
16-720 Computer Vision: Homework 3

Lucas-Kanade Tracking & Background Subtraction

Instructor: Deva Ramanan
TAs: Achal Dave, Sashank Jujjavarapu

Siddarth Malreddy, Brian Pugh

See course website for deadline: http://16720.courses.cs.cmu.edu/

• Please pack your system and write-up into a single file <andrewid>.zip, in accordance
with the complete submission checklist at the end of this document.

• All tasks marked with a Q require a submission.

• Please stick to the provided function signatures, variable names, and file names.

• Start early! This homework cannot be completed within two hours!

• Verify your implementation as you proceed: otherwise you will risk having a
huge mess of malfunctioning code that can go wrong anywhere.

• If you have any questions, please contact the TAs - Achal Dave (achald@cmu.edu),
Sashank (bjujjava@andrew.cmu.edu), Siddarth (smalredd@andrew.cmu.edu),
Brian (bpugh@andrew.cmu.edu).

- - -

This homework consists of three sections. In the first section you will be implementing the
Inverse Compositional Lucas-Kanade (LK) tracker with one single template. In the second
section, the tracker will be generalized to accommodate for large appearance variance. The
last section requires you to implement a motion subtraction method for tracking moving
pixels in a scene. Note that all three sections are based on the Lucas-Kanade tracking
framework; besides the course slide decks, the following reference may also be extremely
helpful:

1. Simon Baker, et al. Lucas-Kanade 20 Years On: A Unifying Framework: Part 1,
CMU-RI-TR-02-16, Robotics Institute, Carnegie Mellon University, 2002

2. Simon Baker, et al. Lucas-Kanade 20 Years On: A Unifying Framework: Part 2,
CMU-RI-TR-03-35, Robotics Institute, Carnegie Mellon University, 2003

Both are available at:
http://www.ri.cmu.edu/research_project_detail.html?type=publication&project_id=515.

1 Lucas-Kanade Tracking

In this section you will be implementing the Inverse Compositional Lucas-Kanade tracker
with one single template. In the scenario of two-dimensional tracking with pure translation,
the problem can be described as follows: starting with a rectangle Rt on frame It, the
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Lucas-Kanade tracker aims to move it by an offset (∆u,∆v) to obtain another rectangle
Rt+1 on frame It+1, so that the pixel squared difference in the two rectangles is minimized:

min
u,v

J(u, v) =
∑

(x,y)∈Rt

(It+1(x + u, y + v)− It(x, y))2 (1)

Q1.1 (5 points) Starting with an initial guess of (u, v) (for instance, (0, 0)), we can
compute the optimal (u∗, v∗) iteratively. In each iteration, the objective function is locally
linearized by first-order Taylor expansion and optimized by solving a linear system that has
the form A∆p = b, where ∆p = (u, v)T , the template offset.

• What is ATA?

• What conditions must ATA meet so that the template offset can be calculated reliably?

Q1.2 (15 points) Implement a function with the following signature

[u,v] = LucasKanadeInverseCompositional(It, It1, rect)

that computes the optimal local motion from frame It to frame It+1 that minimizes Equation
1. Here It is the image frame It, It1 is the image frame It+1, and rect is the 4-by-1
vector that represents a rectangle on the image frame It. The four components of the
rectangle are [x1, y1, x2, y2], where (x1, y1) is the top-left corner and (x2, y2) is the bottom-
right corner. The rectangle is inclusive, i.e., in includes all the four corners. To deal
with fractional movement of the template, you will need to interpolate the image using the
MATLAB function interp2. You will also need to iterate the estimation until the change
in (u, v) is below a threshold. You have to implement the inverse compositional version
of the Lucas-Kanade tracker (Section 2.2 in [2]). You are encouraged (but not required)
to implement the original Lucas-Kanade algorithm (Section 2.1 in [2]). Implementing the
original L-K algorithm will help you appreciate the performance improvement of the inverse
compositional algorithm.

Q1.3 (10 points) Write a script testCarSequence.m that loads the video frames from
carseq.mat, and runs the Lucas-Kanade tracker that you have implemented in the previous
task to track the car. carseq.mat can be located in the data directory and it contains one
single three-dimensional matrix: the first two dimensions correspond to the height and width
of the frames respectively, and the third dimension contain the indices of the frames (that
is, the first frame can be visualized with imshow(frames(:, :, 1))). The rectangle in the
first frame is [x1, y1, x2, y2] = [60, 117, 146, 152]. Report your tracking performance (image
+ bounding rectangle) at frames 2, 100, 200, 300 and 400 in a format similar to Figure 1.
Also, create a file called carseqrects.mat, which contains one single n × 4 matrix rects,
where each row stores the rect that you have obtained for each frame, and n is the total
number of frames.

Now, lets apply the your algorithm on a challenging problem: tracking a beating vessel
in an ultrasound volume. Unlike regular scenes in the world, medical images acquired
by an ultrasound transducer undergo significant non-rigid motion. Write a new script
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Figure 1: Lucas-Kanade Tracking with One Single Template for the car sequence

Figure 2: Lucas-Kanade Tracking with One Single Template for the ultrasound sequence

testUltrasoundSequence.m that loads the video frames from usseq.mat, and tracks the
beating vessel using the Lucas-Kanade tracker that you have implemented in the previous
question. The rectangle in the first frame is [x1, y1, x2, y2] = [255, 105, 310, 170]. Report
your tracking performance (image + bounding rectangle) at frames 5, 25, 50, 75 and 100 in
a format similar to Figure 2. Also, create a file called usseqrects.mat, which contains one
single n× 4 matrix rects, where each row stores the rect that you have obtained for each
frame, and n is the total number of frames.

Q1.4 (Extra credit, 20 points) As you might have noticed, the image content we
are tracking in the first frame differs from the one in the last frame. This tracker lags and
loses some tracking capability. This is understandable since we are updating the template
after processing each frame and the error can be accumulating. This problem is known as
template drifting. There are several ways to mitigate this problem. Iain Matthews et al.
(2003, https://www.ri.cmu.edu/publication_view.html?pub_id=4433) suggested one
possible approach. Write two scripts testCarSequenceWithTemplateCorrection.m and
testUSSequenceWithTemplateCorrection.m with a similar functionality to Q1.3, but with
a template correction routine incorporated. Save the resulting rects as carseqrects-wcrt.mat
and usseqrects-wcrt.mat respectively, and also report the performance at the same frames
described above. An example is given in Figure 3 and Figure 4.

Figure 3: Lucas-Kanade Tracking with Template Correction for the car sequence

In the above figures, the green rectangles are created with the baseline tracker in Q1.3,
the yellow ones with the tracker in Q1.4. The tracking performance has been improved
non-trivially. Note that you do not necessarily have to draw two rectangles in each frame,
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Figure 4: Lucas-Kanade Tracking with Template Correction for the ultra sound sequence

but make sure that the performance improvement can be easily visually inspected.

2 Lucas-Kanade Tracking with Appearance Basis

The tracker we have implemented in the first section, with or without template drifting
correction, may suffice if the object being tracked is not subject to drastic appearance vari-
ance. However, in real life, this can hardly be the case. In this section, you will implement
a variant of the Lucas-Kanade tracker (see section 3.4 in [2]), to model linear appearance
variation in the tracking. We have prepared another sequence sylvseq.mat (the initial
rectangle is [102, 62, 156, 108]), with exactly the same format as carseq.mat, on which you
can test the implementation.

2.1 Appearance Basis

One way to address this issue is to use eigen-space approach (aka, principal component
analysis, or PCA). The idea is to analyze the historic data we have collected on the object,
and produce a few bases, whose linear combination would most likely to constitute the
appearance of the object in the new frame. This is actually similar to the idea of having a
lot of templates, but looking for too many templates may be expensive, so we only worry
about the principal templates.

Mathematically, suppose we are given a set of k image bases {Bc}kc=1 of the same size.
We can approximate the appearance variation of the new frame It+1 as a linear combination
of the previous frame It and the bases weighted by ~w = [w1, . . . , wk]T , such that

It+1 = It +

k∑
c=1

wcBc (2)

Q2.1 (5 points) Express wc for c = 1, 2, . . . , k, as a function of It+1, It, and {Bc}kc=1,
given Equation 2. Note that since the Bc’s are bases, they are orthogonal to each other.

2.2 Tracking

Given k bases, {Bc}kc=1, our goal is then to simultaneously find the translation (u, v) and
the weights ~w that minimizes the following objective function:

min
u,v,~w

=
∑

(x,y)∈Rt

(It+1(x + u, y + v)− It(x, y)− [
∑
c

wcBc](x, y))2 (3)
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where we define
∑

c wcBc(x, y) to be the value of the combination of bases at the position
associated with the pixel location (x, y).

Q2.2 (15 points) Implement a function with the following signature

[u,v] = LucasKanadeBasis(It, It1, rect, bases)

where bases is a three-dimensional matrix that contains the bases. It has the same format
as frames as is described earlier and can be found in sylvbases.mat.

Q2.3 (15 points) Write a script testSylvSequence.m that loads the video frames from
sylvseq.mat and runs the new Lucas-Kanade tracker to track the sylv (the toy). The bases
are available in sylvbases.mat in the data directory. The rectangle in the first frame is
[x1, y1, x2, y2] = [102, 62, 156, 108]. Please report the performance of this tracker at frames
2, 200, 300, 350 and 400 (the frame + bounding box) in a format similar to Figure 5. Also,
create a sylvseqrects.mat for all the rects you have obtained for each frame. It should
contain one single n × 4 matrix named rects, where n is the number of frames, and each
row contains [x1, y1, x2, y2], where (x1, y1) is the coordinate of the top-left corner of the
tracking box, and (x2, y2) the bottom-right corner.

Figure 5: Lucas-Kanade Tracking with Appearance Basis

3 Affine Motion Subtraction

In this section, you will implement a tracker for estimating dominant affine motion in a
sequence of images, and subsequently identify pixels corresponding to moving objects in the
scene. You will be using the images in the file aerialseq.mat, which consists aerial views
of moving vehicles from a non-stationary camera.

3.1 Dominant Motion Estimation

You will start by implementing a tracker for affine motion using the equations for affine flow.
Essentially in the first section we assume that the motion is limited to pure translation, but
in this scenario it has been relaxed to any affine motion. To estimate dominant motion,
the entire image It will serve as the template to be tracked in image It+1, that is, It+1 is
assumed to be approximately an affine warped version of It. This approach is reasonable
under the assumption that a majority of the pixels correspond to the stationary objects in
the scene whose depth variation is small relative to their distance from the camera.

Using the equations for the affine model of flow, you can recover the vector ∆p =
[a, b, c, d, e, f ]T of affine flow parameters. They will be related to the equivalent affine trans-
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formation matrix as:

M =

1 + a b c
d 1 + e f
0 0 1

 (4)

The homogenous image coordinates of It to It+1 can be related with ~xt+1 = M~xt, where
~x = [x, y, 1]T . For the next pair of temporally adjacent images in the sequence, image It+1

will serve as the template to be tracked in image It+2, and so on through the rest of the
sequence. Note that M will differ between successive image pairs. As before, each update of
the affine parameter vector, ∆p is computed via a least-squares method using pesudo-inverse
as described in the class.

Note that unlike previous exmaples where the template to be tracked is usually small in
comparison with the size of the image, image It will almost always not be contained fully
in the warped version It+1. Hence the matrix of image derivatives, A, and the temporal
derivatives, ∂tIt, must be computed only on the pixels lying in the region common to It and
the warped versoin of It+1 to be meaningful.

Q3.1 (15 points) Write a function with the following signature

M = LucasKanadeAffine(It, It1)

where M is the affine transformation matrix, and It and It1 are It and It+1 respectively.
LucasKanadeAffine should be relatively similar to LucasKanade from the first section.

3.2 Moving Object Detection

Once you are able to compute the transformation matrix M relating an image pair It and
It+1, a naive way for determining pixels lying on moving objects is as follows: warp the
image It using M so that it is registered to It+1 and subtract it from It+1; the locations
where the absolute difference exceeds a threshold can then be declared as corresponding
to locations of moving objects. To obtain better results, you can check out the following
MATLAB functions: bwselect, bwareaopen, imdilate, and imerode.

Q3.2 (10 points) Using the function you have developed for dominant motion estima-
tion, write a function with the following signature

mask = SubtractDominantMotion(image1, image2)

where image1 and image2 form the input image pair, and mask is a binary image of the
same size that dictates which pixels are considered to be corresponding to moving objects.
You should invoke LucasKanadeAffine in this function to derive the transformation matrix
M , and produce the aforementioned binary mask accordingly.

Q3.3 (10 points) Write a script testAerialSequence.m that loads the image sequence
from aerialseq.mat and run the motion detection routine you have developed to detect the
moving objects. Report the performance at frames 30, 60, 90 and 120 with the corresponding
binary masks superimposed, as exemplified in Figure 6. Feel free to visualize the motion
detection performance in a way that you would prefer, but please make sure it can be
visually inspected without undue effort. The MATLAB function imfuse may be useful.
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Figure 6: Lucas-Kanade Tracking of affine motion

4 Deliverables

Upload one single file, andrewid.zip to Blackboard, which, when uncompressed, produces
one folder <andrewid> containing two folders ‘code’, and ‘results’.

Your written report:

• <andrewid>.pdf: your writeup for this homework should be submitted to Gradescope.

The following should be present in the code and results folders:

• code/LucasKanadeInverseCompositional.m

• code/LucasKanadeBasis.m

• code/LucasKanadeAffine.m

• code/SubtractDominantMotion.m

• code/testCarSequence.m

• code/testUltrasoundSequence.m

• code/testSylvSequence.m

• code/testAerialSequence.m

• code/testCarSequenceWithTemplateCorrection.m (optional, extra credit)

• code/testUSSequenceWithTemplateCorrection.m (optional, extra credit)

• results/carseqrects.mat

• results/usseqrects.mat

• results/sylvseqrects.mat

• results/carseqrects-wcrt.mat (optional, extra credit)

• results/usseqrects-wcrt.mat (optional, extra credit)

DO NOT include the data directory in your submission.
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