
as NN-matching) and pixel features will suffice.

Self-occlusions: Our simple approach addresses a no-
torious difficulty of articulated pose estimation - self-
occlusions. It is difficult to estimate poses where the torso is
occluded by the arm. This is because the resulting edge pat-
terns are heavily dependent on clothing. Our approach syn-
thesizes the “right” clothing and edge patterns. To synthe-
size accurate self-occlusions, our rendering engine makes
use of a 2.1D layered depth model. Similarly, our approach
synthesize body parts that appear shrunk due to out-of-plane

rotation. This is particularly effective for lower arms [29].
Overview: After discussing related work in Sec.2, we

describe our synthesis engines in Sec.3. Pixel synthesis is
the process of generating a synthetic frame given a target
pose and pose-annotated first frame; pose synthesis defines
a set of target poses to synthesize. In Sec.4, we describe a
simple nearest-neighbor algorithm for estimating pose. In
Sec.5, we diagnose and evaluate our approach for the task
of estimating upper body pose using Friends dataset.

2. Related work
Visual tracking: The problem of visual tracking have

been addressed in various settings of inputs and initializa-
tions; first-frame labeled [38], online tracking [36], inter-
active tracking [5], etc. Articulated tracking [12], [39],
[29], [3] recently gained attention. See [32] for com-
plete discussion. Much recent work has focused on single-
frame pose estimation, as such methods will likely be use-
ful to (re) initialize a tracker. Our work requires the first
frame to be labeled (a historically commonplace assump-
tion [8, 31, 15, 22]), but differs from past initialized track-
ers in that no temporal tracking is performed (making our
approach resistant to drift).

Appearance models: Tracking with learned appearance
models [26, 14] have proved to be effective. Our work is
closest to [15] in that they use labeled first frame to learn
an appearance model that is then used to track the articu-
lation of human body in subsequent frames. Our work is

Some observations
1. Layered pixel models are particularly effective for occlusions

Figure 2: Synthesis overview. We assume the first frame of the video, as well as its pose label, is available upon test time
(left). We define a generic library of poses that represents all potential poses (top). We use an image-based rendering
engine to warp body parts from the first frame into target poses from the library (middle). Notably, we make use of layered
compositing to accurately render self-occlusions between the arm and torso, a notoriously difficult problem for articulated
models. We use the collection of rendered frames to construct a custom “Rachel” training data as shown in Fig. 1. This
training set is powerful enough to produce state-of-art pose estimation results using low-resolution pixel features (bottom).

to recognize Phoebe in her living room. Instead, we pro-
pose to train a highly-tuned appearance model that overfits
the particular video using a large set of synthetic training
data.

Data-augmentation: Our approach of image-based
synthesis is inspired by learning architectures that ap-
ply synthetic perturbations to training data. Such “data-
augmentation” appears to be crucial components of state-
of-the-art methods like deep learning [27, 17]. However,
instead of applying simple perturbations like rotations, we
make use of an image-based rendering engine to “cut and
paste” regions of image in a layered fashion, generating new
scene configurations. With a rich enough synthesis engine,
the resulting learning algorithm (a) does not need to gen-
eralize to unseen test poses (because they can be directly
synthesized) and (b) does not need to be invariant to nui-
sance factors like color (because only scene-specific colors
will be synthesized). Both observations imply that “its all
about the data”, and that simple learning architectures (such
as NN-matching) and pixel features will suffice.

Self-occlusions: Our simple approach addresses a no-
torious difficulty of articulated pose estimation - self-
occlusions. It is difficult to estimate poses where the torso is
occluded by the arm. This is because the resulting edge pat-
terns are heavily dependent on clothing. Our approach syn-
thesizes the “right” clothing and edge patterns. To synthe-
size accurate self-occlusions, our rendering engine makes
use of a 2.1D layered depth model. Similarly, our approach
synthesize body parts that appear shrunk due to out-of-plane

rotation. This is particularly effective for lower arms [29].
Overview: After discussing related work in Sec.2, we

describe our synthesis engines in Sec.3. Pixel synthesis is
the process of generating a synthetic frame given a target
pose and pose-annotated first frame; pose synthesis defines
a set of target poses to synthesize. In Sec.4, we describe a
simple nearest-neighbor algorithm for estimating pose. In
Sec.5, we diagnose and evaluate our approach for the task
of estimating upper body pose using Friends dataset.

2. Related work
Visual tracking: The problem of visual tracking have

been addressed in various settings of inputs and initializa-
tions; first-frame labeled [38], online tracking [36], inter-
active tracking [5], etc. Articulated tracking [12], [39],
[29], [3] recently gained attention. See [32] for com-
plete discussion. Much recent work has focused on single-
frame pose estimation, as such methods will likely be use-
ful to (re) initialize a tracker. Our work requires the first
frame to be labeled (a historically commonplace assump-
tion [8, 31, 15, 22]), but differs from past initialized track-
ers in that no temporal tracking is performed (making our
approach resistant to drift).

Appearance models: Tracking with learned appearance
models [26, 14] have proved to be effective. Our work is
closest to [15] in that they use labeled first frame to learn
an appearance model that is then used to track the articu-
lation of human body in subsequent frames. Our work is

2. We do not need to synthesis appearance variations for a video

Articulated pose estimation with tiny synthetic videos

Dennis Park
UC Irvine

iypark@ics.uci.edu

Deva Ramanan
UC Irvine

dramanan@ics.uci.edu

Abstract

We address the task of articulated pose estimation from
video sequences. We consider an interactive setting where
the initial pose is annotated in the first frame. Our sys-
tem synthesizes a large number of hypothetical scenes with
different poses and camera positions by applying geomet-
ric deformations to the first frame. We use these synthetic
images to generate a custom labeled training set for the
video in question. This training data is then used to learn
a regressor (for future frames) that predicts joint locations
from image data. Notably, our training set is so accu-
rate that nearest-neighbor (NN) matching on low-resolution
pixel features works well. As such, we name our underlying
representation “tiny synthetic videos”. We present quanti-
tative results the Friends benchmark dataset that suggests
our simple approach matches or exceed state-of-the-art.

1. Introduction
Humans have remarkable abilities to synthesize mental

imagery “with the minds eye” [25, 10]. To examine this
phenomena, consider the practical problem of tracking hu-
man poses in a one-take video clip, say “Phoebe” in the tele-
vised show “Friends”. Given the first frame of the video,
humans can immediately picture in mind what the other
frames might look like. Phoebe, who was folding arms in
the first frame, may be reaching her arm to grab a cup or be
answering the phone in the other frames. In addition, the
plate of salad might become empty; the ketchup bottle on
the table might be in her hand or moved to the other side of
the table. Even though such a generative approach to recog-
nition seems intuitively plausible, most contemporary ap-
proaches takes a decidedly discriminative route [17, 34, 11].

Our approach: We describe a radically simple architec-
ture for articulated pose estimation based on scene synthe-
sis. We consider the setting where the articulated pose of the
person is provided in the first frame. Our system works by
synthesizing a large number of hypothetical scenes with dif-
ferent poses, dynamic objects (e.g., cups) and camera loca-
tions using image-based rendering algorithms. We use these

Figure 1: Overfit the video! We propose to use synthetic
video frames that emulate hypothetical test frames as train-
ing data for performing recognition in video. Previous ap-
proaches use as base models generic detectors trained using
images in the wild (left). We show that, by using train-
ing data customized to a particular video (right), one can
achieve state-of-the-art performance on challenging pose
estimation problem even with simple models and features.

synthetic scenes to generate a custom labeled training set
for the video in question. This custom training data is then
used to learn a classifier (or rather regressor) that predicts
joint locations from image features. Notably, our training
set is so accurate that nearest-neighbor (NN) matching on
pixel values produce state-of-the-art performance. Specifi-
cally, we find that low-resolution pixel features work well.
As such, we name underlying representation tiny synthetic
videos.

Tracking by detection: We tackle the problem of ar-
ticulated tracking using a tracking-by-detection framework,
applying a detector/estimator at each frame. Typically, one
makes use of a generic pose detector trained using images
of arbitrary persons and backgrounds. This seems to be
overkill, since it forces the detector to recognize Obama’s
pose in the Whitehouse even though the detector only needs

1

Articulated pose estimation with tiny synthetic videos

Dennis Park
UC Irvine

iypark@ics.uci.edu

Deva Ramanan
UC Irvine

dramanan@ics.uci.edu

Abstract

We address the task of articulated pose estimation from
video sequences. We consider an interactive setting where
the initial pose is annotated in the first frame. Our sys-
tem synthesizes a large number of hypothetical scenes with
different poses and camera positions by applying geomet-
ric deformations to the first frame. We use these synthetic
images to generate a custom labeled training set for the
video in question. This training data is then used to learn
a regressor (for future frames) that predicts joint locations
from image data. Notably, our training set is so accu-
rate that nearest-neighbor (NN) matching on low-resolution
pixel features works well. As such, we name our underlying
representation “tiny synthetic videos”. We present quanti-
tative results the Friends benchmark dataset that suggests
our simple approach matches or exceed state-of-the-art.

1. Introduction
Humans have remarkable abilities to synthesize mental

imagery “with the minds eye” [25, 10]. To examine this
phenomena, consider the practical problem of tracking hu-
man poses in a one-take video clip, say “Phoebe” in the tele-
vised show “Friends”. Given the first frame of the video,
humans can immediately picture in mind what the other
frames might look like. Phoebe, who was folding arms in
the first frame, may be reaching her arm to grab a cup or be
answering the phone in the other frames. In addition, the
plate of salad might become empty; the ketchup bottle on
the table might be in her hand or moved to the other side of
the table. Even though such a generative approach to recog-
nition seems intuitively plausible, most contemporary ap-
proaches takes a decidedly discriminative route [17, 34, 11].

Our approach: We describe a radically simple architec-
ture for articulated pose estimation based on scene synthe-
sis. We consider the setting where the articulated pose of the
person is provided in the first frame. Our system works by
synthesizing a large number of hypothetical scenes with dif-
ferent poses, dynamic objects (e.g., cups) and camera loca-
tions using image-based rendering algorithms. We use these

Figure 1: Overfit the video! We propose to use synthetic
video frames that emulate hypothetical test frames as train-
ing data for performing recognition in video. Previous ap-
proaches use as base models generic detectors trained using
images in the wild (left). We show that, by using train-
ing data customized to a particular video (right), one can
achieve state-of-the-art performance on challenging pose
estimation problem even with simple models and features.

synthetic scenes to generate a custom labeled training set
for the video in question. This custom training data is then
used to learn a classifier (or rather regressor) that predicts
joint locations from image features. Notably, our training
set is so accurate that nearest-neighbor (NN) matching on
pixel values produce state-of-the-art performance. Specifi-
cally, we find that low-resolution pixel features work well.
As such, we name underlying representation tiny synthetic
videos.

Tracking by detection: We tackle the problem of ar-
ticulated tracking using a tracking-by-detection framework,
applying a detector/estimator at each frame. Typically, one
makes use of a generic pose detector trained using images
of arbitrary persons and backgrounds. This seems to be
overkill, since it forces the detector to recognize Obama’s
pose in the Whitehouse even though the detector only needs

1

General training set Video-specific training set

Surprisingly effective
that using perceptually uniform color space such as LUV or
LAB is important, presumably because they were designed
to make L2 distance more meaningful.

Resolution: The next question we answer is about the
working resolution of color features and its interplay be-
tween the number of training frames. Interestingly, as
shown in Fig.8a, we achieve competitive accuracy using
quite low resolution (s = 4), and observe a sharp drop for
s = 2. This is consistent with visual inspection of the pixel
data as well; it is quite hard for a human to see structure at
such low resolutions (Fig.6).

In fact, the correlation between feature resolution and
accuracy is more subtle, since the accuracy also depends
on the number of rendered poses (or the pose space sam-
pling rate mentioned in Sec.3.3). Intuitively, the number of
visually distinguishable poses must decrease at low resolu-
tions. This observation suggests that one may need to render
only those poses with unique quantized configurations at a
given resolution. Fig8b shows that “subpixel” pose configu-
rations further improves accuracy. An upper-bound analysis
reveals that a small number of poses (⇠ 4K) can poten-
tially achieve a quite high accuracy (⇠ 85%), but this may
require complex image matching function (capable of de-
forming images while matching). Rather, our approach is
to synthesize a set of deformations with consistent depth-
layering.

Benchmark comparisons: Lastly, we compare our ap-
proaches with the state-of-the-art on the Friends dataset.
[29] uses an ensemble of tree models, each of them
rooted on one of the 6 parts and temporally linked only
through roots, to approximate underlying loopy spatiotem-
poral model. [39] uses optical flows and learned 2D artic-
ulated shape models as means to exploit pixel informations
of adjacent frames and to propagate part assignments tem-
porally. Both methods use optical flows and designated off-
the-shelf hand detector based on assumptions on skin col-
ors. We compare both methods on the same of 13 frontal
test clips on which we evaluate our model.

Our nearest-neighbor regressor predicts elbow locations
significantly better than other two methods; 93.7% versus
73.2% and 74.2% at 25-pixel threshold. For wrist, our
methods is less accurate than [29] and [39]; 54.8% ver-
sus 69.9% and 59.8% at 25-pixel threshold (Fig.9). Un-
like other two methods, we independently estimate poses in
each frame without using temporal models or motion fea-
tures. Plus, there is no extra effort for detecting hands.

Error analysis: One of the benefits of simple features
and learning algorithms are that visualizing and understand-
ing the predictor is straightforward (Fig.10). For instance, a
common mistake is that hands are often confused by back-
ground objects with similar color (failure of the model to
correctly explain-away the background). In addition, our
approach of using customized synthetic frames facilitate

Figure 9: We compare our best result (LUV features, s =
5.7, ⇠ 280k training frames) to two other state-of-the-art
methods that report results on the Friends dataset, [29] and
[39]. We evaluate results on 13 out of the 18 test clips with
frontal-facing subjects. We outperform both methods by a
large margin (25% at 25-pixel threshold) in the task of pre-
dicting elbow locations (left). We perform competitively in
predicting wrist locations (right)

further error analysis. For instance, one can synthesize im-
ages with ground-truth test poses to compare the accuracy
of our pose-synthesis and pixel-synthesis engines.

6. Conclusion
In this paper, we described an approach of using syn-

thetic training dataset to train models highly customized to
the particular video. We show that, with simple image-
based rendering algorithms, one can generate reasonably
photorealistic training data that captures important modes
of variation (human poses) of given video, while maintain-
ing its invariants. We showed that this custom training data
greatly simplify learning and inference. We demonstrated
our approach on the challenging task of estimating upper
body pose of humans in videos.

% of correctly-
predicted elbows

Outline

• Review from last lec

• Transformations (2D/3D)

• Direct methods

• Lucas Kanade

Approaches for image alignmnment

Sparse feature-based alignment

Dense, direct estimation of warp

Approaches for image alignmnment

Sparse feature-based alignment

global image transformation

local image transformations (flow fields)
next lecture

Debate at ICCV 1999

Where we are headed…

Starting point: matching a template to an imageCSE486, Penn State
Robert Collins

Basic LK Derivation for Templates

template
(model)

current frame
u,v = hypothesized location of
template in current frame

What kind of optimization problem is this?

What is the transformation that is being searched over?

Recall: nonlinear optimization

Apply standard linear optimization tricks after using Taylor series approximation

f(x+ u) = f(x) +
@f(x)

@x

u+
1

2

@f(x)

@xx

u

2 +Higher Order Terms

For multivariate functions, we make use of first-order gradient vector and second-order Hessian matrix

1. First order method (gradient descent)

E(u) =
X

x

[I(x+ u)� T (x)]2

2. Second order method (Newton’s method)
https://en.wikipedia.org/wiki/Newton%27s_method_in_optimization

u := u� ↵g

u := u�H�1g

Recall: nonlinear optimization

https://en.wikipedia.org/wiki/Newton%27s_method_in_optimization

Recall: nonlinear least squares

1. First order method (gradient descent)

https://en.wikipedia.org/wiki/Gauss–Newton_algorithm

2. Second order method (Newton’s method)
https://en.wikipedia.org/wiki/Newton's_method_in_optimization

1.5 Nonlinear least squares (Gauss-Newton approximation)

i. Perform first-order Taylor series expansion of terms inside squared error
ii. Solve quadratic error for

�u
�u

(b) It turns out that we’ll compute an “easy to optimize” (PSD) hessian: H ⇡ ggT
(a) Take derivative of error wrt �u and set equal to 0

E(u) =
1

2
||f(u)||2

u := u� ↵g

u := u�H�1g

https://en.wikipedia.org/wiki/Gauss%E2%80%93Newton_algorithm
https://en.wikipedia.org/wiki/Newton's_method_in_optimization

Recall: nonlinear least squares

1. First order method (gradient descent)

https://en.wikipedia.org/wiki/Gauss–Newton_algorithm

1.5 Nonlinear least squares (Gauss-Newton approximation)

E(u) =
1

2
||f(u)||2

u := u�
⇣
J(u)TJ(u)

⌘T
J(u)T f(u)

u := u� ↵J(u)T f(u), Jij(u) =
@fi(u)

@uj

https://en.wikipedia.org/wiki/Gauss%E2%80%93Newton_algorithm

Outline

• 2D transformations

• Direct methods

• Lucas Kanade

Lucas Kanade alignment
CSE486, Penn State
Robert Collins

Basic LK Derivation for Templates

Take partial derivs and set to zero

First order approx

Form matrix equation

solve via
least-squares

CSE486, Penn State
Robert Collins

Basic LK Derivation for Templates

Take partial derivs and set to zero

First order approx

Form matrix equation

solve via
least-squares

Lucas Kanade alignment

CSE486, Penn State
Robert Collins

Basic LK Derivation for Templates

Take partial derivs and set to zero

First order approx

Form matrix equation

solve via
least-squares

CSE486, Penn State
Robert Collins

Basic LK Derivation for Templates

Take partial derivs and set to zero

First order approx

Form matrix equation

solve via
least-squares

Analogy with interest-point detection
Are corners easier to align?

“Ax=b”

Lucas Kanade AlignmentCSE486, Penn State
Robert Collins

Basic LK Derivation for Templates

template
(model)

current frame
u,v = hypothesized location of
template in current frame

CSE486, Penn State
Robert Collins

Basic LK Derivation for Templates

template
(model)

current frame
u,v = hypothesized location of
template in current frame

template

initialization

Lucas Kanade AlignmentCSE486, Penn State
Robert Collins

Basic LK Derivation for Templates

template
(model)

current frame
u,v = hypothesized location of
template in current frame

CSE486, Penn State
Robert Collins

Basic LK Derivation for Templates

template
(model)

current frame
u,v = hypothesized location of
template in current frame

template

Gauss-Newton step

Lucas Kanade AlignmentCSE486, Penn State
Robert Collins

Basic LK Derivation for Templates

template
(model)

current frame
u,v = hypothesized location of
template in current frame

CSE486, Penn State
Robert Collins

Basic LK Derivation for Templates

template
(model)

current frame
u,v = hypothesized location of
template in current frame

template

and iterate….

Is this guaranteed to get the right answer?

Is this garuanteed to converge to any answer?

if we are in the basin of attraction, convergence tends to be fast (few iterations)

tracker aims to move it by an o↵set (�u,�v) to obtain another rectangle R

t+1 on frame
I

t+1, so that the pixel squared di↵erence in the two rectangles is minimized:

min
u,v

J(u, v) =
X

(x,y)2Rt

(I
t+1(x+ u, y + v)� I

t

(x, y))2 (1)

Q1.1 (5 points) Starting with an initial guess of (u, v) (for instance, (0, 0)), we can
compute the optimal (u⇤

, v

⇤) iteratively. In each iteration, the objective function is locally
linearized by first-order Taylor expansion and optimized by solving a linear system that has
the form A�p = b, where �p = (u, v)T , the template o↵set.

• What is AT

A?

• What conditions must AT

Ameet so that the template o↵set can be calculated reliably?

Q1.2 (15 points) Implement a function with the following signature

[u,v] = LucasKanade(It, It1, rect)

that computes the optimal local motion from frame I
t

to frame I
t+1 that minimizes Equation

1. Here It is the image frame I

t

, It1 is the image frame I

t+1, and rect is the 4-by-1
vector that represents a rectangle on the image frame I

t

. The four components of the
rectangle are [x1, y1, x2, y2], where (x1, y1) is the top-left corner and (x2, y2) is the bottom-
right corner. The rectangle is inclusive, i.e., in includes all the four corners. To deal
with fractional movement of the template, you will need to interpolate the image using the
MATLAB function interp2. You will also need to iterate the estimation until the change in
(u, v) is below a threshold. It is recommended, but not required, to implement the inverse
compositional version of the Lucas-Kanade tracker (Section 2.2 in [2]).

Q1.3 (10 points) Write a script testCarSequence.m that loads the video frames from
carseq.mat, and runs the Lucas-Kanade tracker that you have implemented in the previous
task to track the car. carseq.mat can be located in the data directory and it contains one
single three-dimensional matrix: the first two dimensions correspond to the height and width
of the frames respectively, and the third dimension contain the indices of the frames (that
is, the first frame can be visualized with imshow(frames(:, :, 1))). The rectangle in the
first frame is [x1, y1, x2, y2] = [60, 117, 146, 152]. Report your tracking performance (image
+ bounding rectangle) at frames 1, 100, 200, 300 and 400 in a format similar to Figure 1.
Also, create a file called carseqrects.mat, which contains one single n ⇥ 4 matrix rects,
where each row stores the rect that you have obtained for each frame, and n is the total
number of frames.

Figure 1: Lucas-Kanade Tracking with One Single Template

2

HW3: Tracking by iterative
template alignment

Start with template from first frame and repeat:

1. Align template to new frame with Lucas Kanade

2. Update template with new frame

What about other warps?36 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

y

x

similarity

Euclidean affine

projective

translation

Figure 2.4 Basic set of 2D planar transformations.

Translation. 2D translations can be written as x0 = x + t or

x0 =
h

I t
i
x̄ (2.14)

where I is the (2⇥ 2) identity matrix or

x̄0 =

"
I t

0

T 1

#
x̄ (2.15)

where 0 is the zero vector. Using a 2⇥ 3 matrix results in a more compact notation, whereas
using a full-rank 3⇥ 3 matrix (which can be obtained from the 2⇥ 3 matrix by appending a
[0T 1] row) makes it possible to chain transformations using matrix multiplication. Note that
in any equation where an augmented vector such as x̄ appears on both sides, it can always be
replaced with a full homogeneous vector x̃.

Rotation + translation. This transformation is also known as 2D rigid body motion or the
2D Euclidean transformation (since Euclidean distances are preserved). It can be written as
x0 = Rx + t or

x0 =
h

R t
i
x̄ (2.16)

where

R =

"
cos ✓ � sin ✓

sin ✓ cos ✓

#
(2.17)

is an orthonormal rotation matrix with RRT = I and |R| = 1.

Scaled rotation. Also known as the similarity transform, this transformation can be ex-
pressed as x0 = sRx + t where s is an arbitrary scale factor. It can also be written as

x0 =
h

sR t
i
x̄ =

"
a �b tx
b a ty

#
x̄, (2.18)

where we no longer require that a2 + b2 = 1. The similarity transform preserves angles
between lines.

Replace [u,v] with a warping
function W(x,y)

e.g., for affine warps:

36 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

y

x

similarity

Euclidean affine

projective

translation

Figure 2.4 Basic set of 2D planar transformations.

Translation. 2D translations can be written as x0 = x + t or

x0 =
h

I t
i
x̄ (2.14)

where I is the (2⇥ 2) identity matrix or

x̄0 =

"
I t

0

T 1

#
x̄ (2.15)

where 0 is the zero vector. Using a 2⇥ 3 matrix results in a more compact notation, whereas
using a full-rank 3⇥ 3 matrix (which can be obtained from the 2⇥ 3 matrix by appending a
[0T 1] row) makes it possible to chain transformations using matrix multiplication. Note that
in any equation where an augmented vector such as x̄ appears on both sides, it can always be
replaced with a full homogeneous vector x̃.

Rotation + translation. This transformation is also known as 2D rigid body motion or the
2D Euclidean transformation (since Euclidean distances are preserved). It can be written as
x0 = Rx + t or

x0 =
h

R t
i
x̄ (2.16)

where

R =

"
cos ✓ � sin ✓

sin ✓ cos ✓

#
(2.17)

is an orthonormal rotation matrix with RRT = I and |R| = 1.

Scaled rotation. Also known as the similarity transform, this transformation can be ex-
pressed as x0 = sRx + t where s is an arbitrary scale factor. It can also be written as

x0 =
h

sR t
i
x̄ =

"
a �b tx
b a ty

#
x̄, (2.18)

where we no longer require that a2 + b2 = 1. The similarity transform preserves angles
between lines.

E(u, v) =
X

[I(x+ u, y + v)� T (x, y)]2

E(p) =
X

[I(W ([x, y]; p)� T [x, y])2

W ([x, y]; p]) =

p1 p2 p3

p4 p5 p6

�2

4
x

y

1

3

5

Want to: Minimize the Error

• Warp image to get compute
Template, T(x)

Warped, I(W(x;p))

Nonlinear least squares
E(p) =

X

x

[I(W(x;p))� T (x)]2

Apply taylor-series expansion to vector-valued function W

Make use of chain rule to compute

W(x;p) =

p1 p2 p3

p4 p5 p6

�2

4
x

y

1

3

5

W

x

= p1x+ p2y + p3

W

y

= p4x+ p5y + p6

@I

@p
i

=
@I

@W
x

@W
x

@p
i

+
@I

@W
y

@W
y

@p
i

@I

@p
i

=
@I

@W
x

@W
x

@p
i

+
@I

@W
y

@W
y

@p
i

Taylor expansion of warped image

current warped
image gradient

jacobian
of warp

single-parameter warp (e.g., rotation)

parameter
update

current warped
image

I(x; p̃+�p) ⇡ I(x; p̃) +
h
@I(x;p̃)

@x

@I(x;p̃)
@y

i "@W

x

(x,p)
@p

@W

y

(x,p)
@p

#

p̃

�p

Taylor expansion of warped image

current warped
image gradient

jacobian
of warp

single-parameter warp (e.g., rotation)

parameter
update

current warped
image

I(x; p̃+�p) ⇡ I(x; p̃) +
h
@I(x;p̃)

@x

@I(x;p̃)
@y

i "@W

x

(x,p)
@p

@W

y

(x,p)
@p

#

p̃

�p

current warped
image gradient

jacobian
matrix

parameter
update
vector

current warped
image

I(x; p̃+�p) ⇡ I(x; p̃) +
h
@I(x;p̃)

@x

@I(x;p̃)
@y

i "@W

x

(x,p)
@p

@W

y

(x,p)
@p

#

p̃

�p

Example: jacobian of affine warp

CSE486, Penn State
Robert Collins

Example: Jacobian of Affine Warp

¸
¸
¸

¹

·

¨
¨
¨

©

§

¸̧
¹

·
¨̈
©

§
�

�

1
1

1
)];,([

642

531 y
x

ppp
ppp

PyxW

affine warp function (6 parameters)

»
¼

º
«
¬

ª

w

»
¼

º
«
¬

ª
���
���

w

w
w

1000
0100

642

531

yx
yx
P

PyPyxP
PyPxPx

P
W

»
»
»
»

¼

º

«
«
«
«

¬

ª

w

w

w

w

w

w

w

w
w
w

w
w

w
w

w
w

w
w

n

yyyy

n

xxxx

yx

P
W

P
W

P
W

P
W

P
W

P
W

P
W

P
W

P
W

WWPyxWLet

�

�

321

321

],[)];,([

general equation of Jacobian

Above affine parameterization is better conditioned for optimization because all-zero parameters default to the identity transformation

Back to the big-picture

Gradient Descent Solution

Least squares problem: Minimize to solve for Δp

Solution,

Gradient

Error Image

Jacobian
Approx
hessian

Gradient Images

• Compute image gradient

∇Ix ∇Iy

W(x;p) W(x;p)

I(W(x;p))

Jacobian

• Compute Jacobian
 Mesh parameterization

Warp, W(x;p)Template, T(x) Image, I(x)

Image coordinates

x = (x, y)T

Warp parameters,

p = (p1, p2, …, pn)T = (dx1, dy1, …, dxn, dyn)T

1

2 3

4

3

2

1

4

=

1 32 4

Lucas-Kanade Algorithm

1. Warp I with W(x;p) ⇒ I(W(x;p))

1. Compute error image T(x) - I(W(x;p))

1. Warp gradient of I to compute ∇I

1. Evaluate Jacobian

1. Compute Hessian

1. Compute Δp

1. Update parameters p ← p + Δp

- =

⇒

Fast Gradient Descent?

• To reduce Hessian computation:
1. Make Jacobian simple (or constant)

2. Avoid computing gradients on I

Fantastic reference
International Journal of Computer Vision 56(3), 221–255, 2004

c⃝ 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

Lucas-Kanade 20 Years On: A Unifying Framework

SIMON BAKER AND IAIN MATTHEWS
The Robotics Institute, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA

simonb@cs.cmu.edu

iainm@cs.cmu.edu

Received July 10, 2002; Revised February 6, 2003; Accepted February 7, 2003

Abstract. Since the Lucas-Kanade algorithm was proposed in 1981 image alignment has become one of the most
widely used techniques in computer vision. Applications range from optical flow and tracking to layered motion,
mosaic construction, and face coding. Numerous algorithms have been proposed and a wide variety of extensions
have been made to the original formulation. We present an overview of image alignment, describing most of the
algorithms and their extensions in a consistent framework. We concentrate on the inverse compositional algorithm,
an efficient algorithm that we recently proposed. We examine which of the extensions to Lucas-Kanade can be used
with the inverse compositional algorithm without any significant loss of efficiency, and which cannot. In this paper,
Part 1 in a series of papers, we cover the quantity approximated, the warp update rule, and the gradient descent
approximation. In future papers, we will cover the choice of the error function, how to allow linear appearance
variation, and how to impose priors on the parameters.

Keywords: image alignment, Lucas-Kanade, a unifying framework, additive vs. compositional algorithms, for-
wards vs. inverse algorithms, the inverse compositional algorithm, efficiency, steepest descent, Gauss-Newton,
Newton, Levenberg-Marquardt

1. Introduction

Image alignment consists of moving, and possibly de-
forming, a template to minimize the difference between
the template and an image. Since the first use of im-
age alignment in the Lucas-Kanade optical flow al-
gorithm (Lucas and Kanade, 1981), image alignment
has become one of the most widely used techniques
in computer vision. Besides optical flow, some of its
other applications include tracking (Black and Jepson,
1998; Hager and Belhumeur, 1998), parametric and
layered motion estimation (Bergen et al., 1992), mo-
saic construction (Shum and Szeliski, 2000), medical
image registration (Christensen and Johnson, 2001),
and face coding (Baker and Matthews, 2001; Cootes
et al., 1998).

The usual approach to image alignment is gradi-
ent descent. A variety of other numerical algorithms

such as difference decomposition (Gleicher, 1997) and
linear regression (Cootes et al., 1998) have also been
proposed, but gradient descent is the defacto standard.
Gradient descent can be performed in variety of dif-
ferent ways, however. One difference between the var-
ious approaches is whether they estimate an additive
increment to the parameters (the additive approach
(Lucas and Kanade, 1981)), or whether they estimate
an incremental warp that is then composed with the
current estimate of the warp (the compositional ap-
proach (Shum and Szeliski, 2000)). Another difference
is whether the algorithm performs a Gauss-Newton, a
Newton, a steepest-descent, or a Levenberg-Marquardt
approximation in each gradient descent step.

We propose a unifying framework for image align-
ment, describing the various algorithms and their ex-
tensions in a consistent manner. Throughout the frame-
work we concentrate on the inverse compositional

IJCV 2004

Overview
Lucas-Kanade 20 Years On: A Unifying Framework 223

solves for increments to the parameters !p; i.e. the
following expression is (approximately) minimized:

∑

x
[I (W(x; p + !p)) − T (x)]2 (4)

with respect to !p, and then the parameters are up-
dated:

p ← p + !p. (5)

These two steps are iterated until the estimates of the
parameters p converge. Typically the test for conver-
gence is whether some norm of the vector !p is below
a threshold ϵ; i.e. ∥!p∥ ≤ ϵ.

2.2. Derivation of the Lucas-Kanade Algorithm

The Lucas-Kanade algorithm (which is a Gauss-
Newton gradient descent non-linear optimization al-
gorithm) is then derived as follows. The non-linear ex-
pression in Eq. (4) is linearized by performing a first
order Taylor expansion on I (W(x; p + !p)) to give:

∑

x

[
I (W(x; p)) + ∇I

∂W
∂p

!p − T (x)
]2

. (6)

In this expression, ∇I = (∂ I
∂x , ∂ I

∂y) is the gradient of
image I evaluated at W(x; p); i.e. ∇I is computed
in the coordinate frame of I and then warped back onto
the coordinate frame of T using the current estimate of
the warp W(x; p). The term ∂W

∂p is the Jacobian of the
warp. If W(x; p) = (Wx (x; p), Wy(x; p))T then:

∂W
∂p

=

⎛

⎝
∂Wx
∂p1

∂Wx
∂p2

. . . ∂Wx
∂pn

∂Wy

∂p1

∂Wy

∂p2
. . .

∂Wy

∂pn

⎞

⎠ . (7)

We follow the notational convention that the partial
derivatives with respect to a column vector are laid out
as a row vector. This convention has the advantage that
the chain rule results in a matrix multiplication, as in
the expression in Eq. (6). For example, the affine warp
in Eq. (2) has the Jacobian:

∂W
∂p

=
(

x 0 y 0 1 0

0 x 0 y 0 1

)
. (8)

Minimizing the expression in Eq. (6) is a least squares
problem and has a closed from solution which can be

Figure 1. The Lucas-Kanade algorithm (Lucas and Kanade, 1981)
consists of iteratively applying Eqs. (10) and (5) until the estimates
of the parameters p converge. Typically the test for convergence
is whether some norm of the vector !p is below a user specified
threshold ϵ. Because the gradient ∇I must be evaluated at W(x; p)
and the Jacobian ∂W

∂p must be evaluated at p, all 9 steps must be
repeated in every iteration of the algorithm.

derived as follows. The partial derivative of the expres-
sion in Eq. (6) with respect to !p is:

2
∑

x

[
∇I

∂W
∂p

]T[
I (W(x; p)) + ∇I

∂W
∂p

!p − T (x)
]

(9)

where we refer to ∇I ∂W
∂p as the steepest descent im-

ages. (See Section 4.3 for why.) Setting this expression
to equal zero and solving gives the closed form solution
for the minimum of the expression in Eq. (6) as:

!p = H−1
∑

x

[
∇I

∂W
∂p

]T

[T (x) − I (W(x; p))]

(10)

where H is the n × n (Gauss-Newton approximation
to the) Hessian matrix:

H =
∑

x

[
∇I

∂W
∂p

]T[
∇I

∂W
∂p

]
. (11)

For reasons that will become clear later we refer to∑
x[∇I ∂W

∂p]T[T (x) − I (W(x; p))] as the steepest de-
scent parameter updates. Equation (10) then expresses
the fact that the parameter updates !p are the steepest
descent parameter updates multiplied by the inverse
of the Hessian matrix. The Lucas-Kanade algorithm
(Lucas and Kanade, 1981) then consists of iteratively
applying Eqs. (10) and (5). See Figs. 1 and 2 for a sum-
mary. Because the gradient ∇I must be evaluated at

Additive warp:

Lucas-Kanade 20 Years On: A Unifying Framework 223

solves for increments to the parameters !p; i.e. the
following expression is (approximately) minimized:

∑

x
[I (W(x; p + !p)) − T (x)]2 (4)

with respect to !p, and then the parameters are up-
dated:

p ← p + !p. (5)

These two steps are iterated until the estimates of the
parameters p converge. Typically the test for conver-
gence is whether some norm of the vector !p is below
a threshold ϵ; i.e. ∥!p∥ ≤ ϵ.

2.2. Derivation of the Lucas-Kanade Algorithm

The Lucas-Kanade algorithm (which is a Gauss-
Newton gradient descent non-linear optimization al-
gorithm) is then derived as follows. The non-linear ex-
pression in Eq. (4) is linearized by performing a first
order Taylor expansion on I (W(x; p + !p)) to give:

∑

x

[
I (W(x; p)) + ∇I

∂W
∂p

!p − T (x)
]2

. (6)

In this expression, ∇I = (∂ I
∂x , ∂ I

∂y) is the gradient of
image I evaluated at W(x; p); i.e. ∇I is computed
in the coordinate frame of I and then warped back onto
the coordinate frame of T using the current estimate of
the warp W(x; p). The term ∂W

∂p is the Jacobian of the
warp. If W(x; p) = (Wx (x; p), Wy(x; p))T then:

∂W
∂p

=

⎛

⎝
∂Wx
∂p1

∂Wx
∂p2

. . . ∂Wx
∂pn

∂Wy

∂p1

∂Wy

∂p2
. . .

∂Wy

∂pn

⎞

⎠ . (7)

We follow the notational convention that the partial
derivatives with respect to a column vector are laid out
as a row vector. This convention has the advantage that
the chain rule results in a matrix multiplication, as in
the expression in Eq. (6). For example, the affine warp
in Eq. (2) has the Jacobian:

∂W
∂p

=
(

x 0 y 0 1 0

0 x 0 y 0 1

)
. (8)

Minimizing the expression in Eq. (6) is a least squares
problem and has a closed from solution which can be

Figure 1. The Lucas-Kanade algorithm (Lucas and Kanade, 1981)
consists of iteratively applying Eqs. (10) and (5) until the estimates
of the parameters p converge. Typically the test for convergence
is whether some norm of the vector !p is below a user specified
threshold ϵ. Because the gradient ∇I must be evaluated at W(x; p)
and the Jacobian ∂W

∂p must be evaluated at p, all 9 steps must be
repeated in every iteration of the algorithm.

derived as follows. The partial derivative of the expres-
sion in Eq. (6) with respect to !p is:

2
∑

x

[
∇I

∂W
∂p

]T[
I (W(x; p)) + ∇I

∂W
∂p

!p − T (x)
]

(9)

where we refer to ∇I ∂W
∂p as the steepest descent im-

ages. (See Section 4.3 for why.) Setting this expression
to equal zero and solving gives the closed form solution
for the minimum of the expression in Eq. (6) as:

!p = H−1
∑

x

[
∇I

∂W
∂p

]T

[T (x) − I (W(x; p))]

(10)

where H is the n × n (Gauss-Newton approximation
to the) Hessian matrix:

H =
∑

x

[
∇I

∂W
∂p

]T[
∇I

∂W
∂p

]
. (11)

For reasons that will become clear later we refer to∑
x[∇I ∂W

∂p]T[T (x) − I (W(x; p))] as the steepest de-
scent parameter updates. Equation (10) then expresses
the fact that the parameter updates !p are the steepest
descent parameter updates multiplied by the inverse
of the Hessian matrix. The Lucas-Kanade algorithm
(Lucas and Kanade, 1981) then consists of iteratively
applying Eqs. (10) and (5). See Figs. 1 and 2 for a sum-
mary. Because the gradient ∇I must be evaluated at

Lucas-Kanade 20 Years On: A Unifying Framework 225

Table 1. The computation cost of one iteration of the Lucas-Kanade algorithm. If n is the number of warp
parameters and N is the number of pixels in the template T , the cost of each iteration is O(n2 N + n3). The
most expensive step by far is Step 6, the computation of the Hessian, which alone takes time O(n2 N).

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Total

O(nN) O(N) O(nN) O(nN) O(nN) O(n2 N) O(nN) O(n3) O(n) O(n2 N + n3)

2.4. Computational Cost of the
Lucas-Kanade Algorithm

Assume that the number of warp parameters is n and the
number of pixels in T is N . Step 1 of the Lucas-Kanade
algorithm usually takes time O(n N). For each pixel x
in T we compute W(x; p) and then sample I at that
location. The computational cost of computing W(x; p)
depends on W but for most warps the cost is O(n) per
pixel. Step 2 takes time O(N). Step 3 takes the same
time as Step 1, usually O(n N). Computing the Jacobian
in Step 4 also depends on W but for most warps the cost
is O(n) per pixel. The total cost of Step 4 is therefore
O(n N). Step 5 takes time O(n N), Step 6 takes time
O(n2 N), and Step 7 takes time O(n N). Step 8 takes
time O(n3) to invert the Hessian matrix and time O(n2)
to multiply the result by the steepest descent parameter
updated computed in Step 7. Step 9 just takes time
O(n) to increment the parameters by the updates. The
total computational cost of each iteration is therefore
O(n2 N +n3), the most expensive step being Step 6. See
Table 1 for a summary of these computational costs.

3. The Quantity Approximated and the Warp
Update Rule

In each iteration Lucas-Kanade approximately mini-
mizes

∑
x [I (W(x; p + !p)) − T (x)]2 with respect to

!p and then updates the estimates of the parameters in
Step 9 p ← p + !p. Perhaps somewhat surprisingly
iterating these two steps is not the only way to minimize
the expression in Eq. (3). In this section we outline 3
alternative approaches that are all provably equivalent
to the Lucas-Kanade algorithm. We then show empiri-
cally that they are equivalent.

3.1. Compositional Image Alignment

The first alternative to the Lucas-Kanade algorithm is
the compositional algorithm.

3.1.1. Goal of the Compositional Algorithm. The
compositional algorithm, used most notably by Shum
and Szeliski (2000), approximately minimizes:

∑

x
[I (W(W(x; !p); p)) − T (x)]2 (12)

with respect to !p in each iteration and then updates
the estimate of the warp as:

W(x; p) ← W(x; p) ◦ W(x; !p), (13)

i.e. the compositional approach iteratively solves for
an incremental warp W(x; !p) rather than an additive
update to the parameters !p. In this context, we refer to
the Lucas-Kanade algorithm in Eqs. (4) and (5) as the
additive approach to contrast it with the compositional
approach in Eqs. (12) and (13). The compositional and
additive approaches are proved to be equivalent to first
order in !p in Section 3.1.5. The expression:

W(x; p) ◦ W(x; !p) ≡ W(W(x; !p); p) (14)

is the composition of 2 warps. For example, if W(x; p)
is the affine warp of Eq. (2) then:

W(x; p) ◦ W(x; !p)

=

⎛

⎜⎜⎜⎜⎜⎜⎝

(1 + p1) · ((1 + !p1) · x + !p3 · y + !p5)
+ p3 · (!p2 · x + (1 + !p4) · y + !p6)
+ p5

p2 · ((1 + !p1) · x + !p3 · y + !p5)
+ (1 + p4) · (!p2 · x + (1 + !p4) · y
+ !p6) + p6

⎞

⎟⎟⎟⎟⎟⎟⎠
,

(15)

Compositional warps:

Lucas-Kanade 20 Years On: A Unifying Framework 225

Table 1. The computation cost of one iteration of the Lucas-Kanade algorithm. If n is the number of warp
parameters and N is the number of pixels in the template T , the cost of each iteration is O(n2 N + n3). The
most expensive step by far is Step 6, the computation of the Hessian, which alone takes time O(n2 N).

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Total

O(nN) O(N) O(nN) O(nN) O(nN) O(n2 N) O(nN) O(n3) O(n) O(n2 N + n3)

2.4. Computational Cost of the
Lucas-Kanade Algorithm

Assume that the number of warp parameters is n and the
number of pixels in T is N . Step 1 of the Lucas-Kanade
algorithm usually takes time O(n N). For each pixel x
in T we compute W(x; p) and then sample I at that
location. The computational cost of computing W(x; p)
depends on W but for most warps the cost is O(n) per
pixel. Step 2 takes time O(N). Step 3 takes the same
time as Step 1, usually O(n N). Computing the Jacobian
in Step 4 also depends on W but for most warps the cost
is O(n) per pixel. The total cost of Step 4 is therefore
O(n N). Step 5 takes time O(n N), Step 6 takes time
O(n2 N), and Step 7 takes time O(n N). Step 8 takes
time O(n3) to invert the Hessian matrix and time O(n2)
to multiply the result by the steepest descent parameter
updated computed in Step 7. Step 9 just takes time
O(n) to increment the parameters by the updates. The
total computational cost of each iteration is therefore
O(n2 N +n3), the most expensive step being Step 6. See
Table 1 for a summary of these computational costs.

3. The Quantity Approximated and the Warp
Update Rule

In each iteration Lucas-Kanade approximately mini-
mizes

∑
x [I (W(x; p + !p)) − T (x)]2 with respect to

!p and then updates the estimates of the parameters in
Step 9 p ← p + !p. Perhaps somewhat surprisingly
iterating these two steps is not the only way to minimize
the expression in Eq. (3). In this section we outline 3
alternative approaches that are all provably equivalent
to the Lucas-Kanade algorithm. We then show empiri-
cally that they are equivalent.

3.1. Compositional Image Alignment

The first alternative to the Lucas-Kanade algorithm is
the compositional algorithm.

3.1.1. Goal of the Compositional Algorithm. The
compositional algorithm, used most notably by Shum
and Szeliski (2000), approximately minimizes:

∑

x
[I (W(W(x; !p); p)) − T (x)]2 (12)

with respect to !p in each iteration and then updates
the estimate of the warp as:

W(x; p) ← W(x; p) ◦ W(x; !p), (13)

i.e. the compositional approach iteratively solves for
an incremental warp W(x; !p) rather than an additive
update to the parameters !p. In this context, we refer to
the Lucas-Kanade algorithm in Eqs. (4) and (5) as the
additive approach to contrast it with the compositional
approach in Eqs. (12) and (13). The compositional and
additive approaches are proved to be equivalent to first
order in !p in Section 3.1.5. The expression:

W(x; p) ◦ W(x; !p) ≡ W(W(x; !p); p) (14)

is the composition of 2 warps. For example, if W(x; p)
is the affine warp of Eq. (2) then:

W(x; p) ◦ W(x; !p)

=

⎛

⎜⎜⎜⎜⎜⎜⎝

(1 + p1) · ((1 + !p1) · x + !p3 · y + !p5)
+ p3 · (!p2 · x + (1 + !p4) · y + !p6)
+ p5

p2 · ((1 + !p1) · x + !p3 · y + !p5)
+ (1 + p4) · (!p2 · x + (1 + !p4) · y
+ !p6) + p6

⎞

⎟⎟⎟⎟⎟⎟⎠
,

(15)

222 Baker and Matthews

algorithm, an efficient algorithm that we recently pro-
posed (Baker and Matthews, 2001). We examine which
of the extensions to Lucas-Kanade can be applied to
the inverse compositional algorithm without any sig-
nificant loss of efficiency, and which extensions require
additional computation. Wherever possible we provide
empirical results to illustrate the various algorithms and
their extensions.

In this paper, Part 1 in a series of papers, we be-
gin in Section 2 by reviewing the Lucas-Kanade algo-
rithm. We proceed in Section 3 to analyze the quan-
tity that is approximated by the various image align-
ment algorithms and the warp update rule that is used.
We categorize algorithms as either additive or compo-
sitional, and as either forwards or inverse. We prove
the first order equivalence of the various alternatives,
derive the efficiency of the resulting algorithms, de-
scribe the set of warps that each alternative can be
applied to, and finally empirically compare the algo-
rithms. In Section 4 we describe the various gradient de-
scent approximations that can be used in each iteration,
Gauss-Newton, Newton, diagonal Hessian, Levenberg-
Marquardt, and steepest-descent (Press et al., 1992).
We compare these alternatives both in terms of speed
and in terms of empirical performance. We conclude
in Section 5 with a discussion. In future papers in this
series (which will be made available on our website
http://www.ri.cmu.edu/projects/project 515.html), we
will cover the choice of the error function, how to al-
low linear appearance variation, and how to add priors
on the parameters.

2. Background: Lucas-Kanade

The original image alignment algorithm was the Lucas-
Kanade algorithm (Lucas and Kanade, 1981). The goal
of Lucas-Kanade is to align a template image T (x) to an
input image I (x), where x = (x, y)T is a column vector
containing the pixel coordinates. If the Lucas-Kanade
algorithm is being used to compute optical flow or to
track an image patch from time t = 1 to time t = 2,
the template T (x) is an extracted sub-region (a 5 × 5
window, maybe) of the image at t = 1 and I (x) is the
image at t = 2.

Let W(x; p) denote the parameterized set of allowed
warps, where p = (p1, . . . pn)T is a vector of parame-
ters. The warp W(x; p) takes the pixel x in the coordi-
nate frame of the template T and maps it to the sub-pixel
location W(x; p) in the coordinate frame of the image
I . If we are computing optical flow, for example, the

warps W(x; p) might be the translations:

W(x; p) =
(

x + p1

y + p2

)
(1)

where the vector of parameters p = (p1, p2)T is then
the optical flow. If we are tracking a larger image patch
moving in 3D we may instead consider the set of affine
warps:

W(x; p) =
(

(1 + p1) · x + p3 · y + p5

p2 · x + (1 + p4) · y + p6

)

=
(

1 + p1 p3 p5

p2 1 + p4 p6

)(x
y
1

)

(2)

where there are 6 parameters p = (p1, p2, p3, p4, p5,

p6)T as, for example, was done in Bergen et al. (1992).
(There are other ways to parameterize affine warps.
Later in this framework we will investigate what is
the best way.) In general, the number of parameters n
may be arbitrarily large and W(x; p) can be arbitrar-
ily complex. One example of a complex warp is the
set of piecewise affine warps used in Active Appear-
ance Models (Cootes et al., 1998; Baker and Matthews,
2001) and Active Blobs (Sclaroff and Isidoro, 1998).

2.1. Goal of the Lucas-Kanade Algorithm

The goal of the Lucas-Kanade algorithm is to mini-
mize the sum of squared error between two images,
the template T and the image I warped back onto the
coordinate frame of the template:

∑

x
[I (W(x; p)) − T (x)]2 . (3)

Warping I back to compute I (W(x; p)) requires inter-
polating the image I at the sub-pixel locations W(x; p).
The minimization of the expression in Eq. (3) is per-
formed with respect to p and the sum is performed
over all of the pixels x in the template image T (x).
Minimizing the expression in Eq. (1) is a non-linear
optimization task even if W(x; p) is linear in p because
the pixel values I (x) are, in general, non-linear in x.
In fact, the pixel values I (x) are essentially un-related
to the pixel coordinates x. To optimize the expression
in Eq. (3), the Lucas-Kanade algorithm assumes that
a current estimate of p is known and then iteratively

Lucas-Kanade 20 Years On: A Unifying Framework 225

Table 1. The computation cost of one iteration of the Lucas-Kanade algorithm. If n is the number of warp
parameters and N is the number of pixels in the template T , the cost of each iteration is O(n2 N + n3). The
most expensive step by far is Step 6, the computation of the Hessian, which alone takes time O(n2 N).

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Total

O(nN) O(N) O(nN) O(nN) O(nN) O(n2 N) O(nN) O(n3) O(n) O(n2 N + n3)

2.4. Computational Cost of the
Lucas-Kanade Algorithm

Assume that the number of warp parameters is n and the
number of pixels in T is N . Step 1 of the Lucas-Kanade
algorithm usually takes time O(n N). For each pixel x
in T we compute W(x; p) and then sample I at that
location. The computational cost of computing W(x; p)
depends on W but for most warps the cost is O(n) per
pixel. Step 2 takes time O(N). Step 3 takes the same
time as Step 1, usually O(n N). Computing the Jacobian
in Step 4 also depends on W but for most warps the cost
is O(n) per pixel. The total cost of Step 4 is therefore
O(n N). Step 5 takes time O(n N), Step 6 takes time
O(n2 N), and Step 7 takes time O(n N). Step 8 takes
time O(n3) to invert the Hessian matrix and time O(n2)
to multiply the result by the steepest descent parameter
updated computed in Step 7. Step 9 just takes time
O(n) to increment the parameters by the updates. The
total computational cost of each iteration is therefore
O(n2 N +n3), the most expensive step being Step 6. See
Table 1 for a summary of these computational costs.

3. The Quantity Approximated and the Warp
Update Rule

In each iteration Lucas-Kanade approximately mini-
mizes

∑
x [I (W(x; p + !p)) − T (x)]2 with respect to

!p and then updates the estimates of the parameters in
Step 9 p ← p + !p. Perhaps somewhat surprisingly
iterating these two steps is not the only way to minimize
the expression in Eq. (3). In this section we outline 3
alternative approaches that are all provably equivalent
to the Lucas-Kanade algorithm. We then show empiri-
cally that they are equivalent.

3.1. Compositional Image Alignment

The first alternative to the Lucas-Kanade algorithm is
the compositional algorithm.

3.1.1. Goal of the Compositional Algorithm. The
compositional algorithm, used most notably by Shum
and Szeliski (2000), approximately minimizes:

∑

x
[I (W(W(x; !p); p)) − T (x)]2 (12)

with respect to !p in each iteration and then updates
the estimate of the warp as:

W(x; p) ← W(x; p) ◦ W(x; !p), (13)

i.e. the compositional approach iteratively solves for
an incremental warp W(x; !p) rather than an additive
update to the parameters !p. In this context, we refer to
the Lucas-Kanade algorithm in Eqs. (4) and (5) as the
additive approach to contrast it with the compositional
approach in Eqs. (12) and (13). The compositional and
additive approaches are proved to be equivalent to first
order in !p in Section 3.1.5. The expression:

W(x; p) ◦ W(x; !p) ≡ W(W(x; !p); p) (14)

is the composition of 2 warps. For example, if W(x; p)
is the affine warp of Eq. (2) then:

W(x; p) ◦ W(x; !p)

=

⎛

⎜⎜⎜⎜⎜⎜⎝

(1 + p1) · ((1 + !p1) · x + !p3 · y + !p5)
+ p3 · (!p2 · x + (1 + !p4) · y + !p6)
+ p5

p2 · ((1 + !p1) · x + !p3 · y + !p5)
+ (1 + p4) · (!p2 · x + (1 + !p4) · y
+ !p6) + p6

⎞

⎟⎟⎟⎟⎟⎟⎠
,

(15)
Work out Taylor expansion; it turns out Jacobian is evaluated at p = 0, which means it can be precomputed

Overview
Lucas-Kanade 20 Years On: A Unifying Framework 223

solves for increments to the parameters !p; i.e. the
following expression is (approximately) minimized:

∑

x
[I (W(x; p + !p)) − T (x)]2 (4)

with respect to !p, and then the parameters are up-
dated:

p ← p + !p. (5)

These two steps are iterated until the estimates of the
parameters p converge. Typically the test for conver-
gence is whether some norm of the vector !p is below
a threshold ϵ; i.e. ∥!p∥ ≤ ϵ.

2.2. Derivation of the Lucas-Kanade Algorithm

The Lucas-Kanade algorithm (which is a Gauss-
Newton gradient descent non-linear optimization al-
gorithm) is then derived as follows. The non-linear ex-
pression in Eq. (4) is linearized by performing a first
order Taylor expansion on I (W(x; p + !p)) to give:

∑

x

[
I (W(x; p)) + ∇I

∂W
∂p

!p − T (x)
]2

. (6)

In this expression, ∇I = (∂ I
∂x , ∂ I

∂y) is the gradient of
image I evaluated at W(x; p); i.e. ∇I is computed
in the coordinate frame of I and then warped back onto
the coordinate frame of T using the current estimate of
the warp W(x; p). The term ∂W

∂p is the Jacobian of the
warp. If W(x; p) = (Wx (x; p), Wy(x; p))T then:

∂W
∂p

=

⎛

⎝
∂Wx
∂p1

∂Wx
∂p2

. . . ∂Wx
∂pn

∂Wy

∂p1

∂Wy

∂p2
. . .

∂Wy

∂pn

⎞

⎠ . (7)

We follow the notational convention that the partial
derivatives with respect to a column vector are laid out
as a row vector. This convention has the advantage that
the chain rule results in a matrix multiplication, as in
the expression in Eq. (6). For example, the affine warp
in Eq. (2) has the Jacobian:

∂W
∂p

=
(

x 0 y 0 1 0

0 x 0 y 0 1

)
. (8)

Minimizing the expression in Eq. (6) is a least squares
problem and has a closed from solution which can be

Figure 1. The Lucas-Kanade algorithm (Lucas and Kanade, 1981)
consists of iteratively applying Eqs. (10) and (5) until the estimates
of the parameters p converge. Typically the test for convergence
is whether some norm of the vector !p is below a user specified
threshold ϵ. Because the gradient ∇I must be evaluated at W(x; p)
and the Jacobian ∂W

∂p must be evaluated at p, all 9 steps must be
repeated in every iteration of the algorithm.

derived as follows. The partial derivative of the expres-
sion in Eq. (6) with respect to !p is:

2
∑

x

[
∇I

∂W
∂p

]T[
I (W(x; p)) + ∇I

∂W
∂p

!p − T (x)
]

(9)

where we refer to ∇I ∂W
∂p as the steepest descent im-

ages. (See Section 4.3 for why.) Setting this expression
to equal zero and solving gives the closed form solution
for the minimum of the expression in Eq. (6) as:

!p = H−1
∑

x

[
∇I

∂W
∂p

]T

[T (x) − I (W(x; p))]

(10)

where H is the n × n (Gauss-Newton approximation
to the) Hessian matrix:

H =
∑

x

[
∇I

∂W
∂p

]T[
∇I

∂W
∂p

]
. (11)

For reasons that will become clear later we refer to∑
x[∇I ∂W

∂p]T[T (x) − I (W(x; p))] as the steepest de-
scent parameter updates. Equation (10) then expresses
the fact that the parameter updates !p are the steepest
descent parameter updates multiplied by the inverse
of the Hessian matrix. The Lucas-Kanade algorithm
(Lucas and Kanade, 1981) then consists of iteratively
applying Eqs. (10) and (5). See Figs. 1 and 2 for a sum-
mary. Because the gradient ∇I must be evaluated at

Additive warp:

Lucas-Kanade 20 Years On: A Unifying Framework 223

solves for increments to the parameters !p; i.e. the
following expression is (approximately) minimized:

∑

x
[I (W(x; p + !p)) − T (x)]2 (4)

with respect to !p, and then the parameters are up-
dated:

p ← p + !p. (5)

These two steps are iterated until the estimates of the
parameters p converge. Typically the test for conver-
gence is whether some norm of the vector !p is below
a threshold ϵ; i.e. ∥!p∥ ≤ ϵ.

2.2. Derivation of the Lucas-Kanade Algorithm

The Lucas-Kanade algorithm (which is a Gauss-
Newton gradient descent non-linear optimization al-
gorithm) is then derived as follows. The non-linear ex-
pression in Eq. (4) is linearized by performing a first
order Taylor expansion on I (W(x; p + !p)) to give:

∑

x

[
I (W(x; p)) + ∇I

∂W
∂p

!p − T (x)
]2

. (6)

In this expression, ∇I = (∂ I
∂x , ∂ I

∂y) is the gradient of
image I evaluated at W(x; p); i.e. ∇I is computed
in the coordinate frame of I and then warped back onto
the coordinate frame of T using the current estimate of
the warp W(x; p). The term ∂W

∂p is the Jacobian of the
warp. If W(x; p) = (Wx (x; p), Wy(x; p))T then:

∂W
∂p

=

⎛

⎝
∂Wx
∂p1

∂Wx
∂p2

. . . ∂Wx
∂pn

∂Wy

∂p1

∂Wy

∂p2
. . .

∂Wy

∂pn

⎞

⎠ . (7)

We follow the notational convention that the partial
derivatives with respect to a column vector are laid out
as a row vector. This convention has the advantage that
the chain rule results in a matrix multiplication, as in
the expression in Eq. (6). For example, the affine warp
in Eq. (2) has the Jacobian:

∂W
∂p

=
(

x 0 y 0 1 0

0 x 0 y 0 1

)
. (8)

Minimizing the expression in Eq. (6) is a least squares
problem and has a closed from solution which can be

Figure 1. The Lucas-Kanade algorithm (Lucas and Kanade, 1981)
consists of iteratively applying Eqs. (10) and (5) until the estimates
of the parameters p converge. Typically the test for convergence
is whether some norm of the vector !p is below a user specified
threshold ϵ. Because the gradient ∇I must be evaluated at W(x; p)
and the Jacobian ∂W

∂p must be evaluated at p, all 9 steps must be
repeated in every iteration of the algorithm.

derived as follows. The partial derivative of the expres-
sion in Eq. (6) with respect to !p is:

2
∑

x

[
∇I

∂W
∂p

]T[
I (W(x; p)) + ∇I

∂W
∂p

!p − T (x)
]

(9)

where we refer to ∇I ∂W
∂p as the steepest descent im-

ages. (See Section 4.3 for why.) Setting this expression
to equal zero and solving gives the closed form solution
for the minimum of the expression in Eq. (6) as:

!p = H−1
∑

x

[
∇I

∂W
∂p

]T

[T (x) − I (W(x; p))]

(10)

where H is the n × n (Gauss-Newton approximation
to the) Hessian matrix:

H =
∑

x

[
∇I

∂W
∂p

]T[
∇I

∂W
∂p

]
. (11)

For reasons that will become clear later we refer to∑
x[∇I ∂W

∂p]T[T (x) − I (W(x; p))] as the steepest de-
scent parameter updates. Equation (10) then expresses
the fact that the parameter updates !p are the steepest
descent parameter updates multiplied by the inverse
of the Hessian matrix. The Lucas-Kanade algorithm
(Lucas and Kanade, 1981) then consists of iteratively
applying Eqs. (10) and (5). See Figs. 1 and 2 for a sum-
mary. Because the gradient ∇I must be evaluated at

Lucas-Kanade 20 Years On: A Unifying Framework 225

Table 1. The computation cost of one iteration of the Lucas-Kanade algorithm. If n is the number of warp
parameters and N is the number of pixels in the template T , the cost of each iteration is O(n2 N + n3). The
most expensive step by far is Step 6, the computation of the Hessian, which alone takes time O(n2 N).

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Total

O(nN) O(N) O(nN) O(nN) O(nN) O(n2 N) O(nN) O(n3) O(n) O(n2 N + n3)

2.4. Computational Cost of the
Lucas-Kanade Algorithm

Assume that the number of warp parameters is n and the
number of pixels in T is N . Step 1 of the Lucas-Kanade
algorithm usually takes time O(n N). For each pixel x
in T we compute W(x; p) and then sample I at that
location. The computational cost of computing W(x; p)
depends on W but for most warps the cost is O(n) per
pixel. Step 2 takes time O(N). Step 3 takes the same
time as Step 1, usually O(n N). Computing the Jacobian
in Step 4 also depends on W but for most warps the cost
is O(n) per pixel. The total cost of Step 4 is therefore
O(n N). Step 5 takes time O(n N), Step 6 takes time
O(n2 N), and Step 7 takes time O(n N). Step 8 takes
time O(n3) to invert the Hessian matrix and time O(n2)
to multiply the result by the steepest descent parameter
updated computed in Step 7. Step 9 just takes time
O(n) to increment the parameters by the updates. The
total computational cost of each iteration is therefore
O(n2 N +n3), the most expensive step being Step 6. See
Table 1 for a summary of these computational costs.

3. The Quantity Approximated and the Warp
Update Rule

In each iteration Lucas-Kanade approximately mini-
mizes

∑
x [I (W(x; p + !p)) − T (x)]2 with respect to

!p and then updates the estimates of the parameters in
Step 9 p ← p + !p. Perhaps somewhat surprisingly
iterating these two steps is not the only way to minimize
the expression in Eq. (3). In this section we outline 3
alternative approaches that are all provably equivalent
to the Lucas-Kanade algorithm. We then show empiri-
cally that they are equivalent.

3.1. Compositional Image Alignment

The first alternative to the Lucas-Kanade algorithm is
the compositional algorithm.

3.1.1. Goal of the Compositional Algorithm. The
compositional algorithm, used most notably by Shum
and Szeliski (2000), approximately minimizes:

∑

x
[I (W(W(x; !p); p)) − T (x)]2 (12)

with respect to !p in each iteration and then updates
the estimate of the warp as:

W(x; p) ← W(x; p) ◦ W(x; !p), (13)

i.e. the compositional approach iteratively solves for
an incremental warp W(x; !p) rather than an additive
update to the parameters !p. In this context, we refer to
the Lucas-Kanade algorithm in Eqs. (4) and (5) as the
additive approach to contrast it with the compositional
approach in Eqs. (12) and (13). The compositional and
additive approaches are proved to be equivalent to first
order in !p in Section 3.1.5. The expression:

W(x; p) ◦ W(x; !p) ≡ W(W(x; !p); p) (14)

is the composition of 2 warps. For example, if W(x; p)
is the affine warp of Eq. (2) then:

W(x; p) ◦ W(x; !p)

=

⎛

⎜⎜⎜⎜⎜⎜⎝

(1 + p1) · ((1 + !p1) · x + !p3 · y + !p5)
+ p3 · (!p2 · x + (1 + !p4) · y + !p6)
+ p5

p2 · ((1 + !p1) · x + !p3 · y + !p5)
+ (1 + p4) · (!p2 · x + (1 + !p4) · y
+ !p6) + p6

⎞

⎟⎟⎟⎟⎟⎟⎠
,

(15)

Compositional warp:

Lucas-Kanade 20 Years On: A Unifying Framework 225

Table 1. The computation cost of one iteration of the Lucas-Kanade algorithm. If n is the number of warp
parameters and N is the number of pixels in the template T , the cost of each iteration is O(n2 N + n3). The
most expensive step by far is Step 6, the computation of the Hessian, which alone takes time O(n2 N).

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Total

O(nN) O(N) O(nN) O(nN) O(nN) O(n2 N) O(nN) O(n3) O(n) O(n2 N + n3)

2.4. Computational Cost of the
Lucas-Kanade Algorithm

Assume that the number of warp parameters is n and the
number of pixels in T is N . Step 1 of the Lucas-Kanade
algorithm usually takes time O(n N). For each pixel x
in T we compute W(x; p) and then sample I at that
location. The computational cost of computing W(x; p)
depends on W but for most warps the cost is O(n) per
pixel. Step 2 takes time O(N). Step 3 takes the same
time as Step 1, usually O(n N). Computing the Jacobian
in Step 4 also depends on W but for most warps the cost
is O(n) per pixel. The total cost of Step 4 is therefore
O(n N). Step 5 takes time O(n N), Step 6 takes time
O(n2 N), and Step 7 takes time O(n N). Step 8 takes
time O(n3) to invert the Hessian matrix and time O(n2)
to multiply the result by the steepest descent parameter
updated computed in Step 7. Step 9 just takes time
O(n) to increment the parameters by the updates. The
total computational cost of each iteration is therefore
O(n2 N +n3), the most expensive step being Step 6. See
Table 1 for a summary of these computational costs.

3. The Quantity Approximated and the Warp
Update Rule

In each iteration Lucas-Kanade approximately mini-
mizes

∑
x [I (W(x; p + !p)) − T (x)]2 with respect to

!p and then updates the estimates of the parameters in
Step 9 p ← p + !p. Perhaps somewhat surprisingly
iterating these two steps is not the only way to minimize
the expression in Eq. (3). In this section we outline 3
alternative approaches that are all provably equivalent
to the Lucas-Kanade algorithm. We then show empiri-
cally that they are equivalent.

3.1. Compositional Image Alignment

The first alternative to the Lucas-Kanade algorithm is
the compositional algorithm.

3.1.1. Goal of the Compositional Algorithm. The
compositional algorithm, used most notably by Shum
and Szeliski (2000), approximately minimizes:

∑

x
[I (W(W(x; !p); p)) − T (x)]2 (12)

with respect to !p in each iteration and then updates
the estimate of the warp as:

W(x; p) ← W(x; p) ◦ W(x; !p), (13)

i.e. the compositional approach iteratively solves for
an incremental warp W(x; !p) rather than an additive
update to the parameters !p. In this context, we refer to
the Lucas-Kanade algorithm in Eqs. (4) and (5) as the
additive approach to contrast it with the compositional
approach in Eqs. (12) and (13). The compositional and
additive approaches are proved to be equivalent to first
order in !p in Section 3.1.5. The expression:

W(x; p) ◦ W(x; !p) ≡ W(W(x; !p); p) (14)

is the composition of 2 warps. For example, if W(x; p)
is the affine warp of Eq. (2) then:

W(x; p) ◦ W(x; !p)

=

⎛

⎜⎜⎜⎜⎜⎜⎝

(1 + p1) · ((1 + !p1) · x + !p3 · y + !p5)
+ p3 · (!p2 · x + (1 + !p4) · y + !p6)
+ p5

p2 · ((1 + !p1) · x + !p3 · y + !p5)
+ (1 + p4) · (!p2 · x + (1 + !p4) · y
+ !p6) + p6

⎞

⎟⎟⎟⎟⎟⎟⎠
,

(15)

228 Baker and Matthews

and from Eq. (26) we see that the second of these ex-
pressions:

∂W
∂x

∂W
∂p

= ∂W(x; p) ◦ W(x; p + "p)
∂"p

. (28)

The vectors ∂W
∂p in the additive formulation and ∂W

∂x
∂W
∂p

in the compositional formulation therefore span the
same linear space, the tangent space of the manifold
W(x; p), if (there is an ϵ > 0 such that) for any "p
(∥"p∥ ≤ ϵ) there is a "p′ such that:

W(x; p + "p) = W(x; p) ◦ W(x; p + "p′). (29)

This condition means that the function between "p and
"p′ is defined in both directions. The expressions in
Eq. (27) and (28) therefore span the same linear space.
If the warp is invertible Eq. (29) always holds since
"p′ can be chosen such that:

W(x; p + "p′) = W(x; p)−1 ◦ W(x; p + "p).

(30)

In summary, if the warps are invertible then the two
formulations are equivalent. In Section 3.1.3, above,
we stated that the set of warps must form a semi-group
for the compositional algorithm to be applied. While
this is true, for the compositional algorithm also to be
provably equivalent to the Lucas-Kanade algorithm,
the set of warps must form a group; i.e. every warp
must be invertible.

3.2. Inverse Compositional Image Alignment

As a number of authors have pointed out, there is a huge
computational cost in re-evaluating the Hessian in ev-
ery iteration of the Lucas-Kanade algorithm (Hager and
Belhumeur, 1998; Dellaert and Collins, 1999; Shum
and Szeliski, 2000). If the Hessian were constant it
could be precomputed and then re-used. Each iteration
of the algorithm (see Fig. 1) would then just consist of
an image warp (Step 1), an image difference (Step 2),
a collection of image “dot-products” (Step 7), multi-
plication of the result by the Hessian (Step 8), and the
update to the parameters (Step 9). All of these opera-
tions can be performed at (close to) frame-rate (Dellaert
and Collins, 1999).

Unfortunately the Hessian is a function of p in both
formulations. Although various approximate solutions

can be used (such as only updating the Hessian every
few iterations and approximating the Hessian by as-
suming it is approximately constant across the image
(Shum and Szeliski, 2000)) these approximations are
inelegant and it is often hard to say how good approx-
imations they are. It would be far better if the problem
could be reformulated in an equivalent way, but with a
constant Hessian.

3.2.1. Goal of the Inverse Compositional Algorithm.
The key to efficiency is switching the role of the image
and the template, as in Hager and Belhumeur (1998),
where a change of variables is made to switch or in-
vert the roles of the template and the image. Such a
change of variables can be performed in either the ad-
ditive Hager and Belhumeur (1998) or the composi-
tional approach (Baker and Matthews, 2001). (A re-
stricted version of the inverse compositional algorithm
was proposed for homographies in Dellaert and Collins
(1999). Also, something equivalent to the inverse com-
positional algorithm may have been used in Gleicher
(1997). It is hard to tell. The “difference decompo-
sition” algorithm in La Cascia et al. (2000) uses the
additive approach however.) We first describe the in-
verse compositional approach because it is simpler. To
distinguish the previous algorithms from the new ones,
we will refer to the original algorithms as the forwards
additive (i.e. Lucas-Kanade) and the forwards compo-
sitional algorithm. The corresponding algorithms after
the inversion will be called theinverse additive and in-
verse compositional algorithms.

The proof of equivalence between the forwards com-
positional and inverse compositional algorithms is in
Section 3.2.5. The result is that the inverse composi-
tional algorithm minimizes:

∑

x
[T (W(x; "p)) − I (W(x; p))]2 (31)

with respect to "p (note that the roles of I and T are
reversed) and then updates the warp:

W(x; p) ← W(x; p) ◦ W(x; "p)−1. (32)

The only difference from the update in the forwards
compositional algorithm in Eq. (13) is that the incre-
mental warp W(x; "p) is inverted before it is composed
with the current estimate. For example, the parameters

Inverse compositional
warp:

228 Baker and Matthews

and from Eq. (26) we see that the second of these ex-
pressions:

∂W
∂x

∂W
∂p

= ∂W(x; p) ◦ W(x; p + "p)
∂"p

. (28)

The vectors ∂W
∂p in the additive formulation and ∂W

∂x
∂W
∂p

in the compositional formulation therefore span the
same linear space, the tangent space of the manifold
W(x; p), if (there is an ϵ > 0 such that) for any "p
(∥"p∥ ≤ ϵ) there is a "p′ such that:

W(x; p + "p) = W(x; p) ◦ W(x; p + "p′). (29)

This condition means that the function between "p and
"p′ is defined in both directions. The expressions in
Eq. (27) and (28) therefore span the same linear space.
If the warp is invertible Eq. (29) always holds since
"p′ can be chosen such that:

W(x; p + "p′) = W(x; p)−1 ◦ W(x; p + "p).

(30)

In summary, if the warps are invertible then the two
formulations are equivalent. In Section 3.1.3, above,
we stated that the set of warps must form a semi-group
for the compositional algorithm to be applied. While
this is true, for the compositional algorithm also to be
provably equivalent to the Lucas-Kanade algorithm,
the set of warps must form a group; i.e. every warp
must be invertible.

3.2. Inverse Compositional Image Alignment

As a number of authors have pointed out, there is a huge
computational cost in re-evaluating the Hessian in ev-
ery iteration of the Lucas-Kanade algorithm (Hager and
Belhumeur, 1998; Dellaert and Collins, 1999; Shum
and Szeliski, 2000). If the Hessian were constant it
could be precomputed and then re-used. Each iteration
of the algorithm (see Fig. 1) would then just consist of
an image warp (Step 1), an image difference (Step 2),
a collection of image “dot-products” (Step 7), multi-
plication of the result by the Hessian (Step 8), and the
update to the parameters (Step 9). All of these opera-
tions can be performed at (close to) frame-rate (Dellaert
and Collins, 1999).

Unfortunately the Hessian is a function of p in both
formulations. Although various approximate solutions

can be used (such as only updating the Hessian every
few iterations and approximating the Hessian by as-
suming it is approximately constant across the image
(Shum and Szeliski, 2000)) these approximations are
inelegant and it is often hard to say how good approx-
imations they are. It would be far better if the problem
could be reformulated in an equivalent way, but with a
constant Hessian.

3.2.1. Goal of the Inverse Compositional Algorithm.
The key to efficiency is switching the role of the image
and the template, as in Hager and Belhumeur (1998),
where a change of variables is made to switch or in-
vert the roles of the template and the image. Such a
change of variables can be performed in either the ad-
ditive Hager and Belhumeur (1998) or the composi-
tional approach (Baker and Matthews, 2001). (A re-
stricted version of the inverse compositional algorithm
was proposed for homographies in Dellaert and Collins
(1999). Also, something equivalent to the inverse com-
positional algorithm may have been used in Gleicher
(1997). It is hard to tell. The “difference decompo-
sition” algorithm in La Cascia et al. (2000) uses the
additive approach however.) We first describe the in-
verse compositional approach because it is simpler. To
distinguish the previous algorithms from the new ones,
we will refer to the original algorithms as the forwards
additive (i.e. Lucas-Kanade) and the forwards compo-
sitional algorithm. The corresponding algorithms after
the inversion will be called theinverse additive and in-
verse compositional algorithms.

The proof of equivalence between the forwards com-
positional and inverse compositional algorithms is in
Section 3.2.5. The result is that the inverse composi-
tional algorithm minimizes:

∑

x
[T (W(x; "p)) − I (W(x; p))]2 (31)

with respect to "p (note that the roles of I and T are
reversed) and then updates the warp:

W(x; p) ← W(x; p) ◦ W(x; "p)−1. (32)

The only difference from the update in the forwards
compositional algorithm in Eq. (13) is that the incre-
mental warp W(x; "p) is inverted before it is composed
with the current estimate. For example, the parametersWork out Taylor expansion; both Jacobian and Hessian are not a function of current p and so can be precomputed

I(x)

W(x;Δp)

T(x)

W(x;p)

I(W(x;p))

W(x;p) o W(x;Δp)

Forward and Inverse Compositional

• Forwards compositional

I(x)

W(x;Δp)

T(x)

W(x;p)

I(W(x;p))

W(x;p) o W(x;Δp)-1

• Inverse compositional

Inverse Compositional

• Minimise,

• Solution

• Update

≈

Inverse Compositional

• Jacobian is constant - evaluated at (x, 0)
• Gradient of template is constant
• Hessian is constant

• Can pre-compute everything but error image!

Peicewise affine-tracking

